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ABSTRACT Many machine learning algorithms and almost all deep learning architectures are incapable
of processing plain texts in their raw form. This means that their input to the algorithms must be numerical
in order to solve classification or regression problems. Hence, it is necessary to encode these categorical
variables into numerical values using encoding techniques. Categorical features are common and often of
high cardinality. One-hot encoding in such circumstances leads to very high dimensional vector represen-
tations, raising memory and computability concerns for machine learning models. This paper proposes a
deep-learned embedding technique for categorical features encoding on categorical datasets. Our technique
is a distributed representation for categorical features where each category is mapped to a distinct vector, and
the properties of the vector are learned while training a neural network. First, we create a data vocabulary
that includes only categorical data, and then we use word tokenization to make each categorical data a single
word. After that, feature learning is introduced to map all of the categorical data from the vocabulary to
word vectors. Three different datasets provided by the University of California Irvine (UCI) are used for
training. The experimental results show that the proposed deep-learned embedding technique for categorical
data provides a higher F1 score of 89% than 71% of one-hot encoding, in the case of the Long short-term
memory (LSTM) model. Moreover, the deep-learned embedding technique uses less memory and generates
fewer features than one-hot encoding.

INDEX TERMS Data preprocessing, categorical variables, natural language processing, machine learning.

I. INTRODUCTION
Many machine learning algorithms require that their input
is numerical; therefore, categorical features must be trans-
formed into numerical features before fitting them into
an algorithm [1]. Natural language processing (NLP) is a
field of artificial intelligence that studies the interactions
between computers and human languages, in particular how
to program computers to process and analyze large amounts
of natural language data. Many modern NLP systems and
approaches regard words as atomic units, with no concept of
word similarity since indices in a vocabulary are used to rep-
resent them [2]. Text classification is the problem of assigning
categories to text data according to its content. Categorical
data are commonplace in many data science and machine
learning problems but are usually more challenging to deal
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with than numerical data. Preprocessing categorical variables
becomes important since most machine learning models only
consider numerical variables; therefore, we must transform
these categorical variables to numbers in order for the model
to comprehend and retrieve useful information. There are
many ways to encode categorical variables for modeling, and
one of the most commonly used encoding techniques [3] is
one-hot encoding. This is where each level of the categorical
variable is compared to a specified reference level, especially
when there is no natural ordering between the categories, e.g.,
a feature ‘City’ with names of cities such as ‘Seoul’,‘Paris’,
‘Kinshasa’. Categorical features are prevalent and frequently
have a high degree of cardinality. Some categorical encoding
approaches have been studied in the statistical-learning field
in [4]. In [5], the issue of encoding in the presence of errors
and how to encode categories that are not present in the
training set have been ignored. However, one-hot encoding
produces extremely high-dimensional vector representations
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FIGURE 1. Variables: Quantitative (Numerical) vs Qualitative (Categorical).

in such situations, posing memory and computability issues
for machine learning models. Furthermore, the word rep-
resentations produced by one-hot encoding or hashing are
sparse, high-dimensional, and hardcoded [6].

A good understanding of data is essential for accurate
analysis. Before proceeding to the actual analysis, the data is
processed to aid algorithms and to improve efficiency. There
are other ways of classifying variables that are common in
statistics as described in Fig. 1. On one side, we have the
qualitative variables which are descriptive/categorical; many
statistics such as mean and standard deviation, do not make
sense to compute with qualitative variables, and on the other
side we have the quantitative variables that have numeric
meaning; therefore, statistics like means and standard devi-
ations make sense.

Data variables generally fall into one of the four categories:
nominal scale, ordinal scale, discrete, and continuous [7].
In this study we are going to focus on two of them, thus using
the deep-learned embedding technique, we can easily encode
nominal or ordinal variables.

FIGURE 2. Categorical data: Nominal vs ordinal scale.

Categorical data can be divided into two groups,
as described in Fig. 2, which are nominal (no particular order)
and ordinal (with some particular order) [8].

Typical examples of nominal variables include genotype,
blood type, zip code, gender, race, eye color.

A nominal scale describes a variable with categories that do
not have a natural order or ranking. You can encode nominal
variables with numbers if you want but the order is arbitrary
and any calculations such as computing a mean, median,
or standard deviation would be meaningless.

An ordinal scale is one where the order matters but not
the difference between values. Typical examples of ordinal
variables include satisfaction rating (‘‘extremely dislike’’,
‘‘dislike’’, ‘‘neutral’’, ‘‘like’’, ‘‘extremely like’’) [9].

A. CATEGORICAL VARIABLE ENCODING TECHNIQUES
1) LABEL ENCODING OR ORDINAL ENCODING
We use this categorical data encoding technique when the
categorical feature is ordinal. In this case, retaining the order
is important. Hence, encoding should reflect the sequence.
In Label encoding, each label is converted into an inte-
ger value. For example, create a variable that contains
the categories representing the education qualification of a
person [10].

2) ONE-HOT ENCODING
We use this categorical data encoding technique when the
features are nominal (do not have any order). In one-hot
encoding, for each level of a categorical feature, we create a
new variable, and each category is mapped with a binary vari-
able containing either 0 or 1. Here, 0 represents the absence,
and 1 represents the presence of that category [10].

3) DUMMY ENCODING
Dummy coding scheme is similar to one-hot encoding. This
categorical data encoding method transforms the categorical
variable into a set of binary variables (also known as dummy
variables). In the case of one-hot encoding, for N categories
in a variable, it uses N binary variables.

4) EFFECT ENCODING
This encoding technique is also known as Deviation Encod-
ing or Sum Encoding. Effect encoding is almost similar to
dummy encoding, with a little difference. In dummy coding,
we use 0 and 1 to represent the data but in effect encoding,
we use three values i.e. 1, 0, and −1.

5) HASH ENCODER
To understand Hash encoding it is necessary to know about
hashing. Hashing is the transformation of arbitrary size input
in the form of a fixed-size value. We use hashing algorithms
to perform hashing operations i.e to generate the hash value
of an input.

6) BINARY ENCODING
Binary encoding is a combination of Hash encoding and one-
hot encoding. In this encoding scheme, the categorical feature
is first converted into numerical using an ordinal encoder.
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Then the numbers are transformed in the binary number. After
that binary value is split into different columns.

7) BASE N ENCODING
For binary encoding, the base is 2 which means it converts
the numerical values of a category into its respective binary
form. If you want to change the base of the encoding scheme
you may use the base N encoder. In the case when categories
are more and binary encoding is not able to handle the dimen-
sionality then we can use a larger base such as 4 or 8.

8) TARGET ENCODING
Target encoding is a Baysian encoding technique. In target
encoding, we calculate the mean of the target variable for
each category and replace the category variable with the
mean value. In the case of the categorical target variables,
the posterior probability of the target replaces each category.

B. ARTIFICIAL NEURAL NETWORKS
An artificial neural network (ANN) is the piece of a com-
puting system designed to simulate the way the human brain
analyzes and processes information. It is the foundation of
artificial intelligence (AI) and solves problems that would
prove impossible or difficult by human or statistical stan-
dards. ANNs have self-learning capabilities that enable them
to produce better results as more data becomes available.
The neural network gains the experience initially by training
the system to correctly identify pre-selected examples of the
problem. The response of the neural network is reviewed and
the configuration of the system is refined until the neural
networks analysis of the training data reaches a satisfactory
level.

FIGURE 3. Basic artificial neural networks.

In addition to the initial training period, the neural network
also gains experience over time as it conducts analyses on
data related to the problem. Classification using ANN is
one of the most dynamic research and application areas;
and as shown in Fig. 3, ANN is widely used for classi-
fication purposes because of its ability to generalize and
map input-output relations based on existing data [11]. Deep
neural network architectures have recently gained a lot of
traction in the NLP community [12] due to their ability to
allow researchers to build and train deep neural networks,

implement vectorized neural networks [13], and identify
architecture parameters [14]. Moreover, it allows building
recurrent neural networks (RNN) and its variants (Gated
recurrent units: GRUs, Long short-term memory: LSTMs)
in a variety of NLP applications [15] such as character-level
language modeling, word segmentation [16], [17], and word
embedding [18].

Machine learning is a type of artificial intelligence (AI)
that provides computers with the ability to learn without
being explicitly programmed; it focuses on the development
of computer programs that can change when exposed to new
data. In both, regression and classification analysis, categor-
ical variables are widely used; however, machine learning
algorithms accept only numeric values as input.Whenever we
want to use categorical data for machine learning purposes;
the data needs to be encoded into numeric values such that
each categorical feature is represented with a number [19].
Additionally, categorical data can be considered as a word;
therefore, it can be embedded on the basis of word embed-
ding techniques where each word in a particular language is
allocated to a high-dimensional vector in word embedding
models, with the geometry of the vectors capturing semantic
relationships between the words [20]. Many researchers have
investigated word embedding [21]–[23]; and the emergence
of artificial neural networks in natural language processing
is mostly based on word embedding [24], when compared
to one-hot encoding, this method brings words with similar
meanings closer together in word space, improving word
continuity.

In this paper, a deep-learned embedding technique for cat-
egorical data encoding on a categorical dataset is presented.
Our technique is based on word embedding which is also
a part of a deep learning model. Here, we consider each
categorical variable as a single word, or as a token so that the
distributed word representations can be applied. Therefore,
the idea is to represent words as feature vectors or word
vectors; and then each entry in vector stands for one hidden
feature inside the word meaning. Using the Keras model,
we build our model with an embedding layer that can be used
for neural networks on text data. We have used three different
datasets from the University of California Irvine (UCI) for
experimentation.

The results show that the data encoded with the embedding
technique give the highest accuracy as compared to the other
techniques and can support nominal and ordinal categorical
variables, and also our technique is used where there is vector
similarity or not. We compare our technique with one-hot
encoding; and finally, our deep-learned embedding technique
generated fewer features and used less memory than one-hot
encoding. Our contributions can be summarized as follows:
• We propose a new technique, deep-learned embedding,
to encode categorical variables that can be ordinal or
nominal. It encodes all words, regardless of how similar
they are.

• We create a corpus by separating categorical data from
numerical to precisely have the vocabulary, and then
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we embed all the categorical data to words vectors at
a time, which makes the deep-learned embedding tech-
nique achieve high performance with low computation
cost and less memory usage.

• In experiments, we demonstrate the effectiveness of our
method by encoding the categorical data of three dif-
ferent datasets: bank marketing dataset (BMD), adult
income dataset (AID), and in-vehicle coupon recom-
mendation dataset (I-VCRD); and building different
machine learningmodels. Importantly, for the long-short
term memory model, it achieves a better accuracy
of 64% and a better F1 score of 0.86 compared to
when we use one-hot encoding on the in-vehicle coupon
recommendation dataset.

• Furthermore, the deep-learned embedding technique
uses less memory and also generates fewer features
than one-hot encoding. For instance, when using the
in-vehicle coupon recommendation dataset, our method
generates 80 features and uses 6.494 MB compare to the
one-hot encoding that generates 100 features and uses
10.174 MB.

The paper is organized as follows: Section 2 presents related
work, and section 3 describes our proposed method, and the
following section 4 the experimental results. In section 5,
we present the limitations of the study, and then we give our
conclusion in the last section.

II. RELATED WORK
Most of the literature on encoding categorical variables relies
on the idea that the set of categories is finite, known a priori,
and composed of mutually exclusive elements [25]. In [26],
the author presents a comparative study of categorical vari-
able encoding techniques for neural network classifiers by
covering seven techniques for encoding categorical variables;
on the other hand, the authors evaluate each technique on
the UCI Cars dataset with one neural network architecture.
Beyond one-hot encoding, the statistical-learning literature
has considered other categorical encoding methods in previ-
ous work [4], [27], [28]. In [29], Data representation learning
was presented, and this approach was used to evaluate both
classic feature learning methods and state-of-the-art deep
learning models. One-hot encoding is the most widely used
coding scheme; it compares each level of the categorical
variable to a fixed reference level, and also it transforms a
single variable with n observations and d distinct values to d
binary variables with n observations each. Each observation
indicating the presence (1) or absence (0) of the dichotomous
binary variable [30]. With ordinal encoding, an integer is
assigned to each category; therefore, the provided number
of existing categories is known. It does not add any new
columns to the data; however, it implies an order to the
variable that may not actually exist [31]. Compare to all
the above categorical variable encodings, our technique is
based on word embeddings where each categorical variable
will be represented as a multidimensional array or feature

vector or word vector. A table of a comparison of random
forest accuracy for various encoding techniques shown that
the one-hot encoding has a higher dimensionality than other
encoding schemes [32]. Word embedding has also been con-
sidered as entity embedding in [33], this research has shown
that a neural network can learn the mapping during a typical
supervised training phase; therefore, with the development of
entity embeddings, there has been a recent advance in cat-
egorical variable representation [34]–[37]. Moreover, when
compared to the frequently used one-hot encoding, the intro-
duction of word embeddings not only lowered memory use
but also enhanced the machine learning algorithms learn-
ing ability from data [38]. In our work, we demonstrated
that encoding categorical variables based on word embed-
ding use not only less memory but also generates fewer
features.

III. PROPOSED METHOD
It is more important to know what coding scheme we should
use having into consideration the dataset we are working on,
and the model we are going to use. The current research was
developed in three stages: (1) preprocess the data, (2) build
the neural network, (3) and finally, analyze the metrics and
compare them between different encoding techniques.

1) PREPROCESSING THE DATA
The first stage is very important because preprocessing the
data is one of the major steps when we are dealing with
any kind of text model. This step never has one hot rule,
and totally depends on the problem statement. During this
stage, we have to look at the distribution of our data, what
techniques are needed and how deepwe should clean.We first
start by splitting the data into two subsets, numerical data and
categorical data that allows us to create a corpus that contains
only categorical data, and then we convert to lowercase all
the data and our label into a numeric form. Thus, according
to the description of datasets, all three datasets are used for
classification problems; therefore, their outcome is a binary
output (yes: 1 or no: 0). We say if a client can subscribe for a
deposit then set it equal to one otherwise, set it equal to zero,
using for instance the bank marketing dataset. The bag-of-
words model is simple, it builds a vocabulary from a corpus
of documents and counts how many times the words appear
in each document; we use the word2vec in order to produce
a vector space, typically of several hundred dimensions, with
each unique categorical variable in the corpus such that vari-
able that shares common contexts in the corpus are located
close to one another in the space. Therefore, we used the term
frequency-inverse document frequency (TFIDF) as score for
term i in document j as shown in Equation (1), in order to
discover how many times a categorical variable appears in
our corpus.

TFIDF = TF(i, j) ∗ IDF(i) (1)

where
IDF = Inverse Document Frequency
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TF = Term Frequency
i = Term or categorical variable
j = Document or corpus or a subset that contains only

categorical variable.

TF(i, j) =
Term i frequency in documentj
Total words in document

(2)

IDF(i) = log2(
Total documents

document with term i
) (3)

The above Equation (2) and (3) can be generalized into one
component. The actual mathematical formula become:

wi,j= tfi,j ∗ log(
N
dfi

) (4)

tfi,j = number of occurrences of i in j
dfi = number of documents containing i
N = total number of documents
As shown in Fig. 4, we used the vector space models to dis-

cover relationships between categorical variables and visual-
ize those relationships in the corpus. The figure below shows
us the categorical data in two-dimensions space (2D space)
where we can see categorical data such as ‘‘feb’’, ‘‘oct’’,
‘‘jan’’, ‘‘yes’’, ‘‘no’’, ‘‘nov’’, ‘‘retired’’. As we mentioned
above, on Fig. 4, we can see that variable that shares common
contexts in the corpus are located close to one another in the
space.

FIGURE 4. Categorical data from Bank marketing dataset embedded
in 2D vector space.

There is some similarity between words. In natural lan-
guage processing, useless words such as ‘‘the’’, ‘‘me’’, ‘‘yes’’
and ‘‘no’’, are referred to as stopwords. Therefore, it is a com-
mon practice to remove the stopwords while preprocessing
the text data because they take up space in the dataset and
take up valuable processing time that could have an impact
while training the model.

Figure 5 depicts categorical data from the adult income
dataset in two-dimensions space; similarly to Fig. 4, we can
observe that variables with similar contexts in the corpus are
clustered together in the space. Categorical data from the
In-vehicle coupon recommendation dataset can also be seen
in two-dimensions space as shown in Fig. 6. Importantly,

FIGURE 5. Categorical data from adult income dataset embedded in
2D vector space.

FIGURE 6. Categorical data from in-vehicle coupon recommendation
dataset embedded in 2D vector space.

we have to consider each categorical variable as a single word
in order to tokenize correctly the categorical data.

2) DEEP-LEARNED EMBEDDING TECHNIQUE
In this part, we are going to describe how our technique
works. In natural language processing (NLP), tokenization
plays a significant role in dealing with text data; therefore,
it is a way of separating a piece of text into smaller units
called tokens. Here, tokens can be either word, characters,
or subwords. Hence, tokenization can be broadly classified
into 3 types: word, character, and subword (n-gram char-
acters) tokenization. Representing strings as n-grams at the
character level is similar to vectorizing text as tokens or
words [39]; therefore, in our case, we have used the word
tokenization (1-gram sequence or unigram) in order to have
each categorical data as a single word. First, we create the
tokenizer object, providing the maximum number of data
to keep in our vocabulary, after the tokenization process,
every categorical data will be considered as a token in our
corpus as shown in Fig. 7. Considering the bank marketing
dataset, this dataset contains many ‘‘yes’’ and ‘‘no’’, and we
cannot remove them because they represent useful informa-
tion in terms of making a decision whether the client can
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subscribe for a deposit or not based on the description of the
dataset.

FIGURE 7. Categorical data tokenized: Bank marketing dataset.

During the preprocessing stage, all categorical data have
been tokenized in the created corpus. As shown in Fig. 7,
we did not remove stopwords because they contain important
information for this specific classification problem. The stop-
words are considered as noise for the model; consequently,
they can slow down the training process that could also give a
lower accuracy. Therefore, to copewith this problem,we have
built different machine learning models with hyperparameter
optimization tuning in order to have higher accuracy and a
good model.

FIGURE 8. Categorical data tokenized: Adult income dataset.

The categorical data from the Adult income and In-vehicle
coupon recommendation datasets have also been tokenized as
illustrated in Fig. 8 and 9.

FIGURE 9. Categorical data tokenized: In-vehicle coupon
recommendation dataset.

After tokenizing our data, we split the subset into training
and testing data. Accordingly, 80% were allocated to the
training set and 20 % were allocated to the test set, and we
saved the training and test sets into a CSV file to ensure we
are using the same data for each machine learning model.
Now we have the vocabulary of all the data, the training
and testing set, and we apply a vectorizer to the training and
testing set separately; therefore, all the tokenized data can
be learned from the vocabulary where tokens are terms and
values are indices in the feature matrix; resultantly, we obtain
the TF-IDF-weighted document-term matrix or the feature
matrix which is a sparse matrix. This process can also be
called feature learning techniques where categorical data
tokenized from the vocabulary are mapped to word vectors
of real numbers. We have finished encoding our categorical
data into embedding matrix; before further process; firstly,
we have to convert the sparse matrix into a dataframe; sec-
ondly, we reshape the numerical subset, and finally concate-
nate the encoded categorical data with the numerical data
subset.

3) MODEL DESCRIPTION
We use different machine learning models such as Logistic
Regression (LR), Multi-Layer Perceptron (MLP), Random
Forest (RF), Gradient Boosting (GB), and Deep Learning
Model (DL), and we train and evaluate these models using the
training and testing data encoded with deep-learned embed-
ding technique.

It is a good idea to build a deep learning model with the
Keras model because embeddings can be used in Keras via
the embedding layer. Therefore, we built powerful recurrent
neural architectures [40] using deep neural networks; and
we have used the sequential Keras model to build neural
networks for classification tasks on three different datasets.
We use the embedding matrix in the first embedding layer
of the neural network. Each id in the input sequence will
be used as the index to access the embedding matrix. Our
neural network model is a three built-in recurrent neural net-
work (RNN) layers in Keras; this sequential model processes
sequences of integers, embeds each integer into a dimensional
vector, then processes the sequence of vectors using a LSTM
layer.

We apply a grid search by setting up a model generator
function, setting up a parameter grid and doing a grid search
with cross-validation, and after the training, the outcomes of
our grid search can be reported where we can see different
models with its parameters; therefore, we can pick the best
model. The scikit-learn have been used, a toolkit often used
with Keras and other machine learning software in order to
perform the grid search and obtain the classification report,
which will tell us about our best model. Then, we have
to import Keras’s KerasClassifier wrapper, which makes it
compatible with scikit-learn. We apply grid search for deep
learning models for hyperparameter optimization so that the
model can grid search the epochs, the activation function, and
the optimizer; hence, it will give the best model along with its
parameters. Now,we set up ourKerasClassifier, handing it the
model-building function, set verbose to 0 to hide the progress
bars of each Keras run, we also set up a grid search with cross-
validation. For its estimator, we give it our model, which is
our KerasClassifier wrapper, and our grid parameter; then we
say cv=5, meaning cut the data (the training data) into five
different segments and then cross-validate. Train on 4, and
use one fifth to validate and iteratively repeat this in order
to search for the best hyperparameter values. we call the fit
function going from our x training data (again, those are our
input training data) to our y training data (these are the labels
from the label encoded) and then print out our best results.

IV. EXPERIMENTAL RESULTS
A. DATASET DESCRIPTION
1) THE BANK MARKETING DATASET
The Bank Marketing dataset used for this study was obtained
from the UCI Machine Learning Repository. The data is
related to direct marketing campaigns (phone calls) of a

0https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
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Portuguese banking institution. The classification goal is to
predict if the client will subscribe to a term deposit (variable
y). The data includes information of 45211 clients. Each
record has 17 attributes. This dataset contains 10 columns of
categorical data and 7 columns of numerical data.

2) ADULT INCOME DATASET
The Adult Income Dataset contains 48842 samples of income
data from the census bureau database for individuals in the
United States. Also known as ‘‘Census Income’’ dataset.
The aim is to determine whether a person’s salary exceeds
$50,000 USD. The data includes information of 48842 per-
son. Each record has 14 attributes composed of 8 columns of
categorical data and 6 columns of numerical data.

3) IN-VEHICLE COUPON RECOMMENDATION DATASET
The In-vehicle Coupon dataset contains 12684 samples of
coupon recommended. This data studies whether a person
will accept the coupon recommended to him in different
driving scenarios. Each record has 26 attributes composed
of 16 columns of categorical data and 10 columns of numer-
ical data.

B. PERFORMANCE RESULTS
Classification accuracy of different models was measured,
and the results from the experiments performed on the Bank
Marketing Dataset are illustrated in the different tables below.
Using a one-hot and ordinal encoding technique for the same
dataset shows low accuracy compared to our deep-learned
embedding technique. The deep-learned embedding tech-
nique gives better accuracy of 73% than one-hot encoding
which gives 71% of accuracy as shown in Table 3. Besides
the Bank Marketing dataset, we also use 2 more categori-
cal datasets: Adult Income and In-vehicle coupon datasets.
In view of the In-vehicle coupon recommendation dataset,
our approach generates 80 features and uses 6.494 MB com-
pared to 100 features and 10.174 MB for one-hot encoding
as shown in Table 7. The use of word embeddings reduced
the memory usage [38] compared to the commonly used
one-hot encoding. Most importantly, evaluating a machine
learning algorithm is an essential part of any deep learning
project; since our model may give us satisfying results when
evaluated using a metric like accuracy but may give poor
results when evaluated against other metrics such as mean
square error or any other metric. Most of the time we use
classification accuracy to measure the performance of our
model; however, it is not enough to truly judge our model.
Therefore, we evaluate the performance of different machine
learning models by using the following metrics:

Accuracy =
Number of Correct predictions

Total numbers of predictions made
(5)

0https://archive.ics.uci.edu/ml/datasets/adult
0https://archive.ics.uci.edu/ml/datasets/in-

vehicle+coupon+recommendation

Accuracy: It is the ratio of number of correct predictions to
the total number of input samples.

Precision =
True Positives

True Positives+ False Positives
(6)

Precision: It is the number of correct positive results
divided by the number of positive results predicted by the
classifier.

Recall =
True Positives

True Positives+ False Negatives
(7)

Recall: It is the number of correct positive results divided
by the number of all relevant samples (all samples that should
have been identified as positive). There is also another metric
that we can use if wewant to seek a balance between precision
and recall which F1 Score. It is also called the F-score or the
F-measure. It might be a better measure to use if we need
to convey a balance between precision and recall, and it is
calculated as follows:

F1 Score = 2 ∗
Precision ∗ Recall
Precision+ Recall

(8)

Area Under Curve (AUC) is one of the most widely used
metrics for evaluation. It is used for binary classification
problems. The area under the curve (AUC) indicates the
probability that the classifier will rank a randomly chosen
positive observation higher than a randomly chosen negative
one.

Mean Square Error =
1
N

N∑
j=1

(yj − ŷi)2 (9)

Mean Squared Error (MSE) is quite similar to Mean Abso-
lute Error, the only difference being that MSE takes the
average of the square of the difference between the original
values and the predicted values.

TABLE 1. Comparison between target and binary encoding.

There are many ways to encode categorical variables as
numbers and fit them into an algorithm. Therefore, we have
used different metrics together with different encoding tech-
niques including the deep-learned embedding techniques in
order to evaluate different machine learning algorithms. The
results presented in Table 1 show that when encoding cat-
egorical data with target encoding, the gradient boosting
outperforms the other models and give higher accuracy along
with the precision. Using binary encoding, we also built
different machine learning models, and the result shows that
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TABLE 2. Comparison between target and binary encoding.

when compared to target encoding, binary encoding gives a
low accuracy and low precision as shown in Table 1. The
experiment results, as shown in Table 2 show that values of
the AUC and MSE are almost the same for both target and
binary encoding. One-hot encoding is the most used encoding
technique in many projects when it comes to encode categor-
ical variables; this technique maps each category to a vector
that contains 1 and 0 denoting the presence or absence of the
feature. The number of vectors depends on the number of
categorical features. This method produces a lot of columns
that slow down the learning significantly if the number of
the category is very high [32], and it can also have a higher
dimensionality than other encoding schemes.

TABLE 3. Comparison between one-hot and deep-learned embedding.

For the reason that the one-hot is the most used encoding
technique for categorical data; we made a deep comparison
between one-hot encoding and our deep-learned embedding
technique. Our proposed technique, deep-learned embed-
ding technique, gives higher accuracy than one-hot encoding;
moreover, the precision is 0.83 higher than 0.79 for one-hot
encoding as shown in Table 3.

Besides the Bank marketing dataset, we also applied our
technique to the Adult income dataset and compared the
result with one-hot encoding. Repeatedly, encoding cate-
gorical variable with our proposed technique and fit them
into machine learning model gives almost similar result as
when using one-hot encoding. Here, considering the accu-
racy, as shown in Table 4, one-hot encoding surpasses our
proposed technique; however, our proposed technique out-
performs a higher F1 score of 89% than 71% of one-hot
encoding, in consideration of the LSTM model.

TABLE 4. Comparison between one-hot and deep-learned embedding.

The results presented in Table 5 show again that using
our proposed technique for encoding categorical variables
help the machine learning models to have good accuracy
and better F1 score than when using one-hot encoding. For
instance, LSTM outperforms 65% of accuracy compared to
61% of one-hot encoding; in addition, the F1 score metric
is 0.86 higher than 0.66 for one-hot encoding as shown
in Table 5.

TABLE 5. Comparison between one-hot and deep-learned embedding.

TABLE 6. Comparison between one-hot and deep learned embedding.

We have used different models and different evaluations to
ensure that our deep-learned embedding technique is prefer-
able when working on categorical dataset. As shown Table 6,
when using one-hot encoding, logistic regression, multi-layer
perceptron, and random forest give a higher value of AUC
than our technique. On the other hand, our deep-learned
embedding technique surpasses the one-hot when using gra-
dient boosting and the LSTM model. The AUC is used for
binary classification and this is better for our study because
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taking into consideration the bank marketing dataset; we are
predicting whether a client can subscribe for a deposit or not
which means it is a binary classification problem. Moreover,
our proposed technique works well with artificial neural net-
works such as LSTM because it is based on word embedding;
as shown in Fig. 10, deep-learned has better accuracy than
one-hot encoding.

FIGURE 10. Comparison of accuracy between one-hot and deep-learned
embedding.

Another important point while dealing with categorical
variable encoding is the number of features that can be gen-
erated after encoding; usually, after encoding we obtain a
sparse matrix that contains many zero. Besides the number
of generated features after encoding, it is also essential to
know the memory used by the dataframe. In this way, on one
side we have the number of the generated features, and on
the other side we have the capacity memory used by the data;
getting to know howmuch memory which has been used by a
data frame can be extremely useful when working with a big
data frame. Therefore, in order to check the memory usage (in
Megabytes:MB), we first convert the sparsematrix into a data
frame and then calculate the memory usage. Here, note that
before preprocessing data, as shown in Table 8, our data frame
had 7.2 MB, 3.91 MB, and 2.05 MB for the Bank marketing
dataset, Adult income dataset, and In-vehicle coupon dataset
respectively.

TABLE 7. Comparison of generated features between one-hot and
deep-learned embedding.

The number of the generated features depends on the
number of categorical variable in the original dataset. Before
encoding, our original datasets had 17 columns, 15 columns,

and 26 columns for the Bankmarketing dataset, Adult income
dataset, and In-vehicle coupon dataset respectively. There-
fore, we have only applied the deep-learned embedding tech-
nique on the categorical data and after encoding, in view
of the Bank marketing dataset, the one-hot encoding gen-
erated 46 features and our technique generated 39 feature.
Here, note that after encoding we have to concatenate all
the data which means that we have to put together the cat-
egorical data encoded and the numerical data. Accordingly,
we had 46 (39+ 7) features for deep-learned embedding and
53 (46 + 7) for one-hot encoding as shown in Table 7. Once
again our deep-learned embedding is better than one-hot
encoding because it generates fewer features than one-hot
encoding. Additionally, when using the Adult income dataset,
our technique generates 105 features and one-hot encod-
ing 106 features; moreover, it generates 80 features less
than 100 for one-hot encoding when using the In-vehicle
coupon dataset. Overall, our deep-learned embedding gen-
erated fewer features than one-hot encoding as described
in Table 7. The most important point to keep in mind is that
the number of features created is determined by the dataset
we are working with.

There are two ways to find how pandas dataframe use
the memory, one way is to find the memory usage of each
column in bytes in a dataframe and the other way is to find the
total memory usage of a dataframe. Therefore, as mentioned
earlier, we have to convert the sparse matrix into a data frame
in order to find the memory usage. As shown in Fig. 11, our
technique uses less memory than one-hot encoding; we can
confirm that the memory usage by the dataframe depends on
the number of features generated.

FIGURE 11. Comparison of Generated features between One-hot and
Deep-learned embedding as well as memory usage.

When we use deep-learned embedding, first it takes up less
memory as shown in Table 8. In view of the Bank marketing
dataset, one-hot encoding uses 3.3 MB while deep-learned
embedding uses 2.9 MB. In this paper, we also compared
these memory usages. With respect to one-hot, the absolute
difference is 0.4 MB. That means, if deep-learned embedding
needs 2.9 MB to run then one-hot encoding will need 2.9 MB
andmore to run (2.9+0.4 = 3.3), andwe can say that one-hot
need 13% of memory of deep-learned embedding (0.4 MB
equal 13% of 2.9 MB).
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TABLE 8. Memory usage.

Furthermore, when using the Adult income dataset and
encoding the categorical variable using our technique,
the data frame uses 21.88 MB; however, when we encode
with one-hot encoding, it uses 27.61 MB of memory. In addi-
tion, using our technique, the memory usage is 6.494 MB
less than 10.174 MB for one-hot encoding when taking
into account the In-vehicle coupon dataset. Importantly, our
deep-learned embedding technique used less memory than
one-hot encoding.

V. LIMITATIONS OF THE STUDY
Our study has some limitations within which our findings
need to be interpreted carefully. Some limitations of the study
should be mentioned. First, as in most empirical studies,
the research presented here was limited by the datasets used.
Because datasets are composed of categorical values and
numerical values. Some categorical values can be a single
word (e.g. high, low) or open compound word separated by a
space (e.g. high school, graduate school) or hyphenated com-
pound word (e.g. one-half, seventy-two). Second, we focused
on binary classification problems in our research. Third, our
study did not examine the impact of embedding a compound
word. Last but not least, the results of the study may not be
completely generalizable because the data was restricted to
the purely categorical dataset.

VI. CONCLUSION
Many machine learning algorithms can support categorical
values without further manipulation but there are many more
algorithms that do not. Therefore, the analyst is faced with the
challenge of figuring out how to turn these text attributes into
numerical values for further processing. There are manyways
to encode these categorical variables as numbers and use them
in an algorithm. This paper demonstrated and compared the
classification accuracy and other metrics of machine learning
models applied to categorical data encoded using different
encoding techniques. The study aimed to find a new way to
encode categorical variables that can be nominal or ordinal
data based on the word embedding technique. It is possible
to convert a categorical variable into numeric form even if
there is a semantic context or not between categorical data.
The goal of this study was to find out the new encoding

technique for a categorical variable on a categorical dataset
such as the Bank Marketing dataset, Adult Income dataset,
and In-vehicle coupon recommendation dataset. Overall,
the proposed deep-learned embedding techniques performed
the best results compared to one-hot encoding techniques,
and it used less memory and generated fewer features than
one-hot encoding. According to the prediction results, our
deep-learned embedding technique performed the best accu-
racy of 73% and precision of 0.83 compared to the one-hot
encoding technique, in consideration of the Bank marketing
dataset. This was not an exhaustive study; however, the deep-
learned embedding technique can be considered more prefer-
able for prediction tasks involving purely categorical dataset.
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