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ABSTRACT The impedance network boundary condition (INBC)-based finite-difference time-domain
(FDTD) method has been widely used for electromagnetic analysis of highly conductive thin film materials.
In the INBC-FDTD formulation, the electromagnetic field variations inside the thin film material are taken
into account mathematically and thus extremely small FDTD grids are not necessary for the FDTDmodeling
of the material. Therefore, computational efficiency of the INBC-FDTD formulation is significantly better
than other FDTD formulations. Albeit with this great advantage, the INBC-FDTD formulation cannot be
fully employed for thin filmmaterials because the corresponding perfectly matched layer (PML) formulation
has not been reported in literature. In this work, we propose a PML formulation suitable for the INBC-FDTD
algorithm. Numerical examples illustrate that the proposed PML-INBC-FDTD formulation can yield good
absorption performance and also it can improve computational efficiency while maintaining numerical
accuracy.

INDEX TERMS Finite-difference time-domain (FDTD) method, impedance network boundary condition,
perfectly matched layer.

I. INTRODUCTION
The finite-difference time-domain (FDTD) method has been
popularly employed for a variety of research areas includ-
ing dispersion-engineered metamaterials, plasma, photonics,
and biomedical applications [1]–[7]. The main advantages
of the FDTD method are simplicity, robustness, and broad-
band analysis. The FDTD method can be used to analyze
electromagnetic wave propagation in complex media such as
nonlinear, dispersive, and chiral media [8]–[12].

Thin film materials have been widely used for electro-
magnetic applications [13]–[16]. When modeling a thin film
material in the standard FDTD method, the electromag-
netic field variations within the material must be taken into
account accurately. Therefore, in the standard FDTDmethod,
very refined spatial grids are usually used, which leads
to overwhelming computational resources [17]. To tackle
this problem, the impedance network boundary condition
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(INBC)-FDTD formulation was presented [18]. The INBC
algorithm considers the tangential electric and magnetic field
components located on the surface of the thin film material
and employs the impedance relationships between them. The
change in electromagnetic fields inside the thin film material
is considered mathematically in the INBC algorithm. There-
fore, in the INBC-FDTD formulation, very refined spatial
grids are not needed any more but the conventional FDTD
grids can be employed, which leads to improve computational
efficiency. The INBC-FDTD formulation was successfully
used to analyze shielding effectiveness of highly conductive
thin film materials [19]–[21]. In [19], [20], the INBC-FDTD
modeling of thin conductive shields was proposed. In [21],
thin composite multilayered panels were efficiently analyzed
using the INBC-FDTD formulation.

Since the computational simulation space is finite,
an absorbing boundary condition must be used for the
outermost boundaries of the FDTD discrete space. Among
various absorbing boundary conditions, the perfectly
matched layer (PML) is robust and powerful because it
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can effectively absorb arbitrarily-incident and polarized
electromagnetic waves in complex media without spurious
reflections [22]–[24]. However, a PML formulation for the
INBC-FDTD formulation has not been reported in literature.
In this work, we propose a PML formulation suitable for
the INBC-FDTD algorithm. In the next section, the INBC
algorithm is briefly reviewed and then the formulation for the
thin filmmaterials is presented. Next, numerical examples are
employed to illustrate that the proposed PML-INBC-FDTD
formulation can effectively absorb electromagnetic waves.
Finally, concluding remarks are followed.

II. PML-INBC-FDTD FORMULATION
As shown in Fig. 1, let us consider a thin film mate-
rial with thickness d along the x-axis in y = J1y on
the two-dimensional xy-plane for simplicity without loss of
generality. Here, 1ξ indicates the FDTD grid size along
the ξ direction. The tangential electromagnetic field com-
ponents on the surface of the thin film material are Ex
and Hz. According to the INBC algorithm [19], the tan-
gential magnetic field on the upper (or lower) surface is
expressed as H+z (or H−z ). Similarly, the tangential E+x
and E−x components are introduced on the surface. In the
INBC algorithm, two impedance relationships are considered
to connect tangential electromagnetic field components on
both sides of the thin film material by the self and mutual
impedances:

E−x (ω) = −Z11(ω)H
−
z (ω)+ Z12(ω)H+z (ω),

E+x (ω) = Z22(ω)H+z (ω)− Z21(ω)H−z (ω), (1)

where Z11 and Z22 indicate the self impedance, and Z12 and
Z21 represent the mutual impedance. The self impedance and
the mutual impedance are given by

Z11(ω) = Z22(ω) = η coth(γ d),

Z12(ω) = Z21(ω) =
η

sinh(γ d)
, (2)

where

η =

√
µ

ε + σ/jω
,

γ = jω
√
µ(ε + σ/jω).

Note that ε, µ, and σ indicate the permittivity, the perme-
ability, and the conductivity of the thin film material respec-
tively. In above, the intrinsic impedance is denoted as η, and
the propagation constant is expressed as γ . Note that the
thickness (d) of the thin film material is taken into account
mathematically in (2). As alluded previously, the INBC-based
FDTD method can use the conventional spatial grid size,
which can lead to dramatically increase its computational
efficiency [19]. In the FDTD method, it is necessary to con-
vert the frequency-domain impedance relationships into the
time-domain counterparts. However, it is not straightforward
to derive the INBC-FDTD formulation by directly using the
inverse Fourier transform (IFT) of (2). Alternatively, in the

FIGURE 1. Electromagnetic field variables and additional PML-related
variables in the PML-INBC-FDTD formulation.

INBC-FDTD algorithm, (2) is approximated as the series of
the rational functions by utilizing the vector fitting method
proposed in [25]:

Z11(ω) = Z22(ω) ≈ Z11,∞ +
N11∑
k=1

r11,k
jω − p11,k

,

Z12(ω) = Z21(ω) ≈ Z12,∞ +
N12∑
k=1

r12,k
jω − p12,k

. (3)

Note that (3) can be simply converted into the time-domain
functions via the IFT.

As mentioned previously, the PML absorbing bound-
ary condition for the INBC-FDTD formulation has not
been presented until now. The PML absorbing boundary
condition was applied to only the conventional FDTD for-
mulation except the INBC-FDTD formulation for the thin
film material [19]. Note that this conventional INBC-FDTD
formulation can lead to acceptable numerical results for
thin copper film in 10 MHz–10 GHz [19] but it cannot be
employed for some EM analyses of thin film materials due to
spurious PML reflections.

In this work, we propose the PML formulation suitable
for the INBC-FDTD algorithm in order to fully employ the
INBC-FDTD algorithm for electromagnetic analysis of thin
film materials. The complex-frequency-shifted (CFS)-PML
is employed in this work and the CFS-PML stretching vari-
able is written as [26]

Sξ = κξ +
σξ

αξ + jωε0
, (4)

where κξ increases attenuation of evanescent waves, and αξ
ensures late-time stability for low frequency waves. The PML
can be implemented through modified Maxwell’s equations
with stretched coordinates [27], [28]. In the INBC-FDTD
formulation, only Ampere’s law is considered for tangential
electromagnetic fields [19] and thus the modifed Ampere’s
law (in the frequency domain) in the PML region can be
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written as

jωµ0H−z (ω) = −S−1x
∂

∂x
E−y (ω)+ S

−1
y

∂

∂y
E−x (ω),

jωµ0H+z (ω) = −S−1x
∂

∂x
E+y (ω)+ S

−1
y

∂

∂y
E+x (ω). (5)

Inserting (4) into the above equations, we can write

jωµ0H−z (ω) = −
1
κx

∂

∂x
E−y (ω)− g

−
zx(ω)

+
1
κy

∂

∂y
E−x (ω)+ g

−
zy(ω),

jωµ0H+z (ω) = −
1
κx

∂

∂x
E+y (ω)− g

+
zx(ω)

+
1
κy

∂

∂y
E+x (ω)+ g

+
zy(ω), (6)

where g−zx , g
+
zx , g

−
zy, and g

+
zy are auxiliary PML variables and

they are defined by

g−zx(ω) = −
σx/(ε0κx)

jω + (αx + σx/κx)/ε0

1
κx

∂

∂x
E−y (ω),

g+zx(ω) = −
σx/(ε0κx)

jω + (αx + σx/κx)/ε0

1
κx

∂

∂x
E+y (ω),

g−zy(ω) = −
σy/(ε0κy)

jω + (αy + σy/κy)/ε0

1
κy

∂

∂y
E−x (ω),

g+zy(ω) = −
σy/(ε0κy)

jω + (αy + σy/κy)/ε0

1
κy

∂

∂y
E+x (ω). (7)

By applying the IFT to the above equations, the auxiliary
differential equations can be written as

∂

∂t
g−zx(t)+

αx + σx/κx

ε0
g−zx(t) = −

σx

ε0κ2x

∂

∂x
E−y (t),

∂

∂t
g+zx(t)+

αx + σx/κx

ε0
g+zx(t) = −

σx

ε0κ2x

∂

∂x
E+y (t),

∂

∂t
g−zy(t)+

αy + σy/κy

ε0
g−zy(t) = −

σy

ε0κ2y

∂

∂y
E−x (t),

∂

∂t
g+zy(t)+

αy + σy/κy

ε0
g+zy(t) = −

σy

ε0κ2y

∂

∂y
E+x (t). (8)

The FDTD update equations for H±z can be derived by
using the IFT and the finite difference schemes to (6):

H−z |
n+1
i+1/2,J

= H−z |
n
i+1/2,J −

1t
µ0κx1x

(E−y |
n+1/2
i+1,J − E

−
y |

n+1/2
i,J )

−
1t
µ0

g−zx |
n+1/2
i+1/2,J +

21t
µ0κy1y

(E−x |
n+1/2
i+1/2,J

−Ex |
n+1/2
i+1/2,J−1/2)+

1t
µ0

g−zy|
n+1/2
i+1/2,J, (9)

H+z |
n+1
i+1/2,J

= H+z |
n
i+1/2,J −

1t
µ0κx1x

(E+y |
n+1/2
i+1,J − E

+
y |

n+1/2
i,J )

−
1t
µ0

g+zx |
n+1/2
i+1/2,J +

21t
µ0κy1y

(Ex |
n+1/2
i+1/2,J+1/2

−E+x |
n+1/2
i+1/2,J)+

1t
µ0

g+zy|
n+1/2
i+1/2,J. (10)

Here, 1t denotes the FDTD time step size, the subscript
indicates the space index, and the superscript indicates the
time index. The grid position of each field component is
shown in Fig. 1. Note that the PML auxiliary variables g−zx
and g−zy are collocated with H−z and the PML auxiliary vari-
ables g+zx and g+zy are collocated with H+z . According to the
INBC-FDTD algorithm [19], the forward or backward differ-
ence scheme to the normal directional spatial derivative (e.g.,
the y-directional spatial derivative in Fig. 1). The backward
difference scheme (BDS) is applied to ∂

∂yE
−
x in (9) and the

forward difference scheme (FDS) is utilized to ∂
∂yE
+
x in (9).

Following the CFS-PML implementation described in [9],
[26], the update equations for the PML auxiliary variables can
be written as

g−zx |
n+1/2
i+1/2,J = e−

1t
τ g−zx |

n−1/2
i+1/2,J −

σx/κx

κxαx + σx

× (1− e−
1t
τ )
(E−y |n+1/2i+1,J − E

−
y |

n+1/2
i,J

1x

)
, (11)

g+zx |
n+1/2
i+1/2,J = e−

1t
τ g+zx |

n−1/2
i+1/2,J −

σx

κx

1
κxαx + σx

× (1− e−
1t
τ )
(E+y |n+1/2i+1,J − E

+
y |

n+1/2
i,J

1x

)
, (12)

g−zy|
n+1/2
i+1/2,J = e−

1t
τ g−zy|

n−1/2
i+1/2,J −

σy

κy

1
κyαy + σy

× (1− e−
1t
τ )
(E−x |n+1/2i+1/2,J−Ex |

n+1/2
i+1/2,J−1/2

1y/2

)
,

(13)

g+zy|
n+1/2
i+1/2,J = e−

1t
τ g+zy|

n−1/2
i+1/2,J −

σy

κy

1
κyαy + σy

× (1− e−
1t
τ )
(Ex |n+1/2i+1/2,J+1/2−E

−
x |

n+1/2
i+1/2,J

1y/2

)
(14)

where

τ =
κξε0

κξαξ + σξ
.

It should be noted that we employ the BDS in (13) and
the FDS in (14) for the consistency with the INBC-FDTD
algorithm.

Now, let us address the INBC algorithm in detail. Sub-
stituting (3) into (1), we can rewrite the equations for the
impedance relationships as follows

E−x (ω) = −Z11,∞H
−
z (ω)−

N11∑
k=1

�11,k (ω)

+Z12,∞H+z (ω)+
N12∑
k=1

�12,k (ω),

E+x (ω) = Z22,∞H+z (ω)+
N22∑
k=1

�22,k (ω)

−Z21,∞H−z (ω)−
N21∑
k=1

�21,k (ω), (15)
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where �11,k (ω), �12,k (ω), �22,k (ω), and �21,k (ω) are
defined by

�11,k (ω) =
r11,k

jω − p11,k
H−z (ω),

�12,k (ω) =
r12,k

jω − p12,k
H+z (ω),

�21,k (ω) =
r21,k

jω − p21,k
H−z (ω),

�22,k (ω) =
r22,k

jω − p22,k
H+z (ω).

By applying the IFT, the central difference scheme (CDS),
and the central averaging scheme (CAS), we obtain the equa-
tions for the INBC algorithm in the discrete FDTD world as
follows

E−x |
n+1/2
i+1/2,J = −

Z11,∞
2

(H−z |
n+1
i+1/2,J + H

−
z |

n
i+1/2,J)

−

N11∑
k=1

�11,k |
n+1/2

+
Z12,∞
2

(H+z |
n+1
i+1/2,J + H

+
z |

n
i+1/2,J)

+

N12∑
k=1

�12,k |
n+1/2, (16)

E+x |
n+1/2
i+1/2,J =

Z22,∞
2

(H+z |
n+1
i+1/2,J + H

+
z |

n
i+1/2,J)

+

N22∑
k=1

�22,k |
n+1/2

−
Z21,∞
2

(H−z |
n+1
i+1/2,J + H

−
z |

n
i+1/2,J)

−

N21∑
k=1

�21,k |
n+1/2, (17)

where

�11,k |
n+1/2

= B11,k�11,k |
n−1/2

+ b11,kH−z |
n
i+1/2,J

�12,k |
n+1/2

= B12,k�12,k |
n−1/2

+ b12,kH+z |
n
i+1/2,J

�21,k |
n+1/2

= B21,k�21,k |
n−1/2

+ b21,kH−z |
n
i+1/2,J

�22,k |
n+1/2

= B22,k�22,k |
n−1/2

+ b22,kH+z |
n
i+1/2,J (18)

In above, B11,k = (2 + p11,k1t)/(2 − p11,k1t), B12,k =
(2 + p12,k1t)/(2 − p12,k1t), B21,k = (2 + p21,k1t)/(2 −
p21,k1t), B22,k = (2 + p22,k1t)/(2 − p22,k1t), b11,k =
(2r11,k1t)/(2 − p11,k ), b12,k = (2r12,k1t)/(2 − p12,k ),
b21,k = (2r21,k1t)/(2− p21,k ), and b22,k = (2r22,k1t)/(2−
p22,k ).

Substituting (16) into (9) and (17) into (9) and then rear-
ranging them, we have the following FDTD update equations
for H−z and H+z :

H−z |
n+1
i+1/2,J − h12H

+
z |

n+1
i+1/2,J = F−|n+1/2, (19)

H+z |
n+1
i+1/2,J − h21H

−
z |

n+1
i+1/2,J = F+|n+1/2, (20)

with

F−|n+1/2

= h11H−z |
n
i+1/2,J + h12H

+
z |

n
i+1/2,J − q11

κy1y
κx1x

× (E−y |
n+1/2
i+1,J − E

−
y |

n+1/2
i,J )− q111yκyg−zx |

n+1/2
i+1/2,J

+ 2q11[−
N11∑
k=1

�11,k |
n+1/2

+

N12∑
k=1

�12,k |
n+1/2

−Ex |
n+1/2
i+1/2,J−1/2]+ q111yκyg

−
zy|

n+1/2
i+1/2,J,

F+|n+1/2

= h22H+z |
n
i+1/2,J + h21H

−
z |

n
i+1/2,J − q22

κy1y
κx1x

× (E+y |
n+1/2
i+1,J − E

+
y |

n+1/2
i,J )− q221yκyg+zx |

n+1/2
i+1/2,J

− 2q22[
N22∑
k=1

�22,k |
n+1/2

−

N21∑
k=1

�21,k |
n+1/2

−Ex |
n+1/2
i+1/2,J+1/2]+ q221yκyg

+
zy|

n+1/2
i+1/2,J (21)

where

h11 =
µ0κy1y− Z11,∞1t
µ0κy1y+ Z11,∞1t

,

h12 =
Z12,∞1t

µ0κy1y+ Z11,∞1t
,

h21 =
Z21,∞1t

µ0κy1y+ Z22,∞1t
,

h22 =
µ0κy1y− Z22,∞1t
µ0κy1y+ Z22,∞1t

,

q11 =
1t

µ0κy1y+ Z11,∞1t
,

q22 =
1t

µ0κy1y+ Z22,∞1t
.

Finally, the FDTD update equation of H−z and H+z at
the time step of n + 1 can be obtained by solving the two
simultaneous linear equations (19), (20):

H−z |
n+1
i+1/2,J=

1
1− h12h21

(F−|n+1/2+h12F+|n+1/2), (22)

H+z |
n+1
i+1/2,J=

1
1− h12h21

(F+|n+1/2+h21F−|n+1/2). (23)

The procedure of the proposed PML-INBC-FDTD algo-
rithm can be summarized as follows

1) Update electric fields of the conventional PML-FDTD
at n+ 1/2.

2) Update � of the PML-INBC-FDTD at n + 1/2
[Eq. (18)].

3) Update F− and F+ of the PML-INBC-FDTD at n+1/2
[Eq. (21)].

4) Update g− and g+ of the PML-INBC-FDTD at n+1/2
[Eqs. (11)–(14)].

5) Update H− and H+ of the PML-INBC-FDTD at n+ 1
[Eqs. (22)–(23)].
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6) Updatemagnetic fields of the conventional PML-FDTD
at n+ 1.

It is worthy noting that additional PML variables related
to only tangential magnetic fields are introduced in the
PML-INBC-FDTD formulation.

III. NUMERICAL EXAMPLES
Numerical examples are employed to validate the pro-
posed PML-INBC-FDTD algorithm. As a first example,
we consider graphene, a carbon allotrope that forms a
two-dimensional planar structure in the form of a hexagonal
grid. Graphene is attracting attention as a key material
in various research areas such as photodetectors, optical
sensings, and metamaterials [29]–[31]. Since graphene can
yield tunable surface plasmon polariton (SPP) in the THz
band, it is suitable for compact THz electromagnetic wave
devices [32]–[35]. The surface conductivity (σs) of graphene
is described by the Kubo’s formula [36]. When the thickness
of graphene is d , the volume conductivity is obtained by
σv(ω) = σs(ω)/d and thus the relative complex permit-
tivity can be written as εr (ω) = 1 + σs(ω)/jωε0d [10],
[37]. In this work, the thickness of graphene is set
to 0.33 nm [38].

By using the vector fitting method, we extract four pairs
of pole-residue values in (3) for graphene in the frequency
range of 1–30 THz [25]. Table 1 lists the extracted values of
poles and residues for the self impedance of graphene and
Table 2 lists the extracted values of poles and residues for
the mutual impedance of graphene. The self impedance and
mutual impedance obtained by the vector fittingmethod agree
very well with the analytical impedances, as shown in Fig. 2
and Fig. 3.
The relative reflection errors of the conventional

INBC-FDTD and the proposed PML-INBC-FDTD formu-
lations are calculated to compare absorption performance.
We consider two parallel graphene sheets with the sep-
aration of 50 nm, as shown in Fig. 4. The FDTD grid
size is 1 nm, the time step is set to 1 × 10−18 s for
the Courant-Friedrichs-Levy (CFL) stability condition, and
a Gaussian-modulated sinewave with the bandwidth of
1–30 THz band is used for source excitation [10], [37]. The
whole FDTD domain consists of 120 × 120 cells including
10-cell PML layers in each direction. The y-directed electric
current sources are excited and thenEy at the corner of the two
parallel graphene sheets is observed. To obtain a reference
solution, a very large FDTD domain with 64-cell PML
layers is used [39]. All FDTD simulations are performed
on Intel i7-10700 CPU. As shown in Fig. 5, the proposed
PML-INBC-FDTD formulation can yield good absorption
performance while the absorption performance of the con-
ventional INBC-FDTD formulation is poor. Note that this
graphene parallel plate waveguide can yield SPP wave propa-
gation and thus electromagnetic fields on the graphene sheets
within the PML region are not negligible.

It is also interesting to investigate field distribution
obtained by both INBC-FDTD simulations. For this study,

TABLE 1. Extracted values of poles(p11,k = p22,k = ps,k ) and
residues(r11,k = r22,k = rs,k ) for the self impedance of graphene
where z11,∞ = 297.5853.

TABLE 2. Extracted values of poles (p12,k = p21,k = pm,k ) and
residues(r12,k = r21,k = rm,k ) for the mutual impedance of graphene
where z12,∞ = 297.5737.

FIGURE 2. Magnitude and phase of self impedance calculated by the
analytical equations and the approximate rational functions.

FIGURE 3. Magnitude and phase of mutual impedance calculated by the
analytical equations and the approximate rational functions.

we set the whole computational domain including 10-cell
PML layers as 800 × 600 FDTD cells and other simulation
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FIGURE 4. Two parallel graphene sheets with the separation of 50 nm.

FIGURE 5. Relative reflection error.

setup is maintained as the previous example. The electric
field at the time step of 2.4 × 105 for the conventional
INBC-FDTD simulation is illustrated in Fig. 6. As shown
in the figure, the electric field is severely contaminated by
spurious reflections. Fig. 7 shows the electric field at the same
time step for the proposed PML-INBC-FDTD simulation.
It is observed that there is no spurious reflection on the
computational boundaries, implying again that the proposed
PML-INBC-FDTD formulation works very well.

Let us consider the accuracy of the proposed PML-
INBC-FDTD formulation quantitatively. Toward this pur-
pose, we calculate the propagation constant of the graphene
parallel plate waveguide by using the discrete Fourier trans-
form (DFT) of the FDTD time data along the waveguide,
addressed in [10]. Fig. 8 shows the propagation constant
extracted by the proposed PML-INBC-FDTD simulation
and the theoretical propagation constant [38]. The proposed
FDTD result is consistent with the theoretical counterpart.
Next, we employ larger FDTD grid sizes, i.e., 2 nm, 5 nm,
and 10 nm while the thickness of graphene is maintained

FIGURE 6. Electric field distribution from the conventional INBC-FDTD
simulation at the time step 2.4× 105.

FIGURE 7. Electric field distribution from the proposed PML-INBC-FDTD
simulation at the time step 2.4× 105.

as 0.33 nm. As shown in Fig. 8, all PML-INBC-FDTD
simulations are in good agreement with the theoretical
values. As alluded previously, the change in electromag-
netic fields inside graphene is naturally considered in the
PML-INBC-FDTD formulation and thus very refined spatial
grids are not necessary. It should worthy noting that very
refined FDTD grid size (e.g., 1 nm) should be employed
for other PML-FDTD formulations without utilizing the
INBC algorithm [10], [37]. Table 3 summarizes CPU time
and memory storage for the PML-INBC-FDTD simulation
with four different FDTD grid sizes. As the FDTD grid
size increases, computational efficiency increases dramati-
cally while maintaining computational accuracy. The pro-
posed PML-INBC-FDTD simulation with the FDTD grid
size of 10 nm needs 46 times less CPU time and costs 23 times
less memory storage, compared to the 1-nm FDTD case.

As the next example, we consider 400 µm-thick car-
bon fiber composites (CFC) with the relative permittivity
of 6.4 and conductivity of 1.5 × 104 [40] in the frequency
range of 100 Hz–10 GHz and the geometry of this problem
is shown in Fig. 9. The FDTD grid size is 1 mm and the
CFL number of 0.99 is used. The conventional INBC-FDTD
simulation and the proposed INBC-FDTD simulation are
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FIGURE 8. Propagation constant for the graphene-based parallel
waveguide calculated by the proposed PML-INBC-FDTD simulations.

TABLE 3. Comparison of CPU time and memory storage.

FIGURE 9. CFC sheet.

performed in 70 × 70 FDTD cells including 10-cell PML
layers in each direction. The z−directed magnetic current
with a differentiated Gaussian pulse in the time domain is
excited and then Hz is observed. In addition, the FDTD sim-
ulation with the extremely refined FDTD grid size, i.e.,1s=
10 µm, is performed for the same geometry to obtain the
reference solution. The normalized magnetic fields of the
three numerical results are illustrated in Fig. 10. The pro-
posed PML-INBC-FDTD result is in good agreement with

FIGURE 10. Normalized z-directed magnetic field at the observation
point.

the FDTD result while the conventional INBC-FDTD result
is inconsistent with the FDTD result.

IV. CONCLUSION
In this work, the PML formulation suitable for the
INBC-FDTD algorithm has been proposed. The BDS and
FDS are employed to derive the FDTD update equa-
tions for the PML auxiliary variables to be consistent
with the INBC-FDTD algorithm. The PML auxiliary vari-
ables only related to the tangential magnetic fields are
included in the PML-INBC-FDTD formulation. Numerical
examples are employed to demonstrate that the proposed
PML-INBC-FDTD formulation can effectively absorb elec-
tromagnetic waves on the surface of thin filmmaterials. It has
been illustrated that the PML-INBC-FDTD formulation can
accurately analyze electromagnetic propagation for graphene
and CFC.
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