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ABSTRACT Digital menu boards (DMB) are convenient for customers as well as sellers. In this paper,
we have implemented a DMB using IR-UWB transceivers. Unlike the traditional touch-based interfaces for
menu selection, in our proposed system, users can select items from the menu without touching the screen.
The screen is used to display the menu, and the users point to the specific menu item to select it. Multiple
radar transceivers are used to create a virtual space divided into different grid blocks in front of the digital
display. Patterns in the radar data are analyzed using a multiclass support vector machine (SVM) classifier
and a histogram of oriented gradient descriptor. The system is trained at two different distances from the radar
sensors in order to make it robust against distance changes. The proposed hand pointing-based DMB system
was verified through different experiments, with different grid sizes, to investigate accuracy dependence on
grid size. The results showed high accuracy; therefore, the system can be used in real-life scenarios.

INDEX TERMS Digital menu board (DMB), impulse radio ultrawideband, pattern analysis, gestures
recognition.

I. INTRODUCTION
Gesture identification is a process of understanding and
classifying specific movements by the human body, head,
or hands. Hand gesture recognition is significant for human-
computer interaction (HCI) and can simplify many essential
applications in electronic devices, digital games, automo-
biles, and defense [1]. Hand gesture recognition has the
potential to overcome dependency on the use of conventional
HCI devices such as the mouse and keyboard [2].

The hand gesture-based digital menu board (DMB) is gain-
ing more importance in user or human-computer interface
systems. The user interface with public displays is facing
challenges in both input design and user interaction. In pub-
lic places, conventional input devices or touch screens are
typically not widely present, for several reasons like hygiene
or display location [3]. The gesture-based DMB has many
advantages in different applications, such as the interaction
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between displays in public places [3], selection of a menu in
restaurants or cafes, and remote controls for the smart TV.

In hand gesture recognition research, vision-based sensors
such as depth cameras are widely used [2]. Optical sensors
are one example of high-resolution sensors that help to track
and recognize finger and wrist movements. The vision-based
techniques can recognize 2D, 3D and real-time hand gestures.
Nonetheless, their performance depends upon the conditions
of the environment [2], [4], [5]. Moreover, when using depth
or vision cameras for gesture recognition, some users might
have privacy issues. Radar, however, has no privacy issue.
It is convenient to use for gesture recognition as it does not
require physical contact. The radar signal is also least affected
by outside environments such as humidity and darkness.

The main concept of the IR-UWB radar is that it transmits
and receives narrow radio impulses in a wide bandwidth.
Many researchers use IR-UWB radar for different applica-
tions, such as estimating vital signs by the reflection of radar
waveform from the chest as well as back [6], [7]. IR-UWB
radar has also been used to count people in indoor and
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outdoor environments [8]. In other research work, researchers
used IR-UWB radar to determine the 3D position of a mov-
ing object using an algorithm based on multiple Quasi-
monostatic IR-UWB radar sensors [9]. In reference [10], the
authors presented an algorithm for hand gesture recognition
using IR-UWB radar. The features used for classification
of gestures were Time of Arrival (TOA) and the magnitude
of the reflected signal [11]. Another work presented hand
gesture recognition through IR-UWB radar to control differ-
ent electronic devices (sound system or radio system) inside
a car, where authors used six gestures inside the car [11].
The features used for classification of gestures were mag-
nitude variance, distance variance, and frequency of hand
motion [11]. In reference [12], the authors implemented 10
gestures using FMCW radar, with an accuracy of 89%.

In this paper, we have implemented a DMB based on
IR-UWB radar sensors. We used four radar sensors to cre-
ate a virtual DMB, applying them in real time to evaluate
the performance of the proposed system. The gestures used
for this work were single click (SC), double click (DC),
right swipe (RS), and left swipe (LS). After removing clut-
ter and noise from the radar signals, we transformed them
into an image and then used a Histogram of Oriented Gra-
dients (HOG) descriptor-based SVM image classifier [13].
In this system, the user can point to the appropriate grid
location to choose an item from the menu, which is displayed
on the screen in front of the DMB plane. In order to evaluate
the real-time performance of our proposed machine learning-
based DMB system, we used a reference measurement based
on the localization of the hand during pointing gestures.
For this, we used TOA-based localization. Next, we used
clustering to find the mid-point of the cluster i.e. centroid of
the localization points, which refers to the position of the hand
for pointing gestures. Then, the result of the proposed DMB
was compared to the result of the selected centroid. Themajor
contributions of this work are as follows:

1. It is the first work to implement a gesture-based menu
selection board using IR-UWB radar sensors.

2. We implemented two grids of variable sizes using mul-
tiple radar sensors. In addition, we added two types
of swipe gestures, i.e. right and left swipe, to change
the pages, if the number of grid blocks on a single
page was insufficient for the menu items. We always
trained the gestures at two different locations to make
the systemmore robust against distance and orientation
of the gestures.

3. The data from multiple radar sensors was fused to
construct the image for gesture classification. For
the implementation of a hand pointing gestures-based
DMB, we used a HOG descriptor. The computational
cost of HOG was very low as compared to deep neural-
based classification, and resulted in high classification
accuracy of approximately 96%. Thus, HOG can be
used for practical applications.

The rest of the paper is organized as follows: Section II
describes the proposed method and pre-processing.

In Section III, we have discussed the algorithm and classifier
of the proposed method. The experimental setup is described
in Section IV. Experimental results and discussion are pre-
sented in Section V, and in Section VI we conclude this paper.

FIGURE 1. Description of the suggested framework.

II. METHODOLOGY
A. PROPOSED ALGORITHM FOR DMB
Our proposed DMB is trained to create a virtual gesture-
based screen in front of a display screen. The framework for
creating the conceptual digital menu grid is shown in Fig.1.
We implemented an optimized multiclass support vector
machine (SVM) classifier-based HOG descriptor to classify
the gestures and their position.

Signals from four IR-UWB radar sensors were initially
processed to generate an individual 2D matrix for each ges-
ture data. Then, the clutter removal filter was used to remove
the ambient data. Next, the clutter removal filter output of all
radar sensors was used to create single images. All four data
matrices were fused to form an image file. Since the HOG
descriptor-based SVM takes images as input, the complexity
and computational time and cost of the HOGdescriptor-based
SVM operation was less than other deep-learning image clas-
sifiers. The HOG itself is a features extraction technique,
so it was not necessary to extract the features from signals
of radars or the combined data of all matrices. The detailed
procedure for each process is described in the following sec-
tions. In this paper, we have used Xethru-x4 model IR-UWB
radar.

B. GESTURES DESCRIPTION
The menu selection grid comprises four gestures, i.e. SC,
DC, LS, and RS, based on the motion of the hand. If the
hand points once at a grid block of the virtual 2D plane,
the classifier takes it as a single click. If the hand points twice,
the classifier takes it as a double click. In this paper, the main
gestures are used for different purposes.
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The single click was used to select an item and display
details about it. The double click was used to confirm the
selection of an item and the swiping gestures were used for
multiple pages. The left swipe was used for the next page,
and the right for the previous. In Table 1, the statement
(k × (m × n) + 2) shows the total number of gestures. The
scalar k shows the number of click gestures, ‘‘m×n’’ shows
the number of grids in the 2D virtual plane, and 2 represents
the number of swiping gestures.

TABLE 1. Specifications of the IR-UWB radio sensor for the proposed HCI.

FIGURE 2. Four radars configured in a rectangular plane to create an
‘‘m × n’’ menu grid.

C. HARDWARE CONFIGURATION
The proposed radar-based digital menu selection system is
one of the multi-sensory systems operating with four radar
sensors. To create a virtual gridmenu board, we have installed
these four sensors in the 2D plane in a rectangular pat-
tern. Since IR-UWB radar sensors usually have a directional
radiation pattern, the four sensors are aligned so that their
beam width is focused towards the center point of the circle.
Fig.2 shows the archetype of the proposed DMB to generate
(m × n) grids comprising of ‘‘m’’ rows and ‘‘n’’ columns.

Signals from multiple radars create high redundancy, pro-
viding better resolution for dividing the available space
into grids as well as individual gesture recognition inside
particular grids.

From the above figure, we can see that the four IR-UWB
radars are transmitting signal pulses towards the virtual plane,
which has been divided into grids for each pointing gesture.
For the first case, we have divided the plane into 2 × 2 grids
as shown in Fig. 3.

FIGURE 3. Hypothetical plane area of 2 × 2 grid DMB and parameters of
each grid in the plane.

FIGURE 4. Hypothetical plane area of 3 × 3 grid DMB and parameters of
each grid in the plane.

The total area of the hypothetical plan for the grid is A,

Total area for (2× 2) plane→
[
G11 G12
G21 G22

]
The above figure shows the measurements of length and

width of each grid in ‘‘cm’’ as well as in sample points.
Now, we will divide the area into a 3 × 3 grid as follows.
Figure 4 shows the hypothetical plane area for 3 × 3 grids.
For both setups, the cells (grids) are distributed uniformly.

Total area for (3× 3) plane→

G11 G12 G13
G21 G22 G23
G31 G32 G33


The dimensions of the rectangular planes are shown in

detail in Figs. 3 and 4. The plane size for each setup is same.
However, the grid blocks in the 2×2 grid plane will be larger
than the 3 × 3 grid plane. For both setups, the horizontal
distance between two radars was 72 cm (112 samples), and
the vertical distance was 52 cm (81 samples). As some of the
signal samples were wasted because the distance extremely
close to the radar sensors was not usable, the actual plane size
is smaller compared to the plane’s physical size. The actual
usable plane and the plane’s physical size are both shown in
Figs. 3. and 4.

For the 2×2 grid shown in Fig. 3., each block was 22.5 cm
by 30 cm (35 by 47 in samples). For the 3×3 grid, each block
was decreased to 15 by 20 cm (23 by 31 in samples), as shown
in Fig. 4.
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D. PREPROCESSING AND PATTERN EXTRACTION
The signals transmitted from each radar are R1, R2, R3,
andR4. Received signals are r1(t), r2(t), r3(t), and r4(t) respec-
tively, which contain information about the environment.
Received raw signal rk(t) contains details of every object.
The unwanted echoes termed as clutter are removed using
a simple loopback filter [11] represented by the following
equations.

ck (t) = αck−1 (t)+ (1− α) rk (t) , (1)

yk (t) = rk (t)− ck (t) , (2)

where k is the slow time index, t is the fast time index, ck(t)
is the clutter signal, and yk(t) is the background-subtracted
signal fromwhich the clutter signal is removed. Here, alpha is
the weighting constant that controls the sensitivity of the clut-
ter removal process. A high value of alpha will make the filter
highly robust, and only macro motions will be passed through
the loopback filter; a low value of alpha will also allow micro
motions to pass through the filter. For our experiment, it was
found that the value of alpha provided enough optimized
allowable signal to subtract the background reflections and
pass desired signals only.

The raw signal and the signal after background-subtraction
are shown in Fig. 5. The signal before clutter removal has a
greater magnitude around index value 60, whereas the signal
after clutter removal shows that the clutter part is removed,
so the signal magnitude around index value 60 is lower as
compared to the motion part, which is centered at index value
118 in Fig. 5(b).

After clutter removal, the one-dimensional signal from
each radar is stored for a certain slow time to make a 2D
matrix, which is then fused and transformed into a single
grayscale image for further image processing, as shown in
Section III.

III. IMAGE TRANSFORMATION AND CLASSIFICATION
Generally, the SVM classifier is a binary classifier (k = 2)
capable of separating the class variables into two classes.
For our problem, the classification problem is multiclass,
with (k = 10) for a 2 × 2 DMB and (k = 20) for a
3× 3 DMB. The multiclass SVM uses SVM learners and a
‘‘one vs one’’ encoding scheme and returns a trained mul-
ticlass SVM model. For dataset training, error correcting
output codes (ECOC) used multiclass SVM binary learn-
ers. To apply the multiclass SVM classifier, we combine
the pre-processed signals from the four radars. The detailed
procedure for training is given in Algorithm 1 as shown
below.

After applying Algorithm 1, we can get the image for the
gesture G23 as shown in Fig.6.

Fig.6. shows the transformation of the data obtained from
the four radar sensors into a grayscale image. After image
transformation, the HOG descriptor-based SVM classifier
algorithm is applied as follows.

FIGURE 5. One data sample of received radio signal (a) before clutter
removal and (b) after clutter removal.

Algorithm 1Radar Signal to Image Transformation for HOG
Descriptor-Based SVM Classifier
1. The input signal from four radar sensors r (t) , r2 (n) ,

r3 (t) and r4 (t)
2. Remove the clutter from the signal as described in
Sec. II-D
3. Background subtracted signals are combined into a
matrix of size k × t as represented in (2)
4. Combine the 2D signal from the four radars as shown
in Fig. 6(a-d)
5. Convert the four 2D matrices to the RGB of an image
as shown in Fig. 6(e)
6. Convert it into the greyscale image as shown
in Fig. 6(f)

A. HOG DESCRIPTOR-BASED SVM CLASSIFIER
The HOG descriptor-based SVM classifier was implemented
for the DMB. Fig. 7. shows the overall schema of convert-
ing the arbitrary input image into HOG descriptors (i.e. the
features [13]–[15]). First, the input image is converted into
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FIGURE 6. (a) Background subtracted data received from radar R1. (b) Background subtracted data received from radar R2. (c) Background
subtracted data received from radar R3. (d) Background subtracted data received from radar R4. (e) Combined Background subtracted
data of the four radars. (f) Greyscale image of the Background subtracted data from four radars for pointing G23.

FIGURE 7. Steps of HOG descriptor based multiclass SVM.

binary images. Then, a HOG descriptor has to be computed
to calculate the horizontal and vertical gradients, which can
be accomplished by filtering the image through kernel filters
as shown in (3) and (4) [14]:

Gx = [−1, 0, 1] (3)

Gy = [−1, 0, 1]T (4)

After the calculation of gradients, we need to calculate
their magnitude and direction. The magnitude ‘‘G’’ and

direction ‘‘D’’ of the gradients was found by the equations
given below.

D = tan−1
Gy
Gx

(5)

G =
√
G2
x + G2

y (6)

The magnitude of gradients triggers where a sharp change
in illumination occurs. In the gradient image, a lot of clutter
was removed. For feature calculation, we divided the image
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FIGURE 8. (a) Front view of our actual experimental setup. (b) IR-UWB radar module.

into 8× 8 cells. Using a large cell size can cause loss of useful
information because of squeeze in image size. Conversely,
if we use small cells in a high-resolution study, some useless
information may be used in the image. For a classifier, it is
difficult to discriminate between useful and useless informa-
tion. Therefore, in this paper, we used an optimum 8× 8 cell
size.

IV. EXPERIMENTAL SETUP
We used four IR-UWB radars as shown in Fig. 8(a), to obtain
a mid-air digital virtual menu board (DMB). Four radars were
used for implementation of the DMB because the transceivers
have a low beam width (around 65 degree), which makes
it hard to cover the whole plane with two, or even three,
radar sensors. When we tested two and three radar sensors,
there were many inaccurate results as the hand pointing
gestures occasionally did not occur in the beam width of
the transceivers and, hence, resulted in decreased RCS val-
ues. Four sensors had some diversity; thus, the accuracy of
recognition was improved. The IR-UWB radar module used
was Xethru X4 (Novelda, Norway), as shown in Fig 8(b).
In this paper, we used two different setups to create a DMB.
In the first setup, we formed a 2 × 2 grid mid-air DMB. The
2 × 2 plane had a total of four grids, each trained by two
gestures. Thus, it had eight click gestures (i.e. SC and DC);
with two more swiping gestures, the total number became 10.
The total number of gestures for any grid size may be cal-
culated from Table 2. In addition, we trained the gestures
at multiple distances to make the gesture recognition robust
against distance between pointing hand location and virtual
plane.

After the first setup, we implemented the second, where we
increased the number of grids from 2× 2 to 3× 3 to include
more item slots for selection. The setup had nine grids and 20
total gestures. Fig. 8(a). shows the actual experimental setup.

TABLE 2. Gesture description.

V. EXPERIMENTAL RESULTS AND DISCUSSION
To create diversity in the training set, the training data used in
this research for the proposed DMB was collected from four
male volunteers aged between 24 and 31. A total of 100 sam-
ples was collected for each gesture, of which 80 were used for
training and 20 for evaluation of the classifier. The classifier
automatically extracts the features of a gesture performed in
the grid plane and compares its main features with trained
features, hence classifying it. We first studied gesture recog-
nition efficiency with offline data when the HOG descriptor-
based SVM classifier was trained. After offline data training
and evaluation, we evaluated the trained classifier in real time.
The performance of our proposed virtual DMB was efficient
for the proposed application.

A. RAW DATA PATTERN FOR DIFFERENT GRIDS
In order to show how data differed in both cases (e.g. two
extreme cases), we presented an example involving two single
click gestures at two different grids as follows. Fig. 9(a).
shows the data obtained when a pointing gesture was per-
formed at grid position G11 (top left). Fig. 9(b). shows the
pattern of grid position G33. Visibly, the patterns in the
data obtained from pointing gestures at two different loca-
tions vary significantly; hence, they can be classified using
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FIGURE 9. (a) Radar data plot for gestureG11C1 and (b) G33C1.

FIGURE 10. Binary image of SC (single click) of 2 × 2 DMB (a) is the
binary image of G11C1, (b) is of G12C1 (c) is of G21C1 and (b) is of G22C1.

an image classification algorithm as illustrated in the next
section.

B. HOG FEATURE EXTRACTOR RESULTS
The images obtained were passed to the HOG feature extrac-
tor, whose results are presented in this section. The feature
vector of an image has a size of ‘‘89280’’ features and a
cell size of 8 × 8. For comparison, the visualized images of
the HOG of different gestures in a 2 × 2 DMB are shown
in Fig.10. The visualized images show the dominant direction

FIGURE 11. Block diagram for localization based gesture detection.

FIGURE 12. TOA result of radar sensor R1 for the pointing gesture G23.

of the histogram that captures the shape of performed ges-
tures. Figure 10 shows that there is a clear difference in
magnitude and direction of HOG for different gestures of the
2× 2 DMB.

C. CLASSIFICATION PERFORMANCE
1) REFERENCE MEASUREMENTS
To find reference measurement for our algorithm evalua-
tion, we chose localization-based gesture detection as shown
in [16]. Authors in [16] detected the touchless menu selection
using a Kinect sensor with an accuracy of 97.3%, which
can be used as a standard for evaluation of our algorithm.
Although this localization-based detection was not conve-
nient as it needs manual tuning of sensor coordinates and
other parameters, we only used it for comparison with our
machine learning-based algorithm, which does not needman-
ual tuning. In our proposed technique, the features were
automatically extracted by the algorithm during the training
phase. In order to evaluate the performance of our proposed
system, we used the least square (LS) technique to find the
location of the hand at each slow time and then cluster all
these points for the whole gesture duration. In this way,
the center of the cluster gave us the precise location of the
hand as a reference point for comparison with our proposed
HOG-based technique.

The TOA algorithm was very simple, as we used the mag-
nitude of the signal as a criterion for hand localization. The
result of the TOA of radar sensor R1 for the menu position of
G23 is shown in the following figure.
Due to the narrow beam width and clutter in the back-

ground, the TOA measurements may result in some outliers
such as the samples at slow time index ‘‘24’’ and ‘‘25’’
in Fig. 12. We used a median filter to remove these outliers
from the measurement data.
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FIGURE 13. Localization result for the pointing gesture G23.

After the TOA estimation for the four radar sensors,
we needed to estimate the location of the hand in the 2D
space. In order to get the localization data, we used the Least
Squares (LS) estimation technique. The LS technique was
developed in [17], where the TOA measurements of each
sensor are used to find the location of the object in the 2D
plane. The relation between the distances and coordinates
of the target and radars is given by (7). LS was applied to
estimate the position of the hand [17].

di =
√

(x − xi)2 + (y− yi)2 i = 1, . . . , 4 (7)

di is the distance from the ith radar to the hand and (xi, yi) is
the position of the radar. The detailed solution to this range
equation is given in [17]. The result of the localization for
grid position G23 is shown in Fig.13 below:
After the localization of the hand during the pointing ges-

tures, we computed the center of the centroid of all these
localization points to determine which grid the pointing ges-
ture belonged to. To that end, we used an unsupervised learn-
ing algorithm, i.e. k-means clustering, which is fast, robust,

FIGURE 14. Clustering of localization points to find the centroid as shown
in blue.

and very simple [11]. The cost function is given by (8).

J (V ) =
c∑
i=1

ci∑
j=1

(∥∥xi − vj∥∥)2 (8)

where, ‖ x i− vj ‖ is the Euclidean distance between xi and vj
and ‘ci′ is the number of data points in ith cluster while ‘‘c’’
is the number of cluster centers.

Classification performance was based on offline and online
data. The system was trained based on data collected, and
real-time testing was also performed to check the accuracy
in the actual environment. Initially, the 2 × 2 DMB system
was trained for one distance. A total of 100 samples were
collected for each gesture. After training and testing the
system at the same distance, we obtained an overall accuracy
of 100%. Detailed results are shown in Table 3. However,
the system was trained at one distance and tested at two
different distances, which gives us an overall accuracy of
around 75%. The accuracy decreased because of the magni-
tude of the reflected signal; hence, the signal pattern changed
with the changing distance. To increase the robustness of
the system, the 2 × 2 DMB was trained at two distances.

TABLE 3. Classification results of 2 × 2 virtual DMB for one distance dataset.
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TABLE 4. Classification results of 2 × 2 virtual DMB for two distance datasets.

TABLE 5. Classification results of 3 × 3 virtual DMB.

After obtaining all data of all gestures for the 2× 2 DMB at
two different locations, we evaluated the accuracy of the ges-
ture recognition in real time as shown in Table 4. The results
were tabulated in the form of a confusion matrix. Hence,
training at multiple distances made the classification robust to
distance change. The classification results of the 3× 3 DMB
are given in Table 5. The results of the training and evaluation
process were determined by a multiclass SVM. The overall
accuracy of gesture recognition in our proposed DMB was
distinct for both setups. The overall accuracy for both setups
was calculated by (9). Tables 3, 4, and 5 are based on the

individual accuracy of each gesture. From Table 4, we can
see that all gestures showed perfect accuracy of 100%, except
in a few cases: G11C2 had 85% accuracy, G12C1 had 90%,
G12C2 had 85%, and the overall accuracy was 96%. From
Table 5, we can see that all gestures showed perfect accuracy
of 100%, except in a few cases: G12C2 had an accuracy
of 90%, G21C2 had 95%, G23C2 had 85%, G32C2 had 80%,
and overall accuracy was 96.75%. In the 3 × 3 DMB setup,
we used only one distance to obtain the gestures, due to which
the accuracy was higher as compared to the 2×2 DMB setup
in Table 4.
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The overall accuracy was calculated by equation (9).

Overall accuracy=
Correctly predicted gestures

Total no. of gestures
×100 (9)

VI. CONCLUSION
In this paper, we applied a virtual DMB method using
IR-UWB radar sensors and machine learning. In our pro-
posed method, we focused on a pointing gesture-based HCI.
We used amulticlass SVM classifier for gesture classification
and a HOG descriptor for feature extraction.We implemented
twoDMBs of different grid sizes to show the scalability of our
proposed system. Moreover, we trained our proposed algo-
rithm for pointing gestures at multiple locations to enhance its
performance and make it robust against distance change. The
gesture classification results showed high accuracy, which
means that this system may be feasible for practical appli-
cations. The main concept of our work was to build an idea
toward use of hand gestures inmodern technologies instead of
touch-based public display screens. The major benefit of our
proposed DMB is that it is touchless, and significantly more
user-friendly in any environment. This method can work in
modern restaurants or cafes, which use touch-based display
screens for menu selection. It can also work for smart TVs
and other such applications. In the future, touchless screens
could be merged in homes, restaurants, etc.
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