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Abstract: Malware are developed for various types of malicious attacks, e.g., to gain access to a
user’s private information or control of the computer system. The identification and classification
of malware has been extensively studied in academic societies and many companies. Beyond the
traditional research areas in this field, including malware detection, malware propagation analysis,
and malware family clustering, this paper focuses on identifying the “author group” of a given
malware as a means of effective detection and prevention of further malware threats, along with
providing evidence for proper legal action. Our framework consists of a malware-feature bipartite
graph construction, malware embedding based on DeepWalk, and classification of the target malware
based on the k-nearest neighbors (KNN) classification. However, our KNN classifier often faced
ambiguous cases, where it should say “I don’t know” rather than attempting to predict something
with a high risk of misclassification. Therefore, our framework allows human experts to intervene in
the process of classification for the final decision. We also developed a graphical user interface that
provides the points of ambiguity for helping human experts to effectively determine the author group
of the target malware. We demonstrated the effectiveness of our human-in-the-loop classification
framework via extensive experiments using real-world malware data.

Keywords: malware author groups; malware detection; classification; graph embedding;
human-in-the-loop method

1. Introduction

Computer technology has become essential to the public more than ever. As the
importance of computer systems increases, attempts to attack the system are increasing
accordingly. Malwares are used for such attacks to gain access to the user’s private
information or to control the computer system itself [1,2]. Such heisted private information
often leads to another heist of private information that is used for identity theft or is
even sold illegally. In the case of computer system control, the damage becomes more
complicated and severe. With the hijack, the attacker not only gains easy access to every
private information stored and linked with the system but can also use the system for
another hijacking. It can even be used to organize an attack that might cause serious
damage to corporations or governments.

Various studies, such as malware detection, malware propagation analysis, or malware
family analysis, have been conducted to prevent attacks. Malware detection [3,4] identifies
whether a target program is malware or not. Malware propagation analysis [5] tracks
the propagation process to prevent further spreading of the malware. Malware family
clustering [6,7] and classification [8,9] groups the malware family as a cluster and extracts
shared features within the family. However, we found that there were only a few attempts
to identify the author groups of malware. These author groups create and release malware
to attack requested governments or institutions from certain countries [10]. The source
code of the malware is suspected to be shared effortlessly among malware authors within
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the same group. Such easy access to the source code enables malware authors at any level
to duplicate, modify, or even combine it with another malware and release the derivative
version rapidly.

To help security experts to efficiently cope with the malware attacks which may have
similar behaviors from the previous attacks sent by certain author group, this study focuses
on classifying the author group of a target malware. It may be easier to detect or predict
the attack strategy in the future if the original source code of the author group of the
target malware can be correctly defined. Therefore, we propose a graph-based and human-
machine collaborative framework for identifying author groups effectively. In summary,
our framework is composed of the following three tasks: (1) construction of a malware-
feature graph, (2) embedding each malware, and (3) classification based on the k-nearest
neighbor (KNN) approach aided by human experts. To construct the malware-feature
graph, we carefully defined some distinctive features that are expected to be highly related
to the shared characteristics of malware codes within an author group. Thus, we expect
that the features extracted from the malware can be the key signatures that represent the
author group. Then, with the extracted features, we construct a malware-feature graph,
which is a bipartite graph comprising a malware part and a feature part, each of which is
connected to its extracted feature nodes with edges. We then trained a graph-embedding
model to project malware to a shared latent space. Finally, for the target malware, we
selected its nearest malware in the latent space, and then classified the target malware’s
author group as the chosen neighbor’s author group.

However, in this classification approach, there are some ambiguous cases that may
be incorrectly classified. For example, there would be multiple malware from different
author groups that are almost equidistant from the target malware, rather than just one
malware that is apparently closest to the target malware. In addition, there would be no
malware sufficiently close to be considered as a neighbor of the target malware. To handle
such exceptions, we developed a “human-intervenable classification framework”. Here,
the standards of ambiguity must be defined. We propose two metrics measuring such
ambiguity: the inter- and intra-class closeness.

The inter-class closeness evaluates whether the distances from each author group
cluster to the target malware are considerably far, meaning that none of the author group
clusters are sufficiently close to the target malware to be classified as one of them. For intra-
class closeness, if nearby author groups have approximately the same distance from the
target malware, the system is unable to decide to which author group a target malware
should be assigned to with certainty. If both cases are applicable to the target malware,
the system considers the malware to be ambiguous and postpones the classification to
human experts. We also developed a graphical user interface that provides the points of
ambiguity for helping human experts to effectively determine the author group of the
target malware (i.e., ambiguous case).

We evaluated our approach through extensive experiments using a real-world dataset
labeled by a group of domain experts. The results demonstrated that our proposed met-
rics, inter-class closeness, and intra-class closeness were effective in avoiding the risk of
misclassification. The accuracy of the inter-class inliers and outliers showed significant
differences, with accuracies of 96.6% and 76.0%, respectively. For intra-class closeness, we
were able to find the optimal hyperparameter value that balances the accuracy and human
engagement rate. After the engagement of human experts, we were able to increase the
accuracy of the machine-only classification of 93.7% to 95.7% with a much smaller number
of samples turned over for manual inspection.

The remainder of this paper is organized as follows: Section 2 introduces the dataset
and details of its extracted features for this research and explains how to construct the
malware-feature graph. With the graph constructed, Section 3 describes the graph embed-
ding for the KNN-based classification and the mechanism of human expert intervention.
Section 4 presents the experiments and evaluates the performance of the proposed frame-
work. Section 5 presents the conclusions of this study.
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2. Related Work

This section summarizes four research directions to fight against malware, including
(1) malware detection, (2) malware clustering, (3) malware propagation analysis, and
(4) malware family classification. To the best of our knowledge, our work is the first study
dealing with the problem of author group classification on malware.

Malware detection aims at discovering the presence of malware on a system. It tries
to determine whether a given program is malicious or not. The detection is often based
on certain distinctive signatures. For example, Kreuk et al. [11] enhanced the effec-
tiveness of malware detection by modification of malware binary files expecting sig-
nificant changes in functionality which will make the malware distinctive from benign
programs. Yan et al. [12] designed convolutional neural network for the malware detection
considering the opcodes of the malware as grayscale images to perform the detection.
Bhandai et al. [13] assesses semantic traits of malware for the detection to prevent the
obfuscated malwares from disguising the malware detectors based on pattern-matching.

Malware clustering aims at gathering them into sets of malware that exhibit similar
behavior for helping security experts to easily derive generalized signatures to each mal-
ware cluster. Bayer et al. [14] utilized the dynamic analysis to gather execution traces to
cluster the malware by the behavioral profiles. Pitolli et al. [6] employed Balanced Iterative
Reducing and Clustering using Hierarchies (BIRCH) algorithm to the malware clustering
task and assessed the existing malware family ground truths generated by various ven-
dors. Islam et al. [15] introduced FIRMA, a tool offering solutions for automated malware
clustering and signature generation.

With the increased number of devices, the network has also become expanded and
complicated. Hence, the spread of malware throughout the diverse connection, such as
wireless internet or Bluetooth, has been posing a major concern in internet security. Malware
propagation analysis aims at analyzing such spreads and prevents further infections. In
Reference [16], multiple existing malware detection and analysis methodologies, such as
Athdi model, ACT scheme, or SII model, were reviewed focusing on malware propagation
through email and social networks. Cheng et al. [5] proposes a novel model that efficiently
analyzes the threat of hybrid malware by promptly providing approximate knowledge of
the malware’s severity and propagation speed.

In general, malware can be categorized into one of well-known malware families, such
as Ramnit, Vundo, Simda, and so on [9]. The malware family classification methods often
extract structural information of malware and examines its various attributes to accurately
classify the malware into its family class and enables the security experts to properly
respond to encountered (unknown) malware. The authors of Reference [17] gathered a
variety of malware datasets and provided comprehensive comparisons by categorizing
into its family to suggest the direction of the future research of this field. To enhance the
performance, Huang et al. [8] proposed MtNet, a classifier using multi-task deep learning
architecture for the malware family classification. For the aspect of feature extraction,
Ahmadi et al. [18] suggests a feature fusion approach which enables effective concatenation
of features leading to optimal point between accuracy and running time.

3. Malware Graph Construction
3.1. Features

We gathered 1941 malware samples and labeled them with corresponding author
groups, which were classified by cybersecurity experts using real-world forensic standards.
Each sample was classified into five classes. For security purposes, we name each class as
A, B, C, D, or E.

Our next step is to define malware features. To select meaningful malware features
for author group classification, extracting discriminative signatures from malware is im-
portant [15]. In this regard, the binary file or used library of the target malware may
include useful static features. For example, features, such as strings or functions, found in
binary files may be informative. However, because these derivations are often modified
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or combined rather than reused line-by-line, the malware is often metamorphic and poly-
morphic, making such features less significant for the classification. As a countermeasure
to such cases, dynamic features gathered while executing the binary file in a constrained
environment were used for classification, along with the static features [15].

As a result, our static features extracted from the analysis of the static binary include:

• Function: We define several operation codes from the gathered functions while stati-
cally analyzing binary files as static features. If the derivations reuse the exact code
previously observed, the functions will be useful for classifying the malware as the
same group [19]. Because using the whole plain text of the function is inefficient in
terms of memory usage, we convert each function into a shortened fixed length value
using a cryptographic hash function;

• Basic Block: We define the basic blocks of the operation codes from functions as static
features. In the operation codes, each basic block is divided by a jump command.
To prevent subdivision of the functions that occurred owing to such minor changes,
we used the basic block as a feature, as well;

• Strings: We defined strings found in binary files as static features. Most strings are
often meaningless for malware analysis. However, because of the possibility that the
malware author’s habitual human behavior is reflected in the codes, strings can also
be informative for the author group classification purpose [20];

• Imports and Exports: Some malware may also involve other files. During this process,
the malware needs interfaces to call libraries and public methods. We define the
processes as static features because they contain the names of the methods imported
or exported. Because the names of the libraries are often consistent, this static feature
is relatively effective against modification of the derivations [21].

Next, our dynamic features, which were extracted while executing the binary file in a
virtual machine, include the following:

• Mutexes: Mutexes are used as locking mechanisms for memory location. If the
author groups or the original of the modified malware is the same, the names of
the mutants are likely to be reused, as well [22]. Therefore, we defined mutexes as
dynamic features.

• Networks: Each malware with a purpose will likely send some sort of report to the
author or designated location. Locations, such as DNS, URLs, or IP addresses, are
likely to be reused if the malware is in the same author group [23].

• Files: During the execution of the malware, certain patterns of read or write can be
observed in the filesystem. Some patterns mimic benign programs patterns, and some
may occur while processing the attack. Either case often occurs in the filesystem,
and if the malware were developed by the same author group, the locations would
likely be shared.

• Keys: There is a location called a registry where Microsoft Windows stores settings for
the OS and other program files. As a means of malware attack, the authors often target
the settings in this registry for certain purposes. Therefore, we defined the registry
keys accessed or modified as a dynamic feature.

• Drops: Malware, such as Trojan, is designed to download a drop from the web to
disguise detection. As the dropper is undetected, it can keep downloading the drop
and keep the malware attack. If the dropper is part of the malware built by the
same author group, there is a high possibility of reuse of the drop file, which can be
considered as a dynamic feature.

3.2. Graph Construction with Feature Refinement

We built a bipartite graph from malware and its features. Malware and distinct
features have their own nodes. Each malware node in the malware part is connected to its
extracted feature nodes in the feature part with edges.

Before applying graph embedding methods to this graph, we first refine some feature
nodes from the graph to reduce their size. Among the approximately 524 K feature nodes,
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we note that some feature nodes are found unusable and only increase the computation
overhead, which would make the prediction inaccurate and slow. More specifically, features
with a low frequency are often meaningless and insignificant for the representation of
an author group; however, some might be a detail for single malware samples. These
features are a limited relationship between genetically nearby samples rather than a flow of
malware mutations. By removing such meaningless feature nodes, the classification time
can be significantly decreased with an improvement in the accuracy.

Unlike low frequency features, there are also some feature nodes that are commonly
found throughout multiple author groups. These commonly found features may contribute
little to the author group identification. Here, we used the well-known information gain
(IG) and entropy (E) to evaluate the contribution of such features for classification [24].
These were calculated as follows:

IGF = E(S)− EF(S), (1)

E(S) = −∑
i∈l

Pi,S log Pi,S, (2)

Pi,S =
|Ci,S|
|S| , (3)

EF(S) = ∑
j∈F

|Sj|
|S| × E(Sj), (4)

where S represents the complete set of malware samples, and C(i,S) represent the labeled
samples in S with author group class i. Furthermore, l represents a set of all author groups
found in the samples, and Sj represents sample S with a feature value j of a feature in
question F. Then, IGF represents the amount of entropy reduction with the feature F as a
given. In Equation (1), entropy E is considered a common occurrence throughout the total
author groups. This implies that the high entropy is less distinctive for the classification.
In other words, features with a high information gain are informative features that should
be kept. Both information gain and entropy can be used as metrics to determine the
usefulness of a given feature A [24]. Between the two, we used information gain for this
research because it provided better results in our evaluation.

4. Graph-Based Classification with Human Engagement

After building the malware-feature bipartite graph and removing the feature nodes
with only one frequency and a low IG, new malware nodes (i.e., test data) must be added
to the graph to be classified. Our next steps toward classifying the test malware nodes
are (1) embedding all malware nodes and (2) performing KNN-based classification with
hu-man expert intervention.

4.1. Graph Embedding

Graph embedding converts nodes to latent vectors on the latent feature space accord-
ing to its graph topology. Thereby, relative distances between the nodes in the graph are
also reflected to the latent space. We employed two well-known graph embedding methods:
DeepWalk [25] and large-scale information network embedding (LINE) [26]. DeepWalk
performs multiple random walks, say K, from each node to collect a set of K paths with
sequences of nodes that has a predefined length (say L). Then, it learns the embeddings of
the nodes by using the collected random walks as “context” data, based on the assumption
that adjacent nodes are likely to have similar paths with similar embeddings. The objective
function is:

max(log Pr({vi−w, . . . vi+w}\vi|Φ(vi)), (5)

where Pr(|) shows the co-occurrence probability between malware around to target mal-
ware vi within the window size of w. Additionally, Φ is a mapping function that sets the
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target malware to the latent space, eventually setting topologically similar malware in the
shared latent space after the training.

LINE is another embedding method based on edges rather than nodes, unlike Deep-
Walk. LINE uses two similarities for conversion: first order and second order. The first
order proximity (O1) between two nodes is computed through the weight of the edges
linked to each other, while the second order proximity (O2) uses similar neighbor nodes.
LINE is then trained by concatenating these two proximities for each node. Each proximity
objective function for edges (i, j) between nodes vi and v2 in the set of V nodes can be
written as follows:

p1(vi, vj) =
1

1 + exp(−~uT
i · ~uj)

, (6)

p2(vj|vi) =
exp(−~u′Ti · ~uj)

∑
|V|
k=1 exp(−~u′Ti · ~uj)

, (7)

O1 = − ∑
(i,j)∈E

wij log p1(vi, vj), (8)

O2 = − ∑
(i,j)∈E

wij log p1(vj|vi), (9)

where ~ui ∈ Rz is the z-dimensional vector of node vi. Further, p1 is the joint probability
of node vi in the space V ×V, and p2 is a conditional distribution of vi in the entire set of
nodes. With wij, which is the weight of the edge (i, j), the embeddings (i.e., {~ui}i=1. . . {V})
can be obtained by optimizing the objective functions O1 and O2.

Both DeepWalk and LINE can be used for embedding malware nodes, and we used
DeepWalk for this task because it provided better results in our evaluation. With the
embeddings, each malware is now converted to a feature vector, which is a proper format
for classification, such as KNN classification. The KNN classifier labels the target sample
by finding the majority of the top-k nearest neighbor labels. Our framework borrowed this
classifier. In practice, we find the top-1 nearest neighbor for the target malware and then
confirm the author group of the chosen neighbor as the target malware’s author group. We
also tried various k values, such as 2 or 3, but setting k as 1 provided the best results.

4.2. Human-in-the-Loop Classification

In the aforementioned classification process, there can be ambiguity for some test
malware samples to be classified. Some may have approximately the same distance
from the respective nearest author groups or may not have any close-enough author
group at all. For these ambiguous cases, we designed our framework to postpone the
classification and let human experts be involved in the final decision, rather than enforcing
the final classification while taking the risk of being wrong. We argue that it is much more
effective to let human experts make decisions rather than ignore ambiguity and suggest
unreliable predictions.

As a standard for each type of uncertainty to deal with, we proposed the inter- and
intra-class closeness, which will be explained in the following two subsections.

4.2.1. Inter-Class Closeness

Inter-class closeness is the measurement of the absolute distances among malware
to verify whether the target malware is close enough to the nearest neighbor. The mea-
surements were compared according to the distance distribution within the same author
group chosen for comparison. Specifically, let vt and v1 denote the target malware and
the chosen nearest neighbor of vt, respectively. Let dt,1 be the distance between vt and v1.
Then, dt,1 is checked to determine whether it is an outlier or not based on the distance
distribution between malware belonging to v1’s author group. If the value of dt,1 is outside
of the interquartile range (IQR) obtained from the box plot analysis [27], we consider dt,1
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as the outlier, which means that classifying vt would be risky because the distances from
each author group to vt are considerably far.

4.2.2. Intra-Class Closeness

Intra-class closeness is a measurement that compares the relative distance from multi-
ple nearest neighbors to the target malware. Let d(t,2) be the distance between the target
malware vt and its second nearest malware, which must belong to a different author group
from vt. Then, the relative distance can be examined by comparing the difference between
dt,1 and dt,2 as follows: If dt,2

dt,1
> θ, then dt,1 satisfies the intra-class closeness, which means

that it would be safe to classify vt because dt,1 is considerably short compared with dt,2.
Otherwise, it is considered as an ambiguous case. Note that is a tunable hyper-parameter.

To summarize, our framework first examines that whether vt satisfies the inter-class
closeness standard. If it fails, then our framework checks whether it also fails in the
second standard, intra-class closeness. If it does not satisfy this either, we let the “machine”
postpone the classification, and let human experts determine it.

4.2.3. Intervention of Human Experts

We now explain our human-engaged classification for identifying malware author
groups more accurately. If the machine cannot classified it with both inter- and intra-class
closeness confirmation, human experts take the role of classification by following two
stages. First, they simply refer to visualized box plots, which will be introduced later.
Second, if they are not able to judge based on visualization, they manually inspect the
given malware in detail. The second step will be a time-consuming job but will provide
significantly better accuracy for the ambiguous cases compared to the machine learning-
based classification. Hence, our goal is to provide reasonable classification accuracy while
controlling the number of malwares to be inspected manually as much as possible, so that
only the most necessary malware samples will be inspected by human experts.

Figure 1 shows some examples of visualization that we designed to provide human
experts for the first step mentioned above. The x and y axes indicate the author group
and the distance distribution among all the malware and their nearest neighbors in the
corresponding author group. In the figures, outliers are plotted as black points, and some
nearest neighbors are plotted as colored points, along with the distance distribution illus-
trated with a box-and-whisker plot [27]. With the visual explanation, the human experts
were able to recognize the ambiguity that the machine has experienced and efficiently
assess the unidentified malware that was postponed.

4.2.4. Implementation Details

For training the DeepWalk model with our malware-feature graph, we set the walk
length (L), the number of paths per each node (P), the window size (w), and the dimen-
sionality of the latent space (z) as 80, 10, 10, and 32, respectively. These values have been
obtained via an extensive grid search. Stochastic gradient descent with a learning rate
of 0.025 was used for model training. Hierarchical softmax [9], which was used in other
embedding models, such as word2vec [28], was also employed. We tried several values for
θ within {1.2, 1.5, 2, 3}.
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Figure 1. Three examples of data visualization. for human experts.

5. Evaluation
5.1. Experimental Setting

We used the malware dataset introduced in Section 2. For all the experiments, we fol-
lowed the leave-one-out cross-validation (LOOCV) protocol for accuracy evaluation [29,30].
For each validation, LOOCV uses N − 1 subsets as the training set and a single left sample
as the test set (N = 1941 in our case). In our evaluation, we first constructed a malware-
feature graph by using all the training and test malware and embedded them. We then
predicted the author group of the test malware and checked whether the prediction was
correct. After N validations, the F1 score was computed. For the exclusive examination, we
applied a macro-average, a micro-average, and a weighted approach to collect F1 scores [31].
The macro-average F1 score (F1M) is a simple average for each class. To consider the im-
balance among the classes, we used the micro-average F1 score (F1µ), which emphasizes
common classes and understates uncommon classes. We also used the weighted F1 score
(F1w), which can be calculated as follows:

Precisionw = ∑
i∈l

tpi
tpi + f pi

×Wi, (10)
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Recallw = ∑
i∈l

tni
tni + f ni

×Wi, (11)

Wi =
tpi + f ni

tpi + f ni + tni + f pi
, (12)

F1w =
2× PrecisionW × RecallW

PrecisionW + RecallW
, (13)

where l is a set of all class labels, which are the author groups in this experiment. Fur-
thermore, tpi, f pi, tni, and f ni are the number of samples in each class as true positives,
false positives, true negatives, and false negatives, respectively. The weight Wi was used to
prevent sample imbalances among classes.

5.2. Experimental Results
5.2.1. Effectiveness of Inter-Class Closeness

In this experiment, we evaluated the effectiveness of inter-class closeness as a metric
for assessing ambiguity. Therefore, we compared the KNN classifier’s accuracy on malware
sets satisfying the inter-class closeness (i.e., inliers) and not satisfying them (i.e., outliers).

As shown in Table 1, the classifier was able to classify 1819 out of 1941. Specifically,
for each group A, B, C, and D, the classifier was able to classify with an accuracy of 96.4%,
74.1%, 82.4%, 80.6%, and 94.4%, respectively. Groups B, C, and D showed a relatively low
accuracy, presumably due to the low number of samples. Importantly, every accuracy with
the inliers from each group outperformed those of the outliers by a large portion, which
demonstrates the effectiveness of our inter-class closeness metric.

Table 1. Effectiveness of inter-class closeness.

Total # Inliers # Outliers

Total # malwares 1941 1670 271
# correct/incorrect 1819(93.7%)/122 1613(96.6%)/57 206(76.0%)/70

Group A # malwares 1220 1074 146
# correct/incorrect 1176(96.4%)/44 1074(98.2%)/19 121(82.9%)/25

Group B # malwares 85 71 14
# correct/incorrect 63(74.1%)/22 61(85.9%)/10 2(14.3%)/12

Group C # malwares 85 69 16
# correct/incorrect 70(82.4%)/15 61(88.4%)/8 9(56.3%)/7

Group D # malwares 72 65 7
# correct/incorrect 58(80.6%)/14 57(87.7%)/8 1(14.3%)/6

Group E # malwares 479 391 88
# correct/incorrect 452(94.4%)/27 379(96.9%)/12 73(14.3%)/21

F1M (total) 85.1% 90.0% 51.1%

F1µ (total) 85.1% 96.6% 76.0%

F1w (total) 85.1% 96.7% 74.8%

We were also able to confirm that postponing the classification of outliers for further
inspections is effective. As shown in the accuracy results for the inliers, the machine can
perform the classification with a significant accuracy of 96.6% by classifying only with the
inliers and postponing the outliers.

5.2.2. Effectiveness of Intra-Class Closeness

Next, we evaluated the effectiveness of the intra-class closeness based on the 271 inter-
class outliers determined in the previous experiment. We selected each outlier and ex-
amined whether dt,1

dt,2
> θ: if so, our KNN classifier classifies this malware; otherwise, it



Appl. Sci. 2021, 11, 6640 10 of 13

postpones the classification and transfers the malware to human experts. The experiment
was conducted under various values for θ.

In Table 2, “Y/correct” indicates the number of malware samples satisfying the intra-
class closeness, and the number of correctly classified samples. ‘N’ indicates the number
of samples that do not satisfy the intra-class closeness. We observed that with a higher θ
value, the number of samples satisfying the intra-class closeness decreases and the number
of samples transferred to human experts increases. Conversely, with a lower θ value,
the proportion of the samples that the machine classifies with the KNN classifier will
increase, but it may have the risk of a lower accuracy. For example, with θ = 3, there
were 45 out of 271 inter-class outliers that were additionally classified with the 1-NN
classifier because it satisfied the intra-class closeness, while the remaining 226 samples
were transferred to human experts. Of the additional 45 samples, 44 samples were classified
correctly with an accuracy of 97.8%. However, with θ = 1.2, only 186 samples satisfied the
intra-class closeness, and, among them, only 161 were classified correctly with an accuracy
of 86.6%, and the remaining 85 samples were transferred to human experts. To summarize,
a higher θ provided higher accuracy in general. However, a higher θ also caused several
target malwares not to satisfy the relative closeness, which might result in time and other
expenses for the classification transferred to human experts.

Table 2. Effectiveness of intra-class closeness.

# of
Outliers

θ = 3 θ = 2 θ = 1.5 θ = 1.2
Y/Correct N Y/Correct N Y/Correct N Y/Correct N

Total 271 45/44 226 93/88 178 141/129 130 186/161 85

Group A 146 11/11 135 49/48 97 84/81 62 105/98 41
Group B 14 1/0 13 3/0 11 5/0 9 6/0 8
Group C 16 2/2 14 2/2 14 4/3 12 8/5 8
Group D 7 0/0 7 0/0 7 0/0 7 3/0 4
Group E 88 31/31 57 39/38 49 48/45 40 64/58 24

F1M - 70.0% - 68.3% - 62.1% - 47.2% -

F1µ - 97.% - 94.6% - 91.5% - 86.6% -

F1w - 96.9% - 93.2% - 90.1% - 84.6% -

Table 3 summarizes the classification accuracy and proportion of classified samples
after applying the two metrics, intra- and inter-class closeness. First, 1819 samples were
classified accurately with an accuracy of 93.7% using the KNN classifier. After applying
the inter-class closeness, 1613 out of 1670 samples could be classified accurately with an
accuracy of 96.6%. This significant accuracy could be achieved by postponing the 271 inter-
class outliers. Then, with the intra-class closeness applied to the 271 inter-class outliers,
additional samples can be classified with the KNN classifier depending on the value of θ:
When θ decreases, we can observe the increasing ratio of classified samples and a slight
decline in the overall accuracy.

We found that θ = 1.5 shows the most balance between the accuracy and postpon-
ing rate. With this parameter value, we were able to confirm that the classifier showed
reasonably high accuracy, along with a low postponing ratio.
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Table 3. Effectiveness of inter-close and intra-close closeness. The accuracy and postponing rate are balanced when θ = 1.5.

k-NN
(w/o Give Up)

Inter-Class Intra-Class
(θ = 3)

Intra-Class
(θ = 2)

Intra-Class
(θ = 1.5)

Intra-Class
(θ = 1.2)

# classified 1941 1670 1715 1763 1811 1856
# correct 1819 1613 1657

(1613 + 44)
1701

(1613 + 88)
1742

(1613 + 129)
1774

(1613 + 161)

F1M 85.1% 90.0% 89.8% 89.5% 88.9% 87.8%
F1µ 93.7% 96.6% 96.6% 96.5% 96.2% 95.6%
F1w 93.7% 96.7% 96.7% 96.5% 96.2% 95.6%

# give up 0 271 226 178 130 85

% of
classified

100% 86.0% 88.4% 90.8% 93.3% 95.6%

5.2.3. Effectiveness of Man-Machine Collaboration

In this experiment, for the 130 malware postponed according to inter-class closeness
and intra-class closeness with θ = 1.5, two cybersecurity experts examined the sorted-out
malware with ambiguity for this experiment. Here, the experts classified the malware
through the following two stages: First, they simply referred to the visualized box plots
introduced in Section 4.2.3, in order to reduce time and effort. Second, if they were not able
to judge based on the visualization results, they manually inspected the given malware
in detail. The second step will be a time-consuming job but will provide 100% accuracy
of classification.

Table 4 shows the results. For comparison, we included the results of the KNN
classification with and without applying inter- and intra-class closeness with θ = 1.5. Two
human experts classified (with the visualized interface and without manual inspection)
49 and 73 samples out of postponed 130 samples, respectively. Then, they selected the
remaining 81 and 57 samples for manual inspection, respectively. After manual inspection,
all the selected postponed samples were classified correctly and were able to classify 1858
and 1846 samples appropriately, with 95.7% and 95.1% accuracy, respectively.

Table 4. Effectiveness of man-machine collaboration.

k-NN
(w/o Give Up)

Intra-Class
(θ = 1.5)

Expert 1 Expert 2 Average

# classified 1941 1811 1860 1884 1872
# correct 1819 1742 1777 1789 1783

F1µ 93.7% 96.2% 95.5% 95.0% 95.25%
# give up 0 130 81 57 69

# correct
after manual
inspection

- - 1858
(1777 + 81)

1846
(1789 + 57)

1852
(1783 + 69)

F1µ after
manual
inspection

- - 95.7% 95.1% 95.4%

6. Conclusions

This paper proposes a novel framework for malware author group classification based
on human-intervenable classification and graph embedding. We extracted features from
malware using both static and dynamic analyses. With the selectively extracted features,
we built a malware-feature bipartite graph and performed a KNN classification model
based on graph embedding. We also removed the less significant features of efficiency.
To make the framework human-intervenable, we suggested intra- and inter-class closeness



Appl. Sci. 2021, 11, 6640 12 of 13

as metrics for determining the ambiguity of classification. We also developed visualized
box plot results for human experts. We conducted experiments using a real-world malware
dataset labeled by cybersecurity experts. The results confirmed the effectiveness of intra-
and inter-class closeness as metrics and the effectiveness and efficiency of the human-
intervenable framework.

In our future work, we plan to additionally use the control flow and the call graph
information as our malware features. Since the control flow and the call graph information
have been recognized as unique characteristics of a program, we believe incorporating such
graph information into our malware-feature bipartite graph will be a promising research
direction to more accurate author group classification on malware. We are also planning to
try various existing visualization techniques for malware. Based on an excellent survey [32],
there have been malware visualization methods which seem to be applicable to our work
(e.g., 2D/3D displays or geometrically-transformed displays). We plan to apply them to
the graphical user interface for helping our human experts determine the author group
of a target malware. We will also try to evaluate which visualization makes our human
experts classify given malware the most accurately.
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