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Abstract

Previous genome‐wide association studies (GWASs) have been largely focused

on European (EUR) populations. However, polygenic risk scores (PRSs) de-

rived from EUR have been shown to perform worse in non‐EURs compared

with EURs. In this study, we aim to improve PRS prediction in East Asians

(EASs). We introduce a rescaled meta‐analysis framework to combine both

EUR (N= 122,175) and EAS (N= 30,801) GWAS summary statistics. To im-

prove PRS prediction in EASs, we use a scaling factor to up‐weight the EAS

data, such that the resulting effect size estimates are more relevant to EASs.

We then derive PRSs for EAS from the rescaled meta‐analysis results of EAS
and EUR data. Evaluated in an independent EAS validation data set, this

approach increases the prediction liability‐adjusted Nagelkerke's pseudo R2 by

40%, 41%, and 5%, respectively, compared with PRSs derived from an EAS

GWAS only, EUR GWAS only, and conventional fixed‐effects meta‐analysis of
EAS and EUR data. The PRS derived from the rescaled meta‐analysis ap-

proach achieved an area under the receiver operating characteristic curve

(AUC) of 0.6059, higher than AUC= 0.5782, 0.5809, 0.6008 for EAS, EUR, and

conventional meta‐analysis of EAS and EUR. We further compare PRSs
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constructed by single‐nucleotide polymorphisms that have different linkage

disequilibrium (LD) scores and minor allele frequencies (MAFs) between EUR

and EAS, and observe that lower LD scores or MAF in EAS correspond to

poorer PRS performance (AUC= 0.5677, 0.5530, respectively) than higher LD

scores or MAF (AUC= 0.589, 0.5993, respectively). We finally build a PRS

stratified by LD score differences in EUR and EAS using rescaled meta‐
analysis, and obtain an AUC of 0.6096, with improvement over other strategies

investigated.

KEYWORD S

breast cancer, genome‐wide association study, meta‐analysis, polygenic prediction

1 | INTRODUCTION

Breast cancer is the most frequently diagnosed cancer
and the leading cause of cancer death in females
worldwide (Torre et al., 2015). Although the rate of get-
ting breast cancer has stabilized in some high‐income
countries, it continues to rise in most Asian and other
low and middle‐income countries, stressing the need for
establishing early risk prediction and management stra-
tegies (Denny et al., 2017). Genetic risk factors play an
important role in breast cancer predisposition
(Nathanson et al., 2001). Large‐scale genome‐wide asso-
ciation studies (GWASs) have identified more than 200
loci to be associated with risk of breast cancer (Cai et al.,
2014; Michailidou et al., 2015, 2017; Shu et al., 2020;
Zheng et al., 2009, 2013). Polygenic risk score (PRS), a
weighted aggregation of risk allele counts derived from
GWASs, is emerging as a useful tool for breast cancer
risk stratification in multiple populations, including
Europeans (EURs) and East Asians (EASs) (Khera et al.,
2018; Mavaddat et al., 2019; Wen et al., 2016).

The small sample size in GWASs of non‐EUR sam-
ples and differences of genetic architecture between EUR
and other populations make it challenging to develop
powerful and well‐calibrated PRSs across diverse popu-
lations. To date, large‐scale breast cancer GWASs were
conducted by the Breast Cancer Association Consortium
(BCAC), with summary statistics publicly available for
~123,000 (Michailidou et al., 2015) and ~220,000 EUR
samples (Michailidou et al., 2017). The largest non‐EUR
GWAS was conducted by the Asia Breast Cancer Con-
sortium (ABCC), which included more than 40,000 EAS
samples (Cai et al., 2014; Shu et al., 2020; Zheng et al.,
2009, 2013). From the study of 17 anthropometric and
blood‐panel traits, applying PRSs derived from EUR
GWASs directly to non‐EUR samples showed poor
transferability in general, with approximately ~37%,
~50%, and ~78% lower prediction R2 in South Asians,

EASs, and Africans, respectively, compared with that in
EUR populations (Martin et al., 2019). Therefore, devel-
oping polygenic risk prediction models for diverse po-
pulations is imperative to translate the GWAS findings to
clinical use. This calls for efforts to improve the perfor-
mance of PRS in non‐EUR samples to mitigate the racial
disparity.

Given that non‐EUR GWASs are usually of in-
sufficient sample size, and that there is extensive genetic
sharing across populations (1000 Genomes Project
Consortium et al., 2015), there are several recent studies
that sought to incorporate a large EUR GWAS and a
smaller non‐EUR GWAS to improve risk prediction in
non‐EUR populations. Specifically, Coram et al. pro-
posed a cross‐population best linear unbiased prediction
method based on multicomponent linear mixed models,
where single‐nucleotide polymorphisms (SNPs) were
placed in classes defined by GWAS evidence from dif-
ferent ancestries and allelic effects computed in a
population‐specific fashion (Coram et al., 2015, 2017);
this method requires individual‐level training data in the
target population. When only GWAS summary statistics
are available, Márquez‐Luna et al. constructed a trans‐
ethnic PRS from a weighted linear combination of PRSs
from two populations (Márquez‐Luna et al., 2017), which
could improve the prediction accuracy for type II dia-
betes in Hispanic/Latinos and South Asians. Grinde et al.
found that this approach did not perform well for several
anthropometric, blood count, and blood pressure traits in
their Hispanic/Latino cohorts (Grinde et al., 2019). In-
stead, they proposed to construct PRSs by selecting
SNPs and their corresponding weights based on different
combinations of EUR GWASs, Hispanic/Latino GWASs,
or meta‐analyses of both. They found that PRSs using an
EUR GWAS for SNP selection and a Hispanic/Latino
GWAS or meta‐analysis for SNP weights performed the
best in their empirical studies. These findings suggested
that PRS performances could differ by population‐ and
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disease‐specific genetic architectures. For breast cancer,
EUR‐based PRSs were reported to perform equally well
in Hispanic/Latinos as in EURs but poorly in African
Americans (Allman et al., 2015). The performance of
EUR‐ and EAS‐based PRSs in EASs remain unclear. This
motivates us to evaluate breast cancer PRS predictions in
EASs and develop new strategies to construct PRSs tar-
geting non‐EUR populations.

Differential linkage disequilibrium (LD) and minor
allele frequency (MAF) are major contributors to the
poor transferability of PRSs among populations (Wang
et al., 2020). In a PRS of the form ΣwjXj, where Xj and wj
stand for the standardized genotype and weight for SNP j,
respectively, the ideal weight satisfies w h=j j

2 2, where hj
2

is the disease heritability directly contributed by SNP j
(Speed & Balding, 2019). Because the disease heritability
contributed by an SNP varies according to local LD
(Gazal et al., 2017; Speed et al., 2017), explicit in-
corporation of EUR LD information can improve pre-
diction accuracy for EURs (Hu et al., 2017; Marquez‐
Luna et al., 2019; Vilhjálmsson et al., 2015). In addition,
SNPs can serve as better proxies for the underlying “true
effects” in populations in which they have high LD
scores compared with populations in which they have
low LD scores, where the LD score of an SNP is the sum
of LD r2 measured between this SNP and all other SNPs
(Bulik‐Sullivan et al., 2015). MAF has been used as an
indication of the strength of natural selection, thus the
differences in strengths of selection between ancestries
might have an impact on PRSs (Wang et al., 2020). This
motivates us to examine whether modeling the LD and
MAF differences between EURs and EASs could improve
effect size estimation and genetic risk prediction in EAS
populations.

In this paper, we are primarily interested in (1)
evaluating the transferability of EUR GWAS data to
breast cancer risk prediction in EASs, (2) improving
risk predication for breast cancer in EASs, and (3)
exploring effects of LD and MAF differences between
EUR and EAS ethnicities in PRS construction. We
propose a rescaled meta‐analysis framework that
upweights EAS signals over EUR signals, yielding ef-
fect size estimates closer to the true effect sizes in EASs
while taking advantage of the large sample sizes of
EUR GWASs. We constructed PRSs using summary
statistics from the rescaled meta‐analysis of EUR and
EAS GWAS data and then evaluated their perfor-
mances in an independent EAS validation data set. Our
PRS outperforms PRSs derived from the EUR or EAS
GWAS alone as well as the conventional meta‐analysis
of EAS and EUR GWASs. The EUR and EAS GWASs
used in the analysis are from the BCAC and ABCC,
respectively.

2 | MATERIALS AND METHODS

2.1 | GWAS training data in samples of
European ancestry

Two large, publicly available summary statistics data sets
based on European ancestry were used in this study. The
data were from the BCAC (details see Table S1).
EUR_2015 (Michailidou et al., 2015) includes two sub-
sets, GWAS (N= 32,498) and COGS (N= 89,677).
EUR_2017 (Michailidou et al., 2017) is the largest avail-
able GWAS study of breast cancer in European ancestry
population. This study consisted of three subsets, GWAS,
COGS and OncoArray (N= 106,776).

2.2 | GWAS training data in samples of
Asian ancestry

The GWASs in samples of EAS ancestry were from the
Asian Breast Cancer Consortium (ABCC), which includes
14,958 breast cancer cases and 15,843 controls of Asian
ancestry (Cai et al., 2014; Zheng et al., 2009, 2013). Sam-
ples were from studies conducted in mainland China,
South Korea, Japan, Thailand, Malaysia, Singapore,
Canada, United States, Hong Kong, Taiwan and other
countries and regions. Details are in Table S1. We used the
meta‐analyzed summary statistics data from the study.

2.3 | Validation data of EAS ancestry

The validation set of EAS ancestry is from the Shanghai
breast cancer genetic study, including 1794 cases and
2059 controls. Samples were all genotyped on MEGA
chip (Illumina), with ~80k custom Asian content selected
to improve the coverage of low‐frequency SNPs in Asian
populations. Data were imputed using the Phase 3 re-
lease of the 1000 Genomes Project as reference.

2.4 | Meta‐analysis of EUR and EAS

Let βEAS j, and VEAS j, be the expectation and its variance of
SNP j in EAS GWAS. The corresponding estimates in
EUR are βEUR j, and VEUR j, . In conventional meta‐analysis,
we have

β

w β w β

w w
ˆ =

+

+
,

inv EAS j EAS j inv EUR j EUR j

inv EAS j inv EUR j

_ , , _ , ,

_ , _ ,

where w V= 1/inv_E j E jAS, AS, and w V= 1/inv_EUR j EUR j, , are
the inverse‐variance weights for EAS and EUR,
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respectively. As our goal is to obtain weights to construct
PRS for EAS, we multiply a scaling factor (denoted as,
α > 1) for EAS to the inverse variance weight to obtain a
rescaled estimate

β

α w β w β

α w w
ˆ =

× +

× +

inv EAS j EAS j inv EUR j EUR j

inv EAS j inv EUR j

_ , , _ , ,

_ , _ ,

with variance

v
α w

α w w
V

w

α w w
V

ˆ =
×

× +

+
× +

.

inv EAS j

inv EAS j inv EUR j
EAS j

inv EUR j

inv EAS j inv EUR j
EUR j

_ ,

_ , _ ,

2

,

_ ,

_ , _ ,

2

,

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

To select the scaling factor, we tried a grid of
α = 1,2,3,4,5 to derive the resulting summary statistics.
Then we selected the scale factor to use along with
p value threshold that achieved a high prediction accu-
racy by cross‐validation in the EAS validation set.

2.5 | “P+T”

The P+T method refers to the calculation of PRS using
informed LD‐pruning and p value thresholding. In this
study, we use the implementation of the P+T method in
the software package PRSice‐2 (Euesden et al., 2015) with
the default threshold of r2 = 0.2 for clumping correlated
markers and clumping windows of 250 kb. We examined
varying strengths of LD among SNPs by repeating the
procedures and changing threshold for clumping corre-
lated markers (r2 = 0.1, 0.2, 0.4, 0.6, 0.8) and the sizes of
clumping windows (250 kb, 500 kb), and found results to
be similar. For any pair of SNPs that have a physical
distance smaller than the clumping window or r2 greater
than the selected threshold, the less significant SNP is
removed. PRS is computed by summing risk alleles
weighted by effect sizes derived from input summary
statistics. The p value threshold are selected using vali-
dation data to optimize prediction accuracy. We con-
structed PRS for EAS using selected SNPs and effect size
estimates PRS=∑ w x

j

J
EAS j j=1 , , which wEAS j, is the weight

for the jth SNP.

2.6 | LDpred

LDpred is a method that uses the GWAS summary sta-
tistics and LD information from the external LD re-
ference sample to infer the posterior mean effect size of

each SNP, conditioning on the SNP effect estimates of
other correlated SNPs. This method assumes a point‐
normal prior on the distribution of SNP effects such that
only a fraction of SNPs have non‐zero estimated effects.
These fractions of causal SNPs (denoted as f) were used
in the validation set: 1 (i.e., all SNPs), 0.3, 0.1, 0.03, 0.01,
0.003, and 0.001, with an LD radius of 400 (i.e., M/3000,
M is the number of SNPs, around 1.2 million Hapmap
SNPs is included in the current analysis) to obtain local
LD information, as suggested by the authors.

2.7 | Assessment of PRSs

Our analysis used genotypes and phenotypes in in-
dependent validation data of EAS ancestry from training
GWAS. We reported area under the receiver operating
characteristic (ROC) curve (AUC) in a logistic regression
model using the disease as outcome. When using model
with only PRS as the predictor, we report the in‐sample
fit using all individuals in the validation set. When using
models with PRS, age and first 2 genotype PCs, we use
the 10‐fold cross‐validation procedure. To compare AUCs
from different training GWAS data, we conducted one‐
sided Delong's test for paired AUC curves using “roc.test”
implemented in R package "pROC".

We also include average Nagelkerke's pseudo R2 and
liability‐scale pseudo R2 for the models (Lee et al., 2012)
and the likelihood ratio test p value. Nested models are
considered to provide performance estimates of PRSs: the
full model (PRS + covariates including age and first two
PCs of genotype) and the reduced model (covariates
only). Nagelkelke's pseudo R2 was calculated comparing
the full model with the reduced model with the covari-
ates alone, thus yielding an estimate of how well the
variable (PRS here) explains the data. The R package
“rcompanion” (see “Data Availability Statement” and
“Web Resources” sections) was used in the analysis.
Since Nagelkelke's R2 suffers from bias when case/con-
trol proportion is different, we included liability‐scale R2

that accounted for an ascertained case/control ratio (Lee
et al., 2012).

To assess the relationship of PRS with breast cancer
case/control status, individuals in the validation set
were binned into 10 deciles according to the PRS, and
the percentage of cases within each bin was
determined. We calculated odds ratio (OR) comparing
top 10% of the individuals with the remaining 90% of
the samples as reference group, as well as OR com-
paring top 10% of individuals with individuals in the
40th–60th percentiles.
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3 | RESULTS

3.1 | Trade‐off between training GWAS
sample size and matched genetic ancestry
in PRS prediction in EASs

We first constructed PRSs using SNP‐level effect sizes
from single EUR or EAS GWASs and evaluated their
performance in an independent EAS validation data set.
To assess the impact of sample size on PRS performance,
we used EUR GWAS from the BCAC published in 2015
(62,533 cases and 60,976 controls) (Michailidou et al.,
2015) and EAS GWAS from the ABCC (14,958 cases and
15,843 controls) (Cai et al., 2014; Zheng et al., 2009, 2013)
for PRS construction; we used an earlier, smaller EUR
GWAS rather than the most recent, much larger GWAS
(Michailidou et al., 2017) from the BCAC to illustrate our
strategy of combing EAS and EUR data so as to avoid the
EAS data being overwhelmed by the EUR data. For each
training GWAS data set, we derived predictors based on
the “P+T” method (Section 2) and chose parameters
that maximize prediction accuracy through cross‐
validation in an independent EAS validation data set of
3,853 subjects (1794 cases and 2059 controls) (MEGA
Shanghai; see Section 2 and Table S1).

We reported AUC of the PRSs along with their p va-
lue threshold and number of SNPs included in Figure 1
and Table 1. We found that a single individual sample in
the EAS training data set was substantially more in-
formative about predicting breast cancer risk in the EAS
validation data set compared with that in the EUR
training data sets. The best PRS derived from the EAS
GWAS yielded an AUC of 0.5782. The best PRS derived
from the EUR GWAS, which is ~4 times the sample size
of the EAS GWAS, yielded a comparable AUC of 0.5809
in the EAS validation set. These findings are consistent
across different p value thresholds used and numbers of
SNPs included in the PRSs (Figure 1), demonstrating the
trade‐off between higher prediction accuracy conferred
by the larger EUR sample size and the matched EAS
ancestry. Similar findings for type II diabetes in Latinos
have been reported before (Márquez‐Luna et al., 2017).

To explore whether incorporating GWASs from both
the EUR and EAS populations can boost prediction
performance, we performed a meta‐analysis of the EUR
and EAS GWASs and used the resulting summary sta-
tistics to derive PRSs. We obtained an AUC of 0.6008 in
the validation EAS data set, which was higher than any
PRS derived from the EAS or EUR GWASs alone. These
results demonstrated that combining information from a

(a) (b)

FIGURE 1 The AUC of PRSs derived from the EAS/EUR GWASs alone and meta‐analysis of both. PRSs are derived from EAS, EUR,
GWASs, and fixed‐effect meta‐analysis of the EAS and EUR (denoted as META_FE). PRSs are evaluated in an independent
EAS validation data set for predicting breast cancer risk. Each PRS was plotted against the (a) p value threshold and (b) number of SNPs
included. The corresponding numerical results were reported in Table S2. AUC, area under the receiver operating characteristic curve;
EAS, East Asian; EUR, European; GWAS, genome‐wide association studies; PRS, polygenic risk score; SNP, single‐nucleotide polymorphism
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higher‐powered EUR GWAS and ancestry matched EAS
GWAS helped improve breast cancer risk predictions in
EASs, which was consistent with previous reports for
other traits in EASs (Lam et al., 2019) and Hispanic/
Latinos (Grinde et al., 2019).

3.2 | Upweighting the EAS effect size
estimates in meta‐analysis improves PRS
prediction in EASs

In conventional fixed‐effect meta‐analysis, the effect size
of each SNP is calculated by an inverse variance weighted
sum of the effect size estimates from the participating
GWASs. When the true effect sizes are equal across the
GWASs, this formula is optimal and entails no efficiency
loss compared with a joint analysis of the GWASs using
individual‐level data (Lin & Zeng, 2009). However, this
formula may not be optimal when the goal is to provide
effect size estimate from EAS and EUR GWASs for
constructing PRS in EASs. Instead, we propose to tip the
trans‐ethnic meta‐analysis toward the EAS population by
up‐scaling EAS effect size estimates by a factor of α in
addition to the inverse variance weighting scheme
(Section 2). This strategy enables us to shrink the meta
effect size estimates toward the estimates in the EAS
GWAS and increase the power to detect EAS‐specific

signals. To find a good up‐scaling factor α, we conducted
a grid search (i.e., α = 1,2,3,4,5) and then evaluated the
AUC of the resulting PRSs using cross‐validation
(Figure S1). The conventional fixed‐effect meta‐analysis
is a special case with α = 1.

We evaluated these PRSs on the EAS validation data
set and found that up‐scaling the EAS GWAS with a
factor of two or three in meta‐analysis could result in
increased predicting accuracy (Figure 2). For example,
we obtained an AUC of 0.6059 when using α = 3,
compared with an AUC of 0.6008 in conventional fixed‐
effect meta‐analysis (i.e., α = 1). In general, an up‐
scaling factor of two or three resulted in better predic-
tion performance than conventional fixed‐effect meta‐
analysis across a range of p value thresholds used and
numbers of SNPs included in the PRS in our analysis
(Figure 2). We conducted one‐sided Delong's test and
did not observe significant difference between the AUCs
of PRSs derived from the rescaled meta‐analysis (α = 3)
and conventional fixed‐effect meta‐analysis (p value =
0.14). This is somewhat expected as recent literature on
PRS evaluation also showed small AUC differences be-
tween PRSs constructed using different methods using
the same training data set (Khera et al., 2018). We note
that the difference between the AUCs of
PRSs derived from the rescaled meta‐analysis
(α = 3) and EAS GWAS was statistically significant

TABLE 1 Prediction AUC, Nagelkerke's R2, and liability adjusted R2 in the EAS validation set (adjusted for age and first two principal
components of genotype)

Modela P‐thresholdb N_SNPsc AUC AUC 95% CId
Nagelkerke's
R2e

Liability
adjusted R2f

P Value for
improvement over
reduced modelg

EAS 5 × 10−6 44 0.5782 0.5600–0.5963 0.047 0.0201 9.64 × 10−29

EUR 5 × 10−8 107 0.5809 0.5628–0.5989 0.0465 0.0198 1.999 × 10−28

META_FE 1 × 10−5 257 0.6008 0.5829–0.6188 0.0624 0.0268 1.33 × 10−38

META_2EAS 5 × 10−6 190 0.6049 0.587–0.6228 0.0655 0.0282 1.30 × 10−40

META_3EAS 1 × 10−5 193 0.6059 0.588–0.6238 0.0656 0.0283 1.08 × 10−40

ADD3 NA 265 0.6096 0.5917–0.6274 0.0689 0.0298 7.70 × 10−43

Note: We reported AUC, Nagelkerke's R2, and liability adjusted R2 for each of the PRSs in the EAS validation data set.

Abbreviations: AUC, area under the receiver operating characteristic curve; CI, confidence interval; EAS, East Asian; EUR, European; GWAS, genome‐wide
association studies; PRS, polygenic risk score; SNP, single‐nucleotide polymorphism.
aModels that PRSs are based on EAS: EAS GWAS derived PRS; EUR: EUR GWAS derived PRS; META_FE: conventional fixed‐effect meta‐analysis;
META_2EAS: rescaled meta‐analysis that up‐weights the EAS summary statistics by a factor of two; META_3EAS: rescaled meta‐analysis that up‐weights the
EAS summary statistics by a factor of three; ADD3: summation of the three best PRSs within each LD category.
bp Value cutoff for including SNPs in model.
cNumber of SNPs in model.
d95% confidence interval of AUC.
eNagelkerke's R2 of a full model.
fLiability adjusted Nagelkerke's R2 that accounted for case/control ratio.
gp Value from likelihood ratio test compare full model (PRS, covariates including age and first two principal components of genotype) with a reduced model
(a model with covariates age and first 2 principal components of genotype only).
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(p value = 4.6 × 10−4), so was the difference between
the AUCs of PRSs derived from the rescaled meta‐
analysis (α = 3) and EUR GWAS (p value =1.9 × 10−4).

3.3 | GWAS effect size heterogeneity is
related to LD score differences between
ancestries

Wojcik et al. observed inconsistent effect size estimates
between populations (Wojcik et al., 2019), which could
contribute to reduced transferability of PRSs between
populations. The extent of effect size differences between
populations differs across the genome. As LD score
measures the tagging capacity of an SNP, a natural topic
of investigation is whether the extent of LD differences is
related to the extent of effect size differences between
EURs and EASs.

To examine this, we used the difference in EAS and
EUR LD score (Bulik‐Sullivan et al., 2015):
l l l= −diff j EAS j EUR j, , , as an indication of an SNP's tagging
capacity divergence between populations, where lEAS j,
and lEUR j, are the ancestry‐specific LD scores in EASs and
EURs, respectively, estimated from the corresponding
populations in the 1000 Genomes Project (1000 Genomes

Project Consortium et al., 2015). We partitioned all
available SNPs into three equally sized groups: “low
EAS/high EUR LD score” group with ldiff less than its
33% quantile, “similar EAS/EUR LD score” group with
ldiff between its 33% and 67% quantiles, and “high EAS/
low EUR LD score” group with ldiff larger than its 67%
quantile. To account for the impact of differential GWAS
sample sizes on SNPs' effect size estimates, we calculated
“standardized” z‐scores by dividing the original z‐scores
by the square root of GWAS sample size (Wojcik et al.,
2019). Then, we compared the standardized z‐scores in
the EUR and EAS GWASs (denoted as zEUR and zEAS,
respectively) for SNPs with p value < 5 × 10−8 in either
the EUR or EAS GWAS (Figure 3a). In general, we ob-
served a reduction of standardized z‐scores in EASs
compared with EURs regardless of ldiff categories, with
an overall slope of 0.64 (z z= 0.64 ×EAS EUR, 95% con-
fidence interval: 0.61–0.67). In addition, we observed that
standardized z‐scores tended to be even lower in EASs for
SNPs with “low EAS/high EUR LD score”
(z z= 0.52 × ,EAS EUR 95% confidence interval: 0.48–0.55),
and higher in EASs for SNPs with “high EAS/low EUR
LD score” (z z= 0.83 × ,EAS EUR 95% confidence interval:
0.75–0.90), suggesting that LD differences are related to
observed effect size differences between populations.

(a) (b)

FIGURE 2 The AUC of PRSs derived from rescaled meta‐analysis of the EAS and EUR_2015. PRSs are evaluated in predicting breast
cancer risk in the EAS validation data set. META_FE denotes the conventional fixed‐effect meta‐analysis; META_2EAS denotes the
rescaled meta‐analysis that upweights the EAS effect size estimates by a factor of two; and META_3EAS denotes the rescaled meta‐analysis
that upweights the EAS effect size estimates by a factor of three. Each PRS was plotted against the (a) p value threshold and
(b) number of SNPs. The corresponding numerical results were provided in Table S2. AUC, area under the receiver operating characteristic
curve; EAS, East Asian; EUR, European; PRS, polygenic risk score; SNP, single‐nucleotide polymorphism
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3.4 | Effects of LD differences on genetic
risk prediction

We further investigated the impact of differential tagging
capacity due to differential LD levels between popula-
tions on PRS performance in EASs. After classifying
SNPs into three groups based on ldiff , we constructed
group specific PRSs based on both conventional and re-
scaled meta‐analyses and applied the PRSs to the vali-
dation EAS data set. We observed that the performance
of PRS in the low EAS/high EUR LD score group is no-
ticeably lower than that in the other two groups. This is
true for both the conventional and rescaled meta‐
analyses (Figure 4). For example, the AUC of the PRS
derived from the conventional meta‐analysis using SNPs

in the low EAS/high EUR LD score group is 0.5677,
while the AUC of the PRSs derived using SNPs in the
similar EAS/EUR LD score and high EAS/low EUR LD
score groups are 0.5837 and 0.5890, respectively. Com-
paring the rescaled versus conventional meta‐analysis,
we found that upweighting the EAS effect size estimates
with a factor of two or three resulted in a more dramatic
increase in prediction accuracy for SNPs in the low EAS/
high EUR LD score and similar EAS/EUR LD score
groups, while the performance gain in the high EAS/low
EUR LD score group appeared to be minimal.

As the LD difference is likely a key factor contribut-
ing to the poor transferability of EUR‐derived PRS to
non‐EUR populations, we also explored whether taking
LD differences among population into account has

(a) (b)

FIGURE 3 Standardized z‐scores of SNPs from EUR and EAS GWAS classified into different LD and MAF groups. SNPs with
p values < 5 × 10‐8 in either EUR_2015 or the EAS GWAS were included. (a) Low EAS/High EUR LD: SNPs with ldiff less than its 33%
quantile; Similar EAS/EUR LD: SNPs with ldiff between its 33% and 67% quantiles; High EAS/Low EUR LD: SNPs with ldiff larger than its
67% quantile. (b) Low EAS/high EUR MAF: SNPs with MAFdiff j, less than its 33% quantile, similar EAS/EUR MAF: SNPs with MAFdiff j,

between its 33% and 67% quantiles, and high EAS/low EUR MAF: SNPs with MAFdiff j, larger than its 67% quantile. The black dashed line is
the slope of the fitted line of standardized Z score in EAS over standardized z score in EUR with all SNPs included; the red/blue/green lines
are fitted lines of standardized z score in EAS over standardized z score in EUR for SNPs in corresponding LD group or MAF group. EAS,
East Asian; EUR, European; GWAS, genome‐wide association studies; LD, linkage disequilibrium; MAF, minor allele frequency;
SNP, single‐nucleotide polymorphism
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potential to increase PRS accuracy. We constructed an
ldiff ‐stratified PRS by the summation of the three best
PRSs within each ldiff group (referred to as “ADD3”). We
observed marginal significant improvement of AUC from
ADD3 (AUC= 0.6096) over conventional fixed‐effect
meta‐analysis PRS (AUC= 0.6008, one‐sided Delong's
test p value = 0.05).

3.5 | Effect of MAF differences on
GWAS effect size and genetic risk
prediction

As MAF differences between populations might also
contribute to GWAS heterogeneity and decreased trans-
ferability of PRS, we sought to investigate the effects of
MAF empirically. We used a similar approach as in the
interrogation of LD differences to partition all available
SNPs into three equally sized groups by MAF differences.
Specifically, we used the difference in EAS and EUR
MAF: MAF MAF MAF= −diff j EAS j EUR j, , , as an indication
of an SNP's MAF divergence between populations, where
MAFEAS j, and MAFEUR j, are the ancestry‐specific MAFs

reported by the single population GWASs. We parti-
tioned all available SNPs into three equally sized groups:
“low EAS/high EUR MAF” group with MAFdiff j, less than
its 33% quantile, “similar EAS/EUR MAF” group with
MAFdiff j, between its 33% and 67% quantiles, and “high
EAS/low EUR MAF” group with MAFdiff j, larger than its
67% quantile. Then, we compared the standardized
z scores in the EUR and EAS GWASs for SNPs with
p value <5 × 108 in either the EUR or EAS GWAS similar
to what we did previously for LD differences (Figure 3b).
We observed that standardized z scores tended to be
lower in EASs for SNPs with “low EAS/high EUR MAF”
(z z= 0.48 × ,EAS EUR 95% confidence interval: 0.44–0.51),
and higher in EASs for SNPs with “high EAS/low EUR
MAF” (z z= 0.78 × ,EAS EUR 95% confidence interval:
0.64– 0.83), suggesting that MAF differences are related
to observed effect size differences between populations.

We constructed MAF group‐specific PRSs based on
both conventional and rescaled meta‐analyses and ap-
plied the PRSs to the validation EAS data set. We ob-
served that the performance of PRS in the low EAS/high
EUR MAF group is noticeably lower than that in the
other two groups (Figure S2). This is true for both the

(a)

(b)

FIGURE 4 The AUC of PRSs constructed with SNPs in different ldiff groups. All SNPs were classified into three groups: low EAS/high
EUR LD score group with ldiff less than its 33% quantile, similar EAS/EUR LD score group with ldiff between its 33% and 67% quantiles, and
high EAS/low LD score group with ldiff larger than its 67% quantile. META_FE denotes the conventional fixed‐effect meta‐analysis;
META_2EAS denotes the rescaled meta‐analysis that upweights the EAS effect size estimates by a factor of two; and META_3EAS denotes
the rescaled meta‐analysis that upweights the EAS effect size estimates by a factor of three. Each PRS was plotted against the (a) p Value
threshold and (b) number of SNPs. AUC, area under the receiver operating characteristic curve; EAS, East Asian; EUR, European;
LD, linkage disequilibrium; PRS, polygenic risk score; SNP, single‐nucleotide polymorphism
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conventional and rescaled meta‐analyses. For example,
the AUC of the PRS derived from the conventional meta‐
analysis using SNPs in the low EAS/high EUR MAF
group is 0.5530, while the AUC of the PRSs derived using
SNPs in the similar EAS/EUR MAF and high EAS/low
EUR MAF groups are 0.5876 and 0.5993, respectively.

We explored whether integrating MAF and LD dif-
ference information would further improve PRS. We
stratified SNPs into nine groups cross‐tabulated by the
three LD score groups and three MAF groups (Figure S3).
We observed that the prediction AUC of PRS derived from
SNPs in “low EAS/high EUR MAF+high EAS/low EUR
LD score” group was the lowest, while the AUC of PRS
derived from SNPs in “high EAS/low EUR MAF+ high
EAS/low EUR LD score” group was the highest. Then, we
evaluated the performance of the added score of the best
PRSs from the nine groups (referred to as “ADD9”), si-
milar to what we did with ADD3. We found no im-
provement on AUC for ADD9 (AUC= 0.6084) compared
with ADD3 (AUC= 0.6096), indicating that the impact of
MAF differences on PRS prediction might overlap with
that of LD score differences (the correlation between MAF
differences and LD score differences was 0.36).

3.6 | Evaluation of the PRSs using the
prediction Nagelkerke's pseudo R2 and
odds‐ratio in EASs

We evaluated the candidate PRSs using the prediction
Nagelkerke's pseudo R2 and liability‐adjusted R .2 We

included the PRSs constructed from the EUR and EAS
GWAS alone and the rescaled meta‐analyses that up-
weights the EAS effect size estimates by a factor of two or
three. We also included an ldiff ‐stratified PRS constructed
by the summation of the three best PRSs within each ldiff
group. We used logistic regression and included age and
the first two principal components as covariates. The
results were shown in Table S2. The PRS derived from
the rescaled meta‐analysis that upweights the EAS effect
size estimates by a factor of three increased the predic-
tion Nagelkerke's pseudo R2 (liability‐adjusted R2) by 40%
(41%), 41% (42%), and 5% (6%), respectively, compared
with PRSs derived from the EAS GWAS only, EUR
GWAS only, and conventional fixed‐effects meta‐analysis
of both. The ldiff ‐stratified PRS performed better than the
other models, although the improvement was marginal
(Table 1).

We assessed the OR of developing breast cancer in
the top 10% individuals with the highest PRSs versus the
remaining 90% in the EAS validation data set. We ob-
served that PRSs derived from the meta‐analyses of EAS
and EUR GWASs resulted in improved ORs compared
with PRSs derived from the EAS GWAS or EUR alone
(Table 2). For example, we obtained ORs in the range of
2.31–2.50 for PRSs derived from the meta‐analyses, while
we obtained ORs of 2.23 and 1.73 for PRSs derived from
the EAS GWAS or EUR, respectively. We also compared
the top 10% individuals with the middle 40%–60% and
observed similar results (Table S2).

4 | DISCUSSION

There has been tremendous progress in discovery of
GWAS loci associated with breast cancer, making it
feasible to construct PRS for individualized risk stratifi-
cation. However, there is a lack of well‐powered GWAS
in non‐EUR populations, a challenge that may exacer-
bate disparity in clinical use. The primary goal of this
study is to explore strategies that can improve PRS of
non‐EUR populations, particularly in EAS. We found
that incorporating information from well‐powered EUR
GWAS and explicitly modeling LD and MAF differences
are promising to improve PRS for breast cancer risk
prediction in EAS. We proposed an approach to construct
PRS from a rescaled meta‐analysis of EUR and EAS
GWAS which upweights the EAS component relative to
the conventional inverse‐variance‐based weightings. We
observed improvement in PRS prediction accuracy using
rescaled meta‐analyses. As LD and MAF differences are
likely key factors contributing to the poor transferability
of EUR‐derived PRS to non‐EUR populations, we also
explored whether taking them into account have

TABLE 2 OR of developing breast cancer in the top 10%
individuals with the highest PRSs versus the remaining 90% in the
EAS validation data set

Modela OR OR (95% CI)b p Value

EAS 2.23 1.78–2.80 2.33 × 10−13

EUR 1.73 1.39–2.16 3.93 × 10−7

META_FE 2.50 1.99–3.14 8.40 × 10−17

META_2EAS 2.31 1.85–2.91 1.86 × 10−14

META_3EAS 2.43 1.94–3.06 5.34 × 10−16

ADD3 2.50 1.99–3.14 8.40 × 10−17

Abbreviations: CI, confidence interval; EAS, East Asian; OR, odds ratio;
PRS, polygenic risk score.
aMETA_FE denotes the conventional fixed‐effect meta‐analysis;
META_2EAS denotes the rescaled meta‐analysis that upweights the EAS
effect size estimates by a factor of two; META_3EAS denotes the rescaled
meta‐analysis that upweights the EAS effect size estimates by a factor of
three; ADD3 denotes the ldiff ‐stratified PRS constructed by the summation of
the three best PRSs within each ldiff group.
bConfidence interval of OR.
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potential to increase PRS accuracy. We observed mar-
ginal significant improvement of AUC from the ldiff ‐
stratified PRS (“ADD3”) over conventional fixed‐effect
meta‐analysis PRS (“META‐FE,” p value = .05) but no
further improvement by stratifying on both LD and MAF
differences (“ADD9”).

We further dissect why rescaled meta‐analysis strat-
egy is able to increase the PRS accuracy of the risk pre-
diction in EAS in this study and in other non‐EUR
populations in general. We define the true model as

∑y β x= EAS j j, for EAS and ∑y β x= EUR j j, for EUR. Given
the genetic differences between EAS and EUR, βEAS j, and
βEUR j, are often unequal, and the extent of their differ-
ences depends on many factors, including LD, MAF, and
environment factors. To construct a powerful PRS for
EAS, that is,∑w xEAS j j, , the goal is to assign a weight for
the jth SNP wEAS j, that is close to the true effect size
βEAS j, . When we use weights derived from EAS GWAS as
wEAS j, , the estimates are unbiased but of larger variance
due to the smaller sample size. On the other hand, when
the weights are derived from EUR GWAS, the estimates
have smaller variance but are biased away from the true
effect sizes in EAS, leading to poor transferability of
EUR‐derived PRS to EAS populations. To obtain esti-
mates with a better bias and variance tradeoff, we pro-
posed to combine EAS and EUR data to obtain estimates
for use in PRS construction in EAS. Specifically, we
proposed a rescaled meta‐analysis strategy, with a
rescale factor α > 1 to “pull” the estimate toward the
true effect size in EAS, i.e. w α w= ×EASj inv_EAS j,

β w β+EASj inv_EUR j EURj, , where winv_EAS j, and winv_EUR j, are
the inverse‐variance weights in the conventional meta‐
analysis (Section 2). The magnitude of α controls for the
extent of “pulling” toward EAS, with α = 0 or α inf=

corresponding to the extreme case where only EUR data
(α = 0) or only EAS data (α inf= ) are used. For α > 1, it
upweights EAS in a way that a sample in the EAS GWAS
data contributes more than a sample in EUR GWAS to
the resulting effect size estimate, thus achieving the ef-
fect of pulling toward EAS. The optimal magnitude of α
depends on the relative sample size of EAS and EUR, and
in general, α increases when EAS sample sizes increases
relative to EUR due to a bias‐variance tradeoff between
the more accurate EAS results and more precise EUR
results. When the EAS sample size is much smaller than
the EUR sample size, the effect size estimates obtained
from the EUR GWAS have much smaller standard errors.
In this situation, upweighting the EAS effect size with a
larger α may significantly increase the standard errors in
the rescaled meta‐analyzed compared with that in con-
ventional fixed‐effects meta‐analysis, offsetting the po-
tential benefit of reduced bias. For example, when we
used the latest EUR GWAS data of ~220,000 samples, the

optimal α decreases to 1.3, achieving an AUC= 0.6195,
compared with AUC= 0.6119 obtained in the traditional
meta‐analyses. To comprehensively study the relation-
ship between optimal α and relative EUR and EAS
sample sizes, we would need access to individual‐level
training data so that we can conduct a series of GWASs at
different sample sizes (e.g., 60, 120, 180, and 220 k for
EUR and 10, 20, and 30 k for EAS). For a variety of
diseases, more non‐EUR samples are being generated, for
example, PAGE (Wojcik et al., 2019) and TOPMed
(Taliun et al., 2019), and the reweighting factor is ex-
pected to increase when meta‐analyzing with EUR data,
resulting in increased prediction accuracy for non‐EUR
samples. Note that we used only a single scaling factor α
to controls for the adjustment. Ideally, if we are able to
assign a SNP‐level scaling factor for every SNP, that
is, w α w β w β= × +EASj j inv_EAS j EASj inv_EUR j EURj, , where αj
is the scaling factor for the jth SNP, the performance of
PRS can be further improved. However, it is challenging
to assign scaling factors for each individual risk allele, as
it is unknown a priori which alleles have different effect
sizes between populations, and to what extent of their
differences are. It requires further efforts to model fine‐
scale genetic difference between populations to assign
reasonable SNP‐level scaling factors.

We also examined the predictive performance on
our validation set using Grinde et al.'s approach that
performed well in several anthropometric and blood
count traits in Hispanic Americans: select SNPs based
on European GWASs and use meta‐analysis weight
estimates to construct PRS. We find resulting PRS
perform worse (AUC = 0.5859) than using conven-
tional meta‐analysis GWAS for both SNP selection and
weight estimates (AUC = 0.6008). This agrees with
previous findings that the best performing PRS for a
trait likely depends on the genetic architecture,
differences in sample size between populations, and
other factors.

We are aware that there are other PRS construction
methods besides “P+T,” such as LDpred (Vilhjálmsson
et al., 2015) and SBayesR (Lloyd‐Jones et al., 2019).
Specifically, we applied LDpred using the EAS LD re-
ference panel and presented the results in Table S3. The
findings were similar compared with those obtained by
“P+T”: PRS derived from conventional fixed‐effects
meta‐analysis performed better than those derived from
single population GWASs; PRSs derived from rescaled
meta‐analysis and the ldiff ‐stratified PRS performed better
than PRS derived from conventional fixed‐effect meta‐
analysis. We observed comparable performance between
PRSs constructed using LDpred and “P+T,” which is
consistent with existing literature on breast cancer PRS
(Khera et al., 2018).
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We studied the impact of LD and MAF PRS con-
structed by taking into account both LD score differences
and MAF differences between EAS and EUR did not
outperform PRS constructed by taking into account LD
score differences alone in EAS. It would be worthy of
further exploration on how to better leverage MAF and
LD in PRS construction. In addition, we did not explore
the impact of functional genomic annotations on trans‐
ethnic PRS prediction. As previous studies have shown
that the use of epigenetic and functional annotations
improves heritability estimation and PRS prediction in a
single population (Hu et al., 2017; Lloyd‐Jones et al.,
2019), an interesting topic of investigation is to in-
corporate those annotations when constructing trans‐
ethnic PRS to further boosting prediction accuracy.

Our work is based on a target population of EAS,
while there are potential opportunities to extend the
strategies explored in this study to other ethnicities. For
example, the explicit modeling of genetic difference
between EUR and African has potential to improve PRS
in African and in African Americans. Although our
approach has been effective in a relatively homogenous
population like EAS, its application remains challen-
ging in admixed populations with complex LD patterns
and demographic history like African Americans or
Hispanic/Latinos. Since the genomes of admixed in-
dividuals are a mosaic of segments with different an-
cestral origins, a first step would be to get ancestry‐
specific effect size estimates and P‐values from training
GWASs, which is often not available from publicly
available summary statistics. If individual‐level training
GWAS data is available, recently developed methods
like Tractor (Atkinson et al., 2020) could be applied to
obtain ancestry‐specific summary statistics by generat-
ing ancestry dosage at each site from local ancestry
inference calls and running a local ancestry‐aware re-
gression. Similarly, for the validation data, local an-
cestry haplotype dosage for each person at each variant
need to be estimated and weighted by the ancestry‐
specific effect size estimated in the previous step to
allow the generation of “ancestry‐specific” PRSs. After
that, we can experiment with our strategy of globally
upweighting the “more informative” ancestry‐level
PRS. However, local ancestry estimation in both train-
ing and validation sets might introduce bias and the
anticipated large sample size discrepancies between
EUR and African Americans GWAS studies might
further complicate the application. We think this
question is worthy of further exploration and we be-
lieve that the rapid expansion of genomic resources in
admixed populations will be critical to improve PRS
predictions. Besides genetic factors (e.g., LD and MAF),
environmental factors also influence effect size

differences among ancestries. We argue that, for ad-
mixed populations, it is critical for PRS to be ancestry‐
aware, especially for clinical use, since each individual
admixed genome has unique local ancestry profiles,
and without taking local ancestry into account it is hard
to maintain desired sensitivity and specificity due to
genetic differences among ancestries.

In summary, we proposed an approach to construct
breast cancer PRS in EAS derived from a rescaled meta‐
analysis of EUR and EAS GWAS. Different from con-
ventional inverse‐variance‐based weighting framework,
our approach upweights the EAS component over the
EUR component. PRS derived from our rescaled meta‐
analysis outperforms PRS derived from single population
GWAS or conventional meta‐analysis. This strategy of
integrating GWASs across ethnicities when building PRS
prediction models could potentially be extended to other
non‐EUR populations.
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