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Abstract

The minimal convex hulls of disks problem is to find such arrangements of circular disks in the
plane that minimize the length of the convex hull boundary. The mixed-integer non-linear pro-
gramming model, named MinPerim [17], works only for small to moderate-sized problems.
Here we propose a polylithic framework of the problem for big problem instances by combin-
ing the following algorithms and models: (i) A fast disk-packing algorithm VOROPACK-D
based on Voronoi diagrams, non-linear programming (NLP) models for packing disks, and
an NLP model minDPCH for minimizing the discretized perimeter of convex hull; (ii) A fast
convex-hull algorithm Quickhul1Disk to compute the convex hulls of disk arrangements
and their perimeter lengths; (iii) A mixed-integer NLP model MinPerim taking the output of
QuickhullDisk as its input. We present complete analytic solutions for small problems
up to four disks and a semi-analytic mixed-integer linear programming model which yields
exact solutions for strip packing problems with up to one thousand congruent disks. It turns
out that the proposed polylithic approach works fine for large problem instances containing
up to 1,000 disks. Monolithic and polylithic solutions using minDPCH usually outperform
other approaches. The polylithic approach yields better solutions than the results in [17] and
provides a benchmark suite for further research.
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1 Introduction

The minimal convex hull of disks problem in the plane, hereafter referred to the minimal
convex hull problem, is to find arrangements of a finite set of 2D circular disks in the plane
so that the perimeter length of the convex hull of the disks is minimized. The disks, either
congruent or non-congruent, are placed in the arrangements in such a way that they do not
overlap each other although two disks may contact. Some problems in logistics, such as the
container loading [4] and placement of cylindrical drums on trucks [17], require computing
minimal convex hulls of disks. Instead of packing objects into a container of explicitly
specified shape such as rectangle and circle, the container in this study is implicitly defined:
It is the convex hull of the objects.

The minimal convex hull problem was formally introduced by [17], hereafter abbreviated
as KF19, and that of minimal convex hulls of 3D spheres by [16]. The problem was solved by
formulating a mixed-integer non-linear programming (MINLP) model named MinPerim and
approached from the deterministic global optimization point of view. However, as a MINLP
problem is NP-hard, the MinPerim model can only be solved for small problem instances.
In this paper, we want to find near optimal solutions of the minimal convex hull problems
of considerably large problem instances using a polylithic approach by combining tech-
niques from both mathematical programming and computational geometry. The motivation
is to combine the advantages of both disciplines: computational efficiency of computational
geometry techniques and solution quality of mathematical programming. Two computational
geometry algorithms are employed: VOROPACK-D for packing a set of disks [35,39] and
QuickhullDisk for constructing the convex hulls of the arrangements of disks [26,33].

The idea of this study is simple as follows (Fig. 1). Given a large set of input disks, it first
makes an initial disk arrangement by solving the disk packing problem with VOROPACK-D
or an NLP model (in Step I) and constructs its convex hull with QuickhullDisk (in Step
IIT). The convex hull is then used to build an MINLP model to minimize the perimeter of the
convex hull boundary (in Step I'V). If the input disk set is of a small-to-moderate size, Step L is
followed by an improvement step (in Step II) with an NLP model based on the discretization
of the boundary of an approximated convex hull (in Step II) before reaching Step III. The
discretization is based on a finite set of rays emanating from a common interior point of the
convex hull. The length of each ray, i.e., the terminating point on each ray, follows from
the tangential condition that all disks are “below” that tangential line, i.e., the union of all
tangentials provide an outer approximation of the boundary of the convex hull.

Contributions
The major contributions and highlights of this paper are three-fold.

1. A combined view of solving the minimal convex hull problems from both computational
geometry and mathematical programming for problem instances containing up to 1,000
disks:

— Polylithic approaches computing the arrangement of non-overlapping disks based on
VOROPACK-D or non-linear programming (NLP).

— Output of VOROPACK-D providing input for QuickhullDisk, possibly through
minDPCH (minimum discretized perimeter of convex hull).
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Fig. 1 Overview of the proposed polylithic approach. Given a set of input disks, it first makes an initial disk
arrangement (in Step I) which may be used to improve the solution by solving an NLP model to minimize a
discretized perimeter of the approximated convex hull (in Step II). The convex hull of the output from Step II
is constructed (in Step III) which is then used to build an MINLP model to minimize the convex hull boundary.
The NLP model of Step II can work without an initial disk arrangement in Step I. For small to mid-sized
problems, this could be more efficient

— Output of QuickhullDisk providing initial values for an MINLP model Min-
Perim.

2. Introducing a novel NLP model minDPCH which provides initial values for MinPerim
via QuickhullDisk.

3. Analytic solutions for smaller cases up to four non-congruent disks and semi-analytic
solutions involving a mixed-integer linear programming (MILP) model to solve strip
packing problems with congruent disks.

The term polylithic has been coined by [13,14] to refer to tailor-made modeling and
solution approaches to solve optimization problems exploiting several models where output
of one is input to another. Hence, polylithic methods consist of a set of models which are
linked to each other with regard to their inputs and outputs, i.e., model i+1 can use the results
of the first i models. This can be used, for instance, to initialize variables or to put tighter
bounds on variables. On the other hand, a monolithic model consists of a model with data,
variables and constraints and a call to a solution algorithm to solve optimization problems,
i.e., one model with one solve statement. This keeps the structure of the model and its solution
relatively simple and clear. Let C be a container hosting all input disks and H be the convex
hull of the input disks. Suppose that C is convex. Then, H C C. Circular, elliptic, oval, and
rectangular containers are typical examples of such convex containers. We call a container
a design container if we seek a disk arrangement which determines the parameters of the
container in such a way that an objective function is minimized. The area of the container is
an example objective function. This optimization problem could be constrained by a target
domain £2 in which both the disks and the container have to fit. Hence, C C §2. Usual target
domains are also of a convex shape such as circular, elliptic, oval, and rectangular. In this
paper, both disk and circle denote a circular object and its boundary, respectively.

Two computational geometry algorithms are used to take advantage of the geometric nature
of the problem, particularly for large problem instances. First, the VOROPACK-D algorithm
packs circular disks in a container of circular or rectangular shape [35]. There were many
studies on packing and cutting problems with mathematical programming and/or heuristic
methods [6,8,11,27,34,37,41]. This study uses VOROPACK-D which can quickly find suffi-
ciently good solutions for big problem instances. VOROPACK-D takes an argument denoting
the container shape: CC or RC for a circular or rectangular container, respectively. Hence,
with a slight abuse of notation, VOROPACK-D (CC) and VOROPACK-D (RC) pack input
disks in a circular and rectangular container, respectively. Note that VOROPACK-D (CC)
actually executes the Shrink&Shake algorithm which shrinks a sufficiently big cir-
cular container and shakes the disks intersecting the container, if any, by repositioning
in the container [35,39]. Taking advantage of the powerful spatial reasoning property
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of the Voronoi diagram of disks, Shrink&Shake can quickly reach a local optimum.
VOROPACK-D (RC) uses a similar algorithm. Secondly, the QuickhullDisk algorithm
constructs the convex hulls of disk arrangements by adapting the idea of the well-known quick
sort algorithm [26]. VOROPACK-D and QuickhullDisk are freely available as both web
servers and standalone programs (for both Linux and MS Windows) from the Voronoi Dia-
gram Research Center, Hanyang University (http://voronoi.hanyang.ac.kr/voropack, http://
voronoi.hanyang.ac.kr/quickhulldisk).

The remainder of the paper is organized as follows. Section 2 introduces the ordinary
and minimal convex hull of disks and their related notations. Section 3 presents the non-
linear programming basis for the minimal convex hull problems. Section 4 derives analytic
solutions for small problems up to four disks and provides a semi-analytic mixed-integer
linear programming model for a special strip packing problem. Section 5 presents theoret-
ical bounds and gaps. Section 6 presents the proposed polylithic framework and Sect. 7 its
validation with numerical experiments. Section 8 concludes this paper.

2 The ordinary and minimal convex hulls of disks

Let x € R? be a column vector and x" be its transpose. The two dimensions of the plane
are referenced by d € D = {1, 2}, where 1 and 2 represent the first (x-axis) and second
dimension (y-axis), respectively. Let Z be a finite set of n disks in the plane where the center
ofeachdiski € Zis X? = (xj1, xi2)T andits aradius R;. Two coordinate frames are employed
depending on the situation. The first one uses only the positive quadrant with vectors x € R?,
x > (. On the other hand, in the second one, we enforce

1
Xe = Rix? = 0. 2.1)
¢ 2 Ri X,: o

This implies that X, coincides the origin of the coordinate system and relaxes the non-
negativity constraint. Given two points x; = (x11, x]z)T and x; = (x21, xzz)T in the plane,
the distance between x; and X in this study is defined by the L;-norm, i.e., the ordinary

Euclidean distance, ||x; — x2|, = \/Zdep (x1d — x24)%.

Suppose that a convex hull boundary of a set of disks is represented by dH =
{a1,l1,a2,1>,...,apm,ly}, where a; and /; denote an arc and a line segment on the boundary,
respectively. As illustrated in Fig. 2, 3H is counterclockwise oriented and thus every arc and
line segment are also accordingly oriented. Particularly, each arca; € d'H is counterclockwise
oriented around its center. According to the convex hull condition, arcs and line segments
tangentially contact if they contact. An oriented line segment /; € d’H is represented by an
ordered tuple (s;,e;) for the start and end vertices, respectively. Note that s; and e; are points
on two adjacent disks on 9. Let dj be a disk which contributes to d{. An oriented arc a
of disk dj is represented by an ordered triplet (x,(z, Sk, €x) of the disk center, the start and end
vertices of a on ddy, respectively.

Suppose that a subset Z°" C 7 of disks contributes to 8. Then, the disks in Z°" are called
outer disks (or extreme disks), while all other disks are inner disks (non-extreme disks). In
Fig.2,d1, d», and d3 are outer (or extreme) disks and ds, ds, and dg are inner (or non-extreme)
disks. The arcs ay, a», and a3 contribute to the convex hull boundary. Note that all entities
are oriented. If |Z°"| = k and |Z| = n, n — k disks are either in the interior of H or just touch
d0H from the inside of H. A disk touching 97 is not an outer disk but an inner one.
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Fig.2 Illustration of a convex
hull of six disks. dy, dp, and d3
are outer (or extreme) disks and
dy, ds, and dg are inner (or
non-extreme) disks. Be aware of
the orientations. ay, as, and a3
are arcs and /1, [, and /3 are line
segments contributing to the
convex hull boundary

In a general setting, a disk d can contribute more than one arc to dH. Consider the case
that tiny disks are placed around a big one in the center in such a way that the tangential line
between each tiny one and the big one is a supporting hyperplane of the entire disk set. In
this case, given n tiny disks, the big disk can contribute to the convex hull boundary with up
to n arcs and in such a case, there are 2n line segments on H. In Fig. 3a, we have a big disk,
say dp, in the middle and two small disks, say d» and d3, are tangentially placed around d;
in such a way that d, and d3 are antipodal.

However, in the minimal convex hull, a disk contributes to 9+ at most once if a domain
§2 does not constrain the placement of disks. See Fig. 3b: d»> and d3 are clustered together.
It is easy to prove that the length of 37 in Fig. 3b is shorter than that in Fig. 3a. In addition,
it is not difficult to prove that the placement in Fig. 3b is the minimal convex hull. This
observation extends to an arbitrary number of tiny disks. For details, see KF19 [17]. Hence,
minimal perimeter length convex hulls have outer disks which contribute one and only one
arc to the convex hull boundary. Be aware that, however, there are alternative solutions as
the rotation of the arrangement in Fig. 3b with an arbitrary angle around the center of the big
disk dj results in an identical length.

Suppose that there is a constraint such that disks can be placed within a rectangular
domain £2 as shown in Fig. 3c. Here we have a big disk d; in the center of £2 so that the disk
is inscribed in £2. Suppose that dd; N 952 yields four distinct points, i.e., the center of d; is
equidistant from 02 and 942 is in fact a square. Suppose that we have four more disks d», d3,
dy4, and ds, where no two disks can be placed in a single corner of £2 without violating the non-
overlapping constraint, i.e., unless the interior of two disks have a non-empty intersection.
In such a case, d; contributes to the minimal convex hull boundary with four arcs. Hence,
it can be easily proved that a disk d can contribute to the minimal convex hull boundary
with M arcs if and only if dd N 952 has M points. Figure 3d shows that the placement of
two non-clustered tiny disks in a single corner cannot be the solution of the minimal convex
hull. Here the same reasoning in Fig. 3a and b holds. This discussion results in the following
observation: If a disk d has M tangential contacts with a domain 2, d contributes to dH with
M arcs.

3 Non-linear programming for the minimal convex hull problems
Sections 3.1 and 3.2 discuss an NLP model called minDPCH to minimize the discretized

perimeter of an approximated convex hull. The output of minDPCH is used to construct the
convex hull using Quickhul1Di sk algorithm which is then used to build an MINLP model
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(@)

Fig. 3 The number of arcs that a disk can contribute to the convex hull boundary. a Two tiny disks, not
clustered. The convex hull is not minimal and the big disk contributes to the convex hull boundary with two
arcs. b Two tiny disks clustered together. The convex hull is minimal and every disk contributes to the convex
hull boundary with one arc. ¢ The domain §2 is rectangular. There are four disconnected regions at the corners
where each can host only one small disk. The big disk (d1) contributes to the boundary of minimal convex hull
with four arcs. Note that dd; N 052 has four points. d Two tiny disks separated by a tangential point around a
corner. The convex hull is not minimal. In this case the big disk contributes to the convex hull boundary with
an additional arc between the two tiny disks

N

tangent
plane

Fig. 4 The geometric idea of minDPCH. A coordinate origin X is defined as the averaged radius-weighted
center using Eq. (2.1). Then a set of points are sampled using polar coordinates. Given coordinate origin X, a
uniform grid of unit direction vectors my, is defined onto the tangent line at point X, using polar coordinates.
ry = rmy, is the radial vector which corresponds to my,. ny, is a normal vector of tangent plane at the point X
which corresponds to ry,. Note that the orange curve is not the convex hull perimeter but an inner approximation

to minimize the convex hull boundary. Section 3.3 presents various NLP models to initialize
minDPCH for larger problem instances.

3.1 The idea of minDPCH

Similarly to the idea developed in [16] using polar coordinates, we cover the perimeter of
convex hull by a grid of points distributed uniformly on the boundary d7{ of the convex hull.
Suppose that we define a coordinate origin as the averaged radius-weighted center X, using
Eq. (2.1). Over the angular index domain ¢ we generate a uniform grid of unit direction
vectors my, using X.. Then each point is sampled considering the radial distance from x. as
shown in Fig. 4.

To each m, we associate a non-negative variable r, and we describe 9+ based on this
polar coordinate X, = (ry, ¢). The points on 0 are subject to the condition that the distance
of all disk centers x? is greater or equal to their radii,

i

nix) —n® > R;, 3.1
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where the normal vector n,, and origin-distance n° describe the tangent plane at x,,
nlx, =nP. (3.2)

Note that the angle between n, and my, has to be in the range of 90 and 180 degrees, or

n,m, <0, (3.3)

which means that the normal vector of the tangential plane points into the interior of the
convex hull. We minimize the line integral fOZ” rode, or its discretized version

Ny
Y rp Mg, (3.4)
v=1

with Ng equidistant p-angles, the g-increments Ag = 12\,—7;, and the ¢-grid points ¢, =

(v - %) Ag. To keep the non-convex NLP problem computationally tractable, we maintain
the total number of grid points at a reasonable level of no more than forty points. However, if
we want to integrate only the unit disk (i.e., r,, = 1), we need about a hundred grid points to
obtain the approximate value of 6.2831853 for 2. The approach has been implemented and
works for up to two hundred disks. Beyond this size we cannot find feasible points. In such
cases, we compute initial arrangements of disks using the disk packing models in Sect. 3.3.

Sampling of grid points For convex hulls with near-circular boundaries (with no target
domain), the equidistant angular grid is fine. However, for rectangular target domain, it is
more efficient to use non-equidistant angular grid. We have applied a few individual numerical
tests and see an improved efficiency due to the smaller number of grid points. However, due
to the complexity and various technical complications (distribution of the grid points, filling
degree of the rectangle, smoothing effects in the non-zero curvature part of the convex hull
boundary), we have not systematically followed this track.

3.2 NLP formulation of minDPCH

The ideas in Sect. 3.1 yield the following intuitive NLP formulation. The key decision vari-
ables are the center coordinates X? = (xi1,xi2)T € R? of the disks. Consider the disks
i, j € T withradii R; and R, where R; > R; fori > j. The non-overlap condition for disks
i and j produces the following non-convex constraints.

2 2 2 N
%0 =X = D0 (6 = x%) " = (R + Ry VIR < ). (3.5)
deD

Note that there are n(n — 1)/2 inequalities of type Eq. (3.5) for n disks. For each direction
vector my, with its center at X, using Eq. (2.1), we seek the value of the non-negative variable
ry which describes the boundary 07 of the convex hull based on the polar coordinate x, =
(ry, @). The convex hull vector points are subject to the condition that the distances of disk
centers x? is greater or equal to their radii using the constraints (3.1), (3.2), and (3.3). We

minimize the discretized perimeter length {p = Zivil ||x¢, — Xp+1 || Ag of 9H in Eq. (3.4).

The structure of the problem This NLP model contains bilinear and square root relations.
It does not provide strong lower bounds. The only strict lower bound we can provide is the
radius of the smallest disk: 7, > min; R;, Yo.
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Symmetry and optimality Symmetry is a problem when using deterministic global solver
and trying to close the gap between the upper and lower bounds, and thus proving global
optimality. Therefore, we want to reduce the observed symmetries: translational, rotational,
and mirror symmetry. We can partially reduce translational symmetry by fixing x.. We can
destroy these symmetries by selecting the coordinate frame 2 without fixing x. and instead
placing the disk 1 at the origin to break translational symmetry, i.e., X; = 0. We place disk 2
on the positive xp-axis such that xo; = 0, x22 > 2R + R; to destroy rotational symmetry.
We break mirror symmetry by requesting the third disk to be placed above the x;-axis, i.e.,
x3p > 0. This approach helps us to at least solve small instances with only congruent disks to
optimality when we use MinPerim directly and only minimize the sum ¢, of line segments.
However, there is always a trade-off with deterministic global solvers. Without symmetry
reducing techniques, i.e., with fewer constraints, they find better initial solutions in shorter
time. Symmetry reducing techniques only pay out when one wants to close the gap, which
is usually possible only for smaller problems.

3.3 NLP models for disk packing

This section discusses the NLP models for disk packing arrangements to initialize either
minDPCH or MinPerim. The disk packing arrangements have to satisfy two constraints: i)
the non-overlap constraint and ii) if a rectangular target domain £2 is given, all input disks
should fit into £2. The non-overlap constraints for disks i and j with arbitrary radii R; and
R correspond to Eq. (3.5). For congruent disks, we add the symmetry breaking inequality

X< x9. V(G i< ) (3.6)

Fitting the disks inside the rectangular target domain requires
Xy = Ri, Vi, d) 3.7)
and
X+ Ry <x) < Eq, Vi d). (3.8)

E, specifies the length (d = 1) and width (d = 2) of the rectangle. xg is the free length and
width of the rectangle if the rectangle is considered as a design container whose area or length
of perimeter is to be minimized. Inequality (3.7) assumes that the rectangular container has
its lower-left corner at the origin.

Inequalities in Egs. (3.7) and (3.8) will only be used in the coordinate frame 1; in this case
all disks are hosted in a target domain located in the first octant; x > 0. The model established
by Egs. (3.5), (3.6), (3.7) and (3.8) is called CutDisks which uses either the area a = xlloxg
or perimeter length {p = 2(x§’ + xg ) of the rectangle hosting the disks. If we want to fit
the disks into a circular container of minimal radius rfncinR, it is better to use the coordinate
frame 2 with —oo < x < +o0. For practical reasons one tries to locate the radius-weighted
center X, of the disks near or in the origin of the coordinate system as discussed in Eq. (2.1).

The condition for fitting all disks into the circular container of radius rf,: - is

IO, + R = > (%) + Ri < rSéup (3.9)
d

Rotational symmetry is broken by placing disk 1 in the first quadrant, i.e., x; > 0. The
model established by Egs. (3.5), (3.6), (3.9), and x; > 0 is called minRadiusCC; we use it
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Table 1 Summary of non-linear programming models

Model Type Objective(s) to be minimized References
minDPCH NLP Length of the discretized perimeter 9H Section 3.2
CutDisks NLP Area or perimeter of a rectangle Section 3.3
minRadiusCC NLP Radius of a circular container Section 3.3
minSDC NLP Sum of distances of disk centers to x¢ Section 3.3
MinPerim MINLP Length of the perimeter 0°H KF19

CutDisks, minRadiusCC, and minDPCH is used for minimizing the discretized perimeter of convex hulls.
MinPerim is used for the constructing minimal convex hulls by taking the output of other models as its input

to compute disk arrangements with minimal ;. . It produces good disk arrangements for
computing minimal convex hulls of a large number of disks.

In the coordinate frame 2, we also consider a packing problem in which we minimize the
sum of distances from all disks to the center x.. That model with (3.5), (3.6) and the objective
function

minz ||X? —xc”2 (3.10)

is called minSDC for a circular container. minSDC can be applied to the rectangular domain
using the additional constraints (3.7) and (3.8). The MINLP and NLP models for polylithic
approaches of Sect. 7 are summarized in Table 1.

4 Analytic and semi-analytic solutions

In this section, we provide various analytic solutions and a semi-analytic solution based on an
MILP model to solve the examples in Sect. 7.2.2 to global optimality within seconds—even
for instances up to one thousand disks. For the evaluation of numerical experiments in Sect. 7,
it helps us to compare the numerical results to analytic solutions.

4.1 Analytic methods for optimal solutions
4.1.1 Two disks

Suppose that two disks with radii R; and Ry, Ry > Ry, are given. We find the disk sector
angles, o and «r, in KF19 as

Ri — R Ry — R
! 2 a2:2arccos¥ 4.1

o] = 2w — 2arccos ——,
R+ Ry Ry + Ry

or, alternatively,

27 R1Ry

o2 = 7 £ 2arccos .
' Ri+ R

Thus the length £, of 9H of two touching disks is given by

by = Lo+ Llar =4V R Ry + Riay + Ry 4.2)

@ Springer



560 Journal of Global Optimization (2021) 80:551-594

Note that Ry = R; = R implies that a» = o1 = 7, i.e., the contributed length €, of the
arcs is 2 R as geometrically expected.

4.1.2 Three disks

For three disks with radii Ry, R and R3, R; > R, > R3, we need to distinguish two cases
to compute the length of the perimeter £3: In case 1, the radius R3 of the smallest disks is so
small that this disk does not contribute an arc to dS (they may touch d7H); in this case we
have ¢3 = {5, where ¢, depends only on R and R».

In case 2, all three disks contribute an arc to 0H and establish the tour 1-2-3-1. The
minimal sum of the lengths of the line segments is given by

s =2[\/R1R2+\/R2R3+\/R3R1]. 4.3)

To calculate the contribution of the three arcs, we need the sector angles «;. As displayed in
Fig. 5, they can be obtained as

i =27 —a; —0;i-1 — 0 i+1,

where ¢; is the inner triangle angle (opposite to the sector angle «;) corresponding to «;.
Those angles @; are established by the center coordinates of the disks i,i — 1, and i + 1, or,
equivalently, sides of size Ry 4+ Ry, Ry + R3, and R3 4+ R;. The angles 6; ;1 and 6; ;4 are
the trapezoid angles at the center of disk i to the adjacent disks i — 1 and i + 1 (similar to
Fig. 4 of KF19) obtained by

Ri — R R; — Ri11
0; i—1 = arccos —————, 0 ;4] = arccos ————,
Ri + R Ri + Ri+
in detail
0 Ri=Rs 0
13 = arccos ————, O3 =7 — 03,
Ry + R3

R — Ry
Ri+ Ry’
Ry — Rs
Ry+ R3’

612 = arccos 61 = — 042,

6r3 = arccos O3 =1 — bh3.

The angles «; — their sum adds up to 7 — are given as

_ (Ri + Ri—1)®> + (R + Rix1)* — (Riz1 + Rit1)?
o = arccos 5 (44)
2(R; + Ri—1)(R; + Ri11)

in detail
B} (R1 + R3)*> + (R + R2)?> — (R3 + R2)?
o] = arccos ,
2(R1 4+ R3)(R1 + Ry)
_ (Ry+ R)*+ (Ry + R3)? — (R + R3)?
o) = arccos s
2(Ry+ R1)(R2 + R3)
and

(R3 + R2)? + (R3 + R1)? — (R2 + Ry)?

(/3 = arccos
2(R3 + R2)(R3 + Ry)
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Fig.5 Derivation of the sector
angles for three arbitrary disks

Finally, the length £3 of dH of three touching disks is given by

€3 = €13 +€a3 =013 + Ry + Roan + Rzas. 4.5)

4.1.3 Four disks

For four disks with radii Ry, R2, R3 and R4, where Ry > R, > R3 > R4, we only compute
the length of the perimeter £4 for the case in which all four disks contribute an arc to the
convex hull. All other cases can be reduced to two or three disks. As shown in KF19 we need
to consider three possible counter-clockwise tours: 1-2-3—4-1, 1-2-4-3-1, and 1-3-2—4—
1. The lengths of the lines segments had been given by KF19. To use the idea illustrated in
Fig. 1 of KF19, we arrange the disks 1 and 2 horizontally, disk 3 on top touching disks 1 and
2, and disks 4 below disks 1 and 2. This can be understood as tour 1-4-2-3-1, which is the
return tour corresponding to 1-3-2-4-1. For the upper part with disks 1, 2 and 3, we can use
the formulae for three disks provided in Sect. 4.1.2 to compute ¢; and 6;3, 623 as well as 631
and 63;. For the lower part with disks 1, 2, and 4, we denote the angles «; by y; and replace
R3 by R4 leading to similar formulae as in Sect. 4.1.2:

) (R1 + R2)? + (R + Ry)? — (Ry + R4)?
Y| = arccos s
2(R1 4+ R2)(R1 + Ry)

(R2 + Rl)2 + (R + R4)2 — (R + R4)2

Y2 = arccos ,
2(R2 + R1)(R2 + R4)
and
_ (R4 + R2)* + (R + R1)* = (Ry + R1)?
Y4 = arccos .
2(R4 + R2)(Ra + R))
Now we get

ap =27 —ay — y1 — 013 — O,
ay =2 — @y — Yy — 623 — Oy,
a3 = 2w — a3z — 03 — 031,
a4 =27 — y4 — Osp — O41,
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cooo P® @0 G T T W

(a) Block-1 (b) Block-2 (c) Block-3 (d) Block-4 (e) Block-5 (f) Block-6 (g) Block-7

Fig.6 Block configurations 1 to 7 with 4, 5, 6, 7, 8, 9, and 6 congruent disks

with

Ri — R3

013 = arccos —————, 031 =1 — 613,
R+ R3

0 Ri—R oy 0

14 = arccos ———, G4 =7 — 014,
Ri + Ry
Ry — R3

6r3 = arccos O3 = — bhs3,

Ry+ R3’
Ry — Ry

————, O =1 — 6.
Ry + Ry

64 = arccos

The minimal sum of the lengths of the line segments is given by

€L422[\/R1R4+\/R4R2+\/R2R3+\/R3R1]- (4.6)
Finally, the length ¢4 of d7H of four extreme disks is given by

by =Llrg+lag = L1g + Z Ria;. 4.7

1

The analytic solutions have been compared to the numerical results of the test instances
DCO04, TC04, TCO4a and TCO4c defined in Tables 9 and 10. Note that TC04b cannot be
used for this comparison as the rectangular target constraints become active; in this case, the
optimal analytic solution is not feasible.

4.2 Minimal convex hulls for congruent disks in a strip packing problem

The task of this problem is to arrange a set of congruent disks of radius R = 0.5 in a
rectangle with width W = 4 and arbitrary, or at least non-limiting length L in such a way
that the length of the perimeter of the convex hull becomes minimal. As the disks have radius
R = 0.5, we can have at most four disks in a layer. The solutions are established by a first
block (bottom) which consists of layers with one, two, three, or four disks, and a final block
(upper) embracing a main body of layers consisting of three or four disks. We have seven
dominant configurations for the first block as demonstrated in Fig. 6. The upper block is just
the up-side-down configuration of the first block.

Let us now build the model for the optimal configuration. Basically, this model is a
partitioning model which covers n disks by the first block, the layers of the main body and
the last block. For each block b we derive a priori its contribution Ly to the length of perimeter
of H, if it is selected as first or last block. The binary variables 8,1?3 and 8};3 indicate their
selection. Note that different blocks can be selected as the first and the last block. The length
contribution of blocks has been worked out in Appendix C.2.

The selection of layers inside the main body is governed by the binary variables 813 and 814
indicating whether layer / contains three or four disks. The objective function of the model,
hereafter named minLSP, is to minimize the length of the perimeter of the convex hull.

@ Springer



Journal of Global Optimization (2021) 80:551-594 563

Table 2 Lengths L,/R — m of the lower and upper blocks as worked out in Appendix C. The specification
parameter S indicates the number of disks in the last layer (seen from bottom or top)

b 1 2 3 4 5 6 7
Ly/R —m 8 44217 6+ /12 10 6412 12 12
s 4 4 4 4 4 4 3
0= "Ly6;® +Y Laps + Y Lapd + Y Lps5", (4.8)
b I 1 b

where Lj, follows from Table 2 and L3p = 2(\/5 — DR, Lsyp =2-2R =4R.
L3p and L4p denote the lengths of a layer with three or four disks, respectively, contributed
to the length ¢. The number of disks in all layers equals the number n of disks to be placed,

ie.,
DLy Y 380+ ) 480+ > Lps® =n. (4.9)
b l l b

Select one block for the first layer and the other for the last layer, i.e., >, 8F® = 1
and ), (SijB = 1. Alayer I > 1 can be a 3-layer, a 4-layer, or the last layer (last block):
8[3 + 6? + (SIL = SZA, VI, where binary variable (SZA indicates whether layer / is active. Active
layers are established by

M < sh, I (4.10)
The last active layer is identified by 8~ = 8ZA -4 IAH , VI. We also need to connect the number

n; of disks in layer / to the activity of that layer. As there are not more than 9 disks in an
active layer (including blocks), we have

n <98, VI 4.11)

Note that the first layer is always active, i.e., 88 = 1 as it is associated with the first block.
The last layer is associated with the last block.

It is never optimal if a 3-layer follows a 3-layer. Therefore we exclude two subsequent
3-layers by

§ +8, <1, VL. (4.12)

Following the same argument it is never optimal if a 3-layer follows first block 7 (the highest
layer of that block has three disks) and therefore we require

B 4s3 <1, VI (4.13)

Similarly, it is never optimal if the second-last layer is a 3-layer and that one is followed by
last block 7, i.e.,

8 +oF+otB <2 L (4.14)

Comments on the implementation Initially, for each block b we store x,?, the x1-coordinate
of the highest layer of disks (seen from bottom), and the number N, bs of disks at this highest
layer. To initialize the computation of the x|-coordinate of the main body we compute x{‘ =
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Fig.7 Selected configurations for 13 to 100 disks

> x?bBbFB and then iterate subsequently
(4.15)

where S is a specification parameter indicating the number of disks in the previous layer. The
x1-coordinates of the layer of disks in the upper block b are computed by a transformation
which sets the x-coordinates of the last layer to zero, the second-last layer to ngL AST —
xg’L AsT_1» and the first layer to x,(?)’L AST — x,(,)’L AsT—1- Then we use (4.15) to compute the x; -
coordinates of all disks in the very layer. This model is solved easily even for large instances
of several hundred disks within seconds. Figure 7 shows the selected configurations up to
100 disks.

5 Theoretical bounds and gaps

In this section, we provide some theoretical bounds and gaps for the perimeter length of
minimal convex hull. We solve the disk packing problem which minimizes the radius of the
circular container hosting all not necessarily congruent disks using minRadiusCC, minSDC,
or VOROPACK-D (CC) . These initial arrangements of disks are input to minDPCH producing
a minimal discretized perimeter of the convex hull H, or directly input to QuickhullDisk
(Refer to PL4 in Sect. 6). QuickhullDisk computes the perimeter length £2H of H and
generates the extreme disks and vertices which are required to initialize the binary variables
8?, (Sisj, 85, and §;; and to establish d’H for MinPerim as described in Appendix C.1. With

these input we follow up with MinPerim to compute ¢MP.

As expected, we observe L1 < ¢MP < pQH — jCC yhere [CC is the length of circumfer-
ence for smallest circular container from minRadiusCC, VOROPACK-D (CC) , or benchmark
data from Packmomania (Refer to Sect. 7). £QH is the length of the perimeter of the convex
hull constructed by Quickhul1Disk and £MP is the length of the perimeter of the convex
hull obtained by MinPerim. £!! is the lower bound derived from the isoperimetric inequality
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4ma < €% [30] relating the square of the circumference £ of a closed curve and the area a of
the region it encloses on the plane. Let a = Area(H), i.e., the area of a convex hull H, and
A=m Z ; Ri2 < a, where R;’s are the radii of input disks. Hence, the following weak lower
bound L} can be easily established:

Ll =VarA =2n Z R?. (5.1)

Especially, for n disks with R, =n —i+1,i =1, 2, ..., the lower bound L‘{}) on the length

of 0°H is reduced to
D2 1
leb S, /w. (5.2)

For congruent disks, on the other hand, a tighter lower bound can be derived from Wegner’s
inequality which establishes a lower bound of the area A of the convex hull H of n unit disks
(ie.,every disk has aunit radius) as follows: A = v/12(n—1)+(2 = v/3) [VI20 =3 — 3]+
7 [3,18]. Let £ be the length of the boundary dH of the convex hull H. Given the isoperimetric
inequality 47 A < €2, we get the Wegner lower bound E}Q/ on £ as follows.

oy = \/471 [Vi2e =)+ (2= V3) [V12n =3 = 3] + 7] (5.3)

which is much stronger than the lower bound }{) derived from isoperimetric inequality. For
the congruent disks with radius 0.5, divide both sides of Eq. (5.3) by /4.0. For instance, if
we have n = 13 such disks, we get E]‘{,V ~ 12.2017. Table 5 shows two lower bounds Lii

and LK,V for some congruent disks with radius 0.5 using Egs. (5.1) and (5.3).

Let ¢,,; be the total length of the convex hull perimeter. Let £1, and £5 be the subtotal
lengths of the linear and circular segments on the convex hull boundary, respectively. Hence,
Lior = €L + €a. Let Lbe‘t be the best lower bound of the length of the convex hull boundary.
Let

Etot [:besl

=2 " 5.4
s oy
Then, A defines the gap between the best solution obtained for the perimeter and the best lower
bound. The column DA(AA“(%)) of Table 5 shows the gap between the best solution G(£,) in
analytic form and B(L};). Note that the optimal solution in column G(£) of Table 5 forn = 13
is 8 + /3 + 7w = 12.8736. Hence, the corresponding gap is A = m?&# x 100 =
13.6521%. Similarly, the column E(AW(%)) shows the gap between the best solution G(£,.)

obtained and C(L ). See columns Elb, W , A(%), and AW (%) in Table 5.

6 Polylithic framework of the minimal convex hull problems

In this section, we propose a polylithic approach to modeling and solving the minimal
convex hull problems using the MINLP and NLP models in Table 1, VOROPACK-D, and
QuickhullDisk. We recommend readers to refer to Appendix B for VOROPACK-D,
QuickhullDisk, and Voronoi diagrams. Figure 1 is redrawn in Fig. 8 with algorithmic
details. Step I constructs an initial disk arrangement and Step II minimizes the discretized
perimeter of the approximated convex hull using minDPCH. This minimization can be from
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scratch, using minDPCH on its own, or by initializing minDPCH with the initial arrangement
of the disks obtained in Step I. Step III constructs the convex hull of the disk arrangement
and computes the perimeter length of the convex hull, and Step IV constructs the minimal
convex hulls of the disks via an MINLP model MinPerim. Step I finds a non-overlapping disk
arrangement. Depending on the existence of a target domain, Step I may use NLP model(s)
or either VOROPACK-D (CC) or VOROPACK-D (RC). Step II minimizes the discretized
perimeter of the approximated convex hull using an NLP model minDPCH. There are two
alternatives in Step II: minDPCH may take the output of Step I as its input or minDPCH may
be used as a monolith for Step III. In Step III, QuickhullDisk is used to construct the
convex hull of the disk arrangement resulting from Step I or II. Quickhul1Disk provides
the initial values for MinPerim in Step I'V. Note that two different versions of minSDC appear
in Step I: One model with Egs. (3.5), (3.6), and (3.10) used for a circular container (with no
target domain), and the other with Egs.(3.5), (3.6), (3.7), (3.8), and (3.10) for a rectangular
target domain. We have validated the proposed PolyLithic approach (PL) using the following
algorithmic settings:

PL1. Verification of VOROPACK-D algorithm: We have done this by comparing its solu-
tions to those of the NLP models.

(a) VOROPACK-D (CC) (circular container, i.e. no target domain): Comparing the solu-
tions to the global minima of minRadiusCC; Table 3.

(b) VOROPACK-D (RC) (rectangular target domains): Comparing the solutions to the
global minima of CutDisks; Table 5.

PL2. Initial disk arrangements: We have obtained from the following NLP models and
algorithm.

(a) NLP models with various objective functions minimizing
i. the radius of a circular container using minRadiusCC (good for larger numbers
of disks),
ii. the sum of radius weighted distances from all disks to the averaged center using
minSDC,
iii. the area of a rectangle using CutDisks, and
iv. the perimeter length of a rectangle using CutDisks.
(b) minDPCH for the minimal discretized perimeter of the convex hull (in monolithic
or polylithic version).
(c) VOROPACK-D algorithm.

PL3. Monolithic version of minDPCH: Output of minDPCH is provided for input of
QuickhullDisk; Tables 4, 5, 6,7, 8 (Flow C2-C3 in Fig. 8).

PL4. Polylithic versions of minDPCH: NLP model(s) or VOROPACK-D precedes minD-
PCH as follows.

(a) minRadiusCC: Table 4 (Flow A11-A21-A3).

(b) minSDC: Table 4 (Flow A12-A21-A3).

(c) CutDisks: Tables 6, 7, and 8 (Flow B11-B12-B21-B3).

(d) VOROPACK-D (CC): Tables 3 (Flow A13-A22-A3) and 4 (Flow A13-A21-A3).
(e) VOROPACK-D (RC): Tables 6, 7, and 8 (Flow B13-B22-B3).

PLS5. Polylithic for solving MinPerim (The first polylithic approach P1 proposed in KF19):
We solve the disk packing problem minimizing the area or perimeter length of the
design rectangle hosting all disks. Then this initial disk arrangement is used for
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initializing MinPerim. We provide this to compare the results of P1 with those of this
paper (Tables 5, 6, 7, 8).

7 Validation of the polylithic framework via numerical experiments

We have verified and validated the solution quality and performance of the polylithic approach
comparing its experimental results to analytic solutions, theoretical bounds, and some bench-
mark data including the best known results from both KF19 and the Packomania website
(www.packomania.com, visited on Jun 29, 2018, maintained by E. Specht). Good initial
disk arrangements for the polylithic approach were obtained using both the NLP models
and VOROPACK-D. minDPCH is the strongest NLP model and thus almost all experiments
contain the results obtained by minDPCH. The congruent disk experiments summarized
in Table 5 enable us to evaluate and compare the quality of minDPCH to the analytic
solutions.

Construction of ! Minimization of ! Constructionof | Minimization of
Initial Disk Arrangement | Discretized Perimeter of | Convex hull for i Perimeter of
(I) ! Approx. Convex hull (IT) ! Disk Arrangement (II); Convex hull (IV)
1 1 T
1
= minRadiusCC |A11 E E !
e LB (Sec. 3.3, NLP) ! minDPCH | A21! i
o9 E i (Sec. 3.2, NLP) i [} '
3&¢ minSDC Al2y] i (" QuickhullDisk “)A3 ! MinPerim
-5 2y (Sec. 3.3, NLP) " ! (Sec. 5) : (KF19,, MINLP)
..0® H 1
8¢ ! A2z, t :
E | | :
= (Sec. 5) . H H
1 1 :
I I :
. CutDisks H H |
5 (Sec. 33, NLP) : minDPCH __|B21 i
EDE ¥ B11 ! (Sec. 3.2, NLP) ] ¥ |
SIS minSDC B12 ' (" QuickhullDisk \B3 | MinPerim
< g (Sec.3.3, NLP) ! : (Sec. 5) ™ (KF19, MINLP)
()=} 1 B22! [} !
z : 1 E
1 1
(Sec. 5) 1 1 :
1 1
1 1 1
= i i !
] 1 I 1
o ' minDPCH c2 ! (" QuickhullDisk \C3 | MinPerim
< : (Sec. 3.2, NLP) : (Sec. 5) : (KF19, MINLP)
1l
~— 1 1 1
1 1 1

:] : Math Programming Model

C) : Computational Geometry Algorithm

Fig.8 The proposed polylithic framework consisting of up to four computational steps: (I) Initial disk arrange-
ment, (II) discretized perimeter of the approximated convex hull, III) convex hull of the disk arrangement
computed by QuickhullDisk, and IV) perimeter minimization of convex hulls using MinPerim. Depend-
ing on the existence of a target domain, Step I uses either VOROPACK-D (CC) or VOROPACK-D (RC) as well
as NLP models. They may be used to initialize minDPCH to compute the discretized perimeter, or minDPCH
is used as a monolith in Step II. In Step III, QuickhullDisk is used to compute the convex hull of the
initial disk arrangement available after Step I or II. Step III finishes with providing intermediate data allowing
to compute initial values for MinPerim in Step IV. Note that minSDC comes in two slightly different versions:
One model with (3.5), (3.6), and (3.10) used in the circular container context, and the other with (3.5), (3.6),
(3.7), (3.8), and (3.10) subject to a rectangular target domain
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7.1 Experimental environment: data, software, and computing platforms

Data sets

We have performed the computational tests for both circular containers (no target domain)
and rectangular domains. For circular containers, we used one of the Packomania data sets
where the disk radii are definedas R; =n —i + 1,n = 1,2,...1,000. This data enables
us to compare our results with those of Packomania for n < 200. Note that the original
Packomania set has R; = i, but some of our models and algorithms require that the radii of
the disks are sorted in descending order. The computational resources used for getting the
best-known solutions of Packomania are not known. For rectangular domains, two different
instance types Cx or Dx were used in KF19. Instances with congruent disks start with the
prefix “C” while instances with non-congruent disks start with “D”. The parameter x stands
for the number of disks in each instance, e.g., DO3 represents an instance with three non-
congruent disks. If the final gap for the minimization is smaller than 10~%, the instance is
labeled with an *. We used the following data sets for experiments.

SET-P: Packomania data.

SET-A: C05-C90 (in Table 5).
SET-B: DC03-DC10 (in Table 9).
SET-C: TC03-TC28 (in Table 10).
SET-D: D series (in Table 11).

The instances in SET-D of Table 11 are established by combining some disk sets of B and C,
e.g.,D21 =3 x TCO7 (Refer to Appendix D for Tables 9, 10, and 11). Note that only SET-B
and SET-C have been used by KF19.

Software and hardware

The mathematical optimization models as well as the polylithic approaches were imple-
mented in GAMS 28.2 using two global solvers, BARON (with CPLEX for the LP relaxation and
MINOS for the NLP problem) and LINDO. VOROPACK-D was used to pack circular disks in a
container of circular or rectangular shape [35] and Quickhul1Disk was used to construct
the convex hulls of disk arrangements [26]. Computations were executed on three similar
machines: i) PC1: a 64 bit machine with an Intel(R) Core(TM) i7 CPU 2.8 GHz, 16 GB, RAM
running Windows 7, ii) PC2: a 64 bit machine with an Intel(R) Core(TM) i7-7700 (3.6 GHz),
16GB RAM running Windows 10 Pro, iii) PC3: a 64 bit machine with an Intel(R) Core(TM)
i7-7700 (3.6 GHz), 16GB RAM running Windows 10 Pro. All computations were done using
a single core processor. However, the proposed polylithic approaches could exploit parallel
computer hardware (multi-core system, clusters of computers, etc.) by applying the tech-
nique introduced by Kallrath et al. [15]. This allows us to select a polylithic method and its
parameters and to solve it on a selected core or computer. By doing this in parallel, we may
pick the best solution obtained within a given time limit.

Computation time limits

Computation time limits for minRadius, CutDisks, and minSDC were set to 3,600 sec;
Those of MinPerim and minDPCH were set to 36,000 sec. An algorithm terminated when the
gap was reached. The computation times for VOROPACK-D and QuickhullDisk were
negligible (i.e. a few seconds, at most). For details on their computation time, see [35] and
[26]. The computation times for the best-known solutions of the Packomania data SET-P are
not publicly available.
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Assumption

Let Nl.ls be the maximal number of line segments of the convex hull boundary which is
incoming (ending) to disk i or outgoing (starting) from disk ;. For example, a disk d; of Fig. 2
has an incoming line segment /3 and outgoing line segment /1. All numerical experiments in
this section have been performed with Nl.ls = 1, i.e., each disk has at most one incoming and
one outgoing line segment on the convex hull boundary unless we explicitly express some
different setting.

7.2 Experiments and discussions
7.2.1 Circular container (No target domain)

We performed experiments for the circular container problem using the Packomania data
SET-P. Tables 3 and 4 summarize the results. For smaller number of disks, as is expected,
the minimal circular container solutions are not strong initial solutions for minimal convex
hulls. However, for 20 or more disks they are reasonable initial solutions. From about n =
50, VOROPACK-D (CC) provides better initial solutions than the NLP models based on
minRadiusCC and minSDC. The monolithic approach works only reasonably well up to a
certain problem size of 170 disks in Table 4. Within the polylithic approach (PL4 in Sect. 6),
minRadiusCC and minSDC - in terms of the quality of the configuration—are competitive up
to 40 disks; for larger problem instances VOROPACK-D (CC) outperforms them.

Figure 9 shows the arrangements of non-congruent disks in circular container which are
produced by applying different methods to Packomania data SET-P (n=5, 10, 15, 20, 30,
50, and 100). The columns of the table are as follows. Column (A): n: The number of
disks. Columns (B - E): The disk arrangements by four different methods and their convex
hull boundaries as follows. Column (B): VOROPACK-D (CC) (This column corresponds to
Column B of Table 3). Column (C): minRadiusCC (Column D of Table 3). Column (D):
VOROPACK-D (CC) — QuickhullDisk — MinPerim (Column G of Table 3). Column
(E): minRadiusCC — QuickhullDisk — MinPerim (Column H of Table 3). We have
the following observations.

— Inall cases except two (Column (D) of n = 50, 100), MinPerim improves initial solutions
from both VOROPACK-D (CC) and minRadiusCC.

— Improvements become smaller as the problem size increases.

— The methods using only NLP and MINLP models do not work for the large problem
instances (Refer to Tables 3 and 4). In this case, the computational geometry algorithm
such as VOROPACK-D (CC) could be a good alternative.

Monolithic experiments

Table 3 reports the radii of the containers obtained from VOROPACK-D (CC) (r ), the
best-known radii reported in Packomania (rp°), and those of minRadiusCC (g ) followed
by the relative gap (A') in percent between column D(rginr) and the best lower bound,
£1p, provided by BARON (not in the table) ,i.e., (D(r S r) - €in) / €15 * 100. The next
column shows the length l;gn = 27 min{ry’, 15, rip )} of the perimeter of the smallest
circular container. Columns £(ry7) and £(rjy ) show the lengths of perimeters of the convex
hull when feeding the initial solutions obtained by VOROPACK-D (CC) or minRadiusCC
through QuickhullDisk into MinPerim, respectively (i.e., VOROPACK-D(CC) —
QuickhullDisk — MinPerim or minRadiusCC — QuickhullDisk — MinPerim).
The last two columns display ¢(KF19), the value obtained by MinPerim using the polylithic
mode P1 described in KF19 and the lower bound [l{ib derived from the isoperimetric inequal-
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ity in Eq. (5.2). The entry marked green in each row indicates the smallest perimeter length
found for that problem instance.

Note that for smaller problem instances n < 8, the followings were observed: (i) we
are able to close the gap and prove the global optimality of riy r; (i) rec . = rpcs (iii) the
monolithic computations of the minimal length of the perimeter using minRadiusCC produce
disk arrangements which fit into a circular container of the radius rg; » = rp°. The computed
radius is proven to be optimal. This leads us to formulating a conjecture in Appendix E which

relates the optimal solution of minimal circular container to that of the minimal convex hull.

Polylithic experiments The first column ¢y, of Table 4 is the best perimeter length of Table
3, ie, Ly = min{l(ry), L(reir)s ¢(KF19)}. The column £y, is obtained by initializing
MinPerim (through Quickhul1Disk) by the monolithic solution found by minDPCH (i.e.,
minDPCH — QuickhullDisk — MinPerim). The next column 6[1) is the polylithic value
which is obtained by initializing minDPCH with minSDC (i.e., minSCD — minDPCH —
QuickhullDisk — MinPerim). The following two columns E% and E; are identical to EIIJ
except that minSDC is replaced by VOROPACK-D (CC) and minRadiusCC, respectively. The
last column is the lower bound [,ﬁ) of the length of the convex hull perimeter derived from the
isoperimetric inequality and is a duplication of the last column of Table 3. For most cases, Z%
using VOROPACK-D (CC) provides the best initialization of minDPCH. For many instances
in the circular container experiments we found that the arrangements of disks leading to the
minimal circular container radius also had the minimal perimeter convex hulls and vice versa.
This observation inspired us to attempt to formulate the conjecture in Appendix E.

7.2.2 Rectangular domain

We performed experiments for rectangular domain against SET-A, SET-B, SET-C, and SET-D
of Sect. 7.1.

The experimental results are compiled as follows: Table 5 for congruent disks, Tables 6, 7,
and 8 for non-congruent disks. For congruent disks, in most cases, the monolithic solutions
using minDPCH and polylithic solutions using VOROPACK - D outperform the previous results
reported in KF19. For non-congruent disks except SET-C (Table 7), the monolithic solutions
using minDPCH (PL3 of Sect. 6) outperform others in most cases. For SET-C, the polylithic
solutions using minDPCH based on CutDisks and minSDC (PL4 of Sect. 6) outperform others.

Congruent disks Table 5 shows the results for the congruent disks of radius R = 0.5. The
width W of a rectangular domain is fixed by W = 4 and its length L = 8 for n < 30,
L = 14 for 30 < n < 60, and L = 25 for n > 60. The columns of the table are as
follows. Column Instance: The instance of congruent disk models as named in KF19 (e.g.,
C20 involves 20 congruent disks). E{L: The lower bound of the primeter length derived from
the isoperimetric inequality as L}L = /nm. L‘,l‘,;v: The Wegner lower bound in Eq. (5.3).
Al(%): The gap between the analytic solution £, in Column G and Lﬁ) using Eq. (5.4).
AW (%): The gap between the analytic solution ¢, and llf/bv. A(%): The gap between the
analytic solution ¢, and min{¢y,, EIY, Eg 1 }. £4: The best solution (analytic and MILP solution
of minLSP are identical up to 9 decimal places). CPU: The CPU time in seconds to compute
the monolith solution ¢, using minDPCH. £,: The monolithic length of the convex hull
perimeter obtained by solving the grid model using minDPCH. EI‘)’: The polylithic length
of the convex hull perimeter using VOROPACK-D (RC). £;': The polylithic length of the
convex hull perimeter using homotopy P1 in MinPerim. £(KF19): The perimeter reported
in KF19. In most cases, min[{y, El‘;] < ¢(KF19). Thus the current approach improves the
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Table 4 Circular container

A B ¢ D E F G
n & tm ) @ 6 ci
1 5 509570 50.9239 50.9239 50.9239 51.6695 46.5973
2 6 65.9766  65.2320 65.2320 65.2320 65.3374 59.9378
3 7 82.0283  84.6088 81.5129 80.8543 81.0607 74.3437
4 8 98.7975 985126 98.3966 97.7753 98.7391 89.7418
5 9 1171919 117.3312  116.0138 115.9662 1159211 106.0724
6 10 1344312 1356620 1349659 134.2246 134.4611 123.2850
7 11 1549329 1542528 1542777 154.3223 154.6954 141.3368
8 12 1757230 175.8432 1745132 175.0881 175.1553 160.1904
9 13 197.0374  197.4531  196.9732 195.8129 197.4724 179.8133
10 14 219.5618  218.6733  220.0829 218.9954 218.1065 200.1764
115 2422126 2433812 242.2063 242.1223 242.6845 221.2538
2 16 268.0676  266.8615 2668742 266.4584 265.6643 243.0220
1317 266.0064  290.1897  291.2531 290.7442 290.7412 265.4599
14 18 3197210 3169774 3164747 316.2817 315.4277 288.5481
15 19 347.1149 3372536 341.4287 3415054 342.5435 312.2686
16 20 372.0307  368.0723  368.2716 368.4323 367.3466 336.6052
1730 6727333 6709710 692.5670 679.8542 673.6457 610.9570
18 40 1032.1717  1027.0800  1063.5384  1032.8375  1025.5774 934.9076
19 50 14272552 1437.4821  1464.9400  1433.6786  1437.5462  1301.7723
20 60 1879.0802 18927856  1922.2069 18657066  1869.5897  1707.0155
21 70 23426714 2380.0346  2451.6021  2319.4709 23621225  2147.2964
2 80 2883.4737  2908.6887  2967.4288 28614114 28655523  2620.0205
23 90 3440.1942 34631676  3525.0382 34013496 34442215 3123.0971
24100 4004.5129 42548663  4151.8010  3969.4806  4022.6399  3654.7945
25 110 4584.9307 46085208  4686.0451 45519120 46312520  4213.6476
26 120 5255.1838 52680130  5284.9654 52063910 52617400  4798.3958
27 130 5924.4589  6019.1557 59284277 58724614  nsf. 5407.9395
28 140 6624.9328  6709.8229  6632.5330  6554.0464  ns.f. 6041.3080
29150 7319.9560 75058314 74032186 72653988  ns.f. 6697.6368
30 160 8073.4930 81183524  8161.2211 81183524  nsif. 7376.1491
31170 8790.6899  8867.1624  8896.4340 87239592  nsf. 8076.1420
32 180 9577.5359  nsif. 9688.8061  9577.5359  nsf. 8796.9755
33 190 10400.1043  nsif. 10561.5863  10325.0666  n.s.f. 9538.0636
34199 11133.6737  nsf. n.s.f. 11079.6713  ns.f. 10221.9141
35200 113217599 nsif. n.s.f. 112059881  ns.f. 10298.8672
36 300 20548.1102  ns.f. n.s.f. 203743794  nsf. 18896.6733
37 400 316342137  nsif. n.s.f. 313738078  nsf. 29075.1982
38 500 44116.8861  nsif. ns.f. 438661295  nsf. 40618.6184
39 600 578923023  nsif. n.s.f. 57884.6491  n.sif. 53381.2339
40 700 727717496  nsf. n.s.f. if n.s.f. 67256.0473
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Table 4 continued

A B C D E F G

n & lm ) e I cl
41 800 88943.0673 ns.f. ns.t. if ns.t. 82160.1381
42 900 106306.1568 ns.f. ns.f. 106070.8167 ns.f. 98026.7829
43 1000 124184.8200 n.s.f. ns.f. if n.s.f. 114800.7767

Packomania data SET-P (Radii: R; = n — i + 1). Column A(n): The number of disks. B(¢p): The
best perimeter length in Table 3, ie., {p = min{Z(r%,C),K(rrcncinR),€(KF19)}. C(€m): The solution of
(minDPCH — QuickhullDisk — MinPerim). D(Zé): The polylithic solution of (minSDC — minDPCH
— QuickhullDisk — MinPerim). E(Z%): The polylithic solution of (VOROPACK-D (CC) — minDPCH
— QuickhullDisk — MinPerim). F(Zg): The polylithic solution of (minRadiusCC — minDPCH —
QuickhullDisk — MinPerim). Refer to PL3 in Sect. 6 for £;,,. Refer to PL4 in Sect. 6 for lej, Z%, and Zg.

G(Lﬂj): The lower bound derived from the isoperimetric inequality. i.f: The initialization of minDPCH based
on the output of VOROPACK-D (CC) failed, i.e., turned out to be infeasible. n.s.f: No feasible solution found.
The bold entries indicate the smallest perimeter length found for that problem instance. Computation time
limits for each run for each problem instance: 1h for minRadius, CutDisks, and minSDC; 10h for MinPerim
and minDPCH

results by KF19. The numerical solutions of the instances marked with an x, e.g., C13*, are
identical to the analytic results or semi-analytic ones based on the partitioning model. Zeros
of column F(A (%)) also shows the same information.

The last column (Best Arrangement): Layer arrangements for congruent disks (CO5
through C20). As the target rectangle has width W = 4, at most 4 disks can find place
in the width direction. Therefore, we are facing a sort of a strip packing problem for more
than five disks in which disks are arranged in layers. The last column of Table 5 and Fig. 10
symbolically and graphically reveal the best arrangement patterns for up to 20 disks, respec-
tively; see also other columns of Table 5 for the analytic and numeric results. For instance,
to understand Table 5 better, read configuration C20 in Fig. 10 from left to right vertically.
The first column of disks at the very left contains two disks, followed by a column of three
disks, then three times four disks, and finally three disks at the very right.

Non-congruent disks

Tables 6, 7, and 8 show the results for non-congruent disks in a rectangular domain for SET-
B, SET-C, and SET-D, respectively. The tables report the lower bound ﬂ) derived from the
isoperimetric inequality Eq. (5.2) followed by the best known solution £;,. The CPU-column
gives the time in seconds to compute the length £, using the monolith version of minDPCH.
Eg is obtained by using the polylithic version of minDPCH which starts with CutDisks yield-
ing input into minSDC, which in turn feeds into minDPCH followed by QuickhullDisk
and, finally, MinPerim. Then we see the length £f' computed by the polylithic mode P1 of
MinPerim described in KF19. The next column labeled EB’ displays the convex hull perimeter
obtained when feeding the configuration computed by VOROPACK-D (RC) into MinPerim.
The last column of Table 7 displays £(KF19), the best value reported by KF19 using Min-
Perim. Figure 11 shows the best configurations for the non-congruent disks problem of
SET-B, SET-C, and SET-D.

Some entries in the eg-column, in Tables 7 and 8, show nsf, which indicates that
VOROPACK-D (RC) does not find a feasible configuration. It does not strictly mean the
problem is infeasible, as the Voronoi approach embedded in VOROPACK-D (RC) is a heuris-
tic. We expect this to happen when the target domain has not much more capacity than just
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A) (B) © (D) (E)
n VOROPACK-D | minRadiusCC | MinPerim(«B) | MinPerim(—C)

W
4
@

£:53.12 £:52.99 £:50.96 £:50.96
£:138.88 £:134.60 £:135.12 £:134.43
0:245.72 £:242.60 £:242.21
£:383.81 £:372.03
e e
30
7.24
A.OA
50
£ :1433.495*
100

£ :4004.513* £:4031.158 £:4004.513* £:4026.247

Fig. 9 Circular container. The arrangements of non-congruent disks of Packomania data SET-P produced
by different methods. Column (A): n: The number of disks. Columns (B-E): The disk arrangements by
four different methods and their convex hull boundaries as follows. Column (B): VOROPACK-D (CC) (This
column corresponds to Column B of Table 3). Column (C): minRadiusCC (Column D of Table 3). Col-
umn (D): VOROPACK-D (CC) — QuickhullDisk — MinPerim (Column G of Table 3). Column (E):
minRadiusCC — QuickhullDisk — MinPerim (Column H of Table 3). 1st row: n=5. 2nd row: n=10. 3rd
row: n=15. 4th row: n=20. 5Sth row: n=30. 6th row: n=50. 7th row: n=100. £ is the length of minimal convex hull
boundary which is computed by each method. In all cases except two (Column (D) of n = 50, 100), MinPerim
improves initial solutions from both VOROPACK-D (CC) and minRadiusCC. Improvements become smaller
as the problem size increases. * means no improvement. As shown in Tables 3 and 4, the methods using only
NLP and MINLP models do not work for the large problem instances. In this case, the computational geometry
algorithm such as VOROPACK-D (CC) could be a good alternative
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Fig. 10 Congruent disk configurations up to 20 disks. All instances from SET-A

Table 6 Rectangular domain

A B C D E F G H

Instance Eﬁ) Ly CPU Im Eg Kgl (B’
1 DC03* 7.6953 8.5408 400 8.5408 8.5408 8.5408 8.5408
2 DC04 9.9346 10.9376 830 10.9376 10.9376 11.9400 11.2705
3 DCO05 8.6036 9.6644 3489 9.6644 9.8771 13.0755 9.9004
4 DCO06 9.8096 10.9720 4702 10.9720 10.9720 15.9482 10.9904
5 DCO07 10.3004 11.4674 6148 11.4674 11.5387 17.7127 11.7091
6 DCO08 11.3272 12.4915 4772 12.4925 12.4915 27.7444 12.4915
7 DC09 11.9628 13.1971 5879 13.1971 13.2369 17.5352 13.1971
8 DC10 12.3685 13.8543 6811 13.8543 13.9611 18.1949 13.9222

Non-congruent disks in SET-B (Data definition in Table 9). A(Instance): Instances. B(Lﬂ)): The lower bound
of the length of the convex hull perimeter in Eq. (5.1) which is derived from the isoperimetric inequality. C({p):
The best known solution. D(CPU): The computing time in seconds after the length £y, has been found using
the monolith version of minDPCH. E(¢1,): The length of the convex hull perimeter obtained by the monolithic
version of minDPCH. F(@g): The length of the convex hull perimeter obtained by using the polylithic version of
minDPCH which starts with CutDisks yielding input into minSDC, which in turn feeds into minDPCH followed
by QuickhullDisk and, finally, MinPerim. G(Zgl ): The length of the convex hull perimeter computed by

the polylithic mode P1 of MinPerim described in KF19. H(é;’): The length of the convex hull perimeter
obtained by feeding the configuration computed by VOROPACK-D (RC) into MinPerim. The bold marked
entries indicate the smallest perimeter length found for that problem instance. Computation time limits for
each run for each problem instance: 1h for CutDisks and minSDC; 10h for MinPerim and minDPCH

hosting the disks to be placed. This weakness can possibly be overcome by connecting it
with a metaheuristic such as simulated annealing.

8 Conclusions and outlook

This paper studies solution methods for the minimal convex hull of disks problem which
is to find the arrangement of a finite set of 2D circular disks such that the perimeter length
of the convex hull of the disks is minimized. In the arrangement, disks are not allowed to
overlap each other but may contact. To solve the problem, we have developed a polylithic
framework which combines various NLP models and computational geometry algorithms
to provide good initial disk arrangements. These arrangements - the best ones result from
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Table 8 Rectangular domain

A B c D E F G H
Instance i € CPU tm € i A4

I DOsa 148422 164723 5367 164723 167791 164723 17.2764
2 DOsb 148422 161530 2985 161530 nsf 16.1530 169678
3 D06 169413 19.9141 1710 199141 200116 199141 204138
4 DO7 173557 204319 2525 204319 204378 204319 nsf.

5 DO8 226195 30.6847 8423 327080 319413 327080  30.6847
6 D09 229315 28.7999 383 333962 319413 333962 28.7999
7 DIO 11.6747 154844 7266 167094 159766 167094 154844
8  DI2 239586 26.1780 4089 261780 263009 262187  27.9876
9  DI2b 239586 30.3580 184 303580 30.3836  30.3580  30.9477
10 DI4 24.5447  28.8327 1844 288486  29.8068  28.8327  29.5064
11 DI6 127955 151224 10118 151784 151903 151224 163107
12 DI8 293432 350109 10868 350109 359798 350109  35.6353
13 D21 150305 181231 17333 181231 18.1886  18.1231  18.6061
14 D24a 39.1781  47.5074 20601 47.5074 486168  47.5074 563276
15 D24b 338826  41.8584 15231 418584 422681  41.8584  41.8729
16 D32 452380  57.2146 1689 57.8740 572146  57.8740  63.2966

Non-congruent disks in SET-D (Data definition in Table 11). Column B(E{ib): The lower bound of the length of
the convex hull derived from the isoperimetric inequality in Eq. (5.1). C({y): The best known solution. D(CPU):
The computing time in seconds after the length £, has been found using the monolith version of minDPCH.
E(¢m): The length of the convex hull perimeter obtained by the monolithic version of minDPCH. F(Zg): The
length of the convex hull perimeter obtained by using the polylithic version of minDPCH which starts with
CutDisks yielding input into minSDC, which in turn feeds into minDPCH followed by QuickhullDisk and,
finally, MinPerim. G(égl): The length of the convex hull computed by the polylithic mode P1 of MinPerim

described in KF19. H(E}Y): The length of the convex hull perimeter obtained when feeding the configuration
computed by VOROPACK-D (RC) into MinPerim. The bold marked entries in each row indicate the smallest
perimeter length found for that problem instance. nsf: No feasible solution found. Computation time limits
for each run for each problem instance: 1h for CutDisks and minSDC; 10h for MinPerim and minDPCH

DO DRLBD =

(a) Dco4 (b) DC09 (c) DC10 (d) TCO6 (e) TCo6a (f) TCO6b (g) TCO6c (h) TCO8

() Dsb

Do

(i) TC10 (j) TC20 (k) TC20a

(m)D12 (n) D14 (o) D16

Fig. 11 Configurations for the non-congruent disks problems of SET-B, SET-C, and SET-D. a, b, ¢: from
SET-B. (d through k): from SET-C. (I through 0): from SET-D
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minimizing the discretized perimeter or from minimal circular containers obtained by the
VOROPACK-D algorithm (which is based on the Voronoi diagram) - have been fed into the
QuickhullDisk algorithm to construct the convex hull and to compute the length of its
perimeter. The output of QuickhullDisk is transformed into initial values which are
used by MinPerim to improve the solution. For up to 1,000 disks, VOROPACK-D was used to
compute the non-overlapping disk arrangement with convex hulls of almost circular shape.
Monolithic and polylithic solutions using minDPCH usually outperform other approaches.
Analytic and semi-analytic solutions helped us to verify that the NLP based algorithm and
VOROPACK-D produce near optimal solutions over a broad range of test cases. It turns out
that the polylithic approach yields better solutions than the results in [17] and the test cases
and results could serve as a benchmark suite for further research.

From circular container experiments, we observed that the disk arrangement with minimal
circular container radius gave the minimal perimeter convex hull. Thus one of the future
researches would be to apply the techniques used in VOROPACK-D to the computation of
minimal convex hull. Another research path is to extend the current activities to 3D problems,
i.e., computing the convex hull of spheres, ellipsoids, and polytopes. We believe that the
polylithic framework can be similarly applied to other hard optimization problems.

Acknowledgements This work was supported by the National Research Foundation of Korea (MSIT) [Nos.
2017R1A3B1023591 and 2016K1A4A3914691].
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A Notation

We provide the symbols which is introduced in the derivation of the models and is used in
the Voronoi diagrams (Appendix B); they are not necessarily used in the models directly.

VD(P) the ordinary Voronoi diagram of a point set P in R?.

VD(D) the Voronoi diagram of a circular disk set D in R2,

VD(x, D) the Voronoi diagram of a set D of non-intersecting circular disks contained in a
container k

A the difference between the upper and lower bound from the LP relaxation for the
MINLP provided by the solver.

oH the perimeter of the convex hull hosting all disks.

Hij hyperplane induced by the circular line segment of disk i connecting a pair of
(ijr}cl(()ming (ending) and outgoing (starting) vertices vlja and le+ 41 located on that

isk.

H; hyperplane induced by line segment j connecting and tangential to two adjacent
disks.

m the number of disks touching the convex hull; m < n.

n the number of disks to be placed.
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Nl.ls for disk i, the maximal number of incoming or outgoing line segments on the
convex hull boundary.

n? the normal vector onto hyperplane # ; induced by line segment j connecting two
disks.

H the convex hull hosting all disks.

Sij specifying whether arc on disk i induced by line segment j is a major (S;; = 1)
or minor sector (S;; = 0); S;; € {0, 1}.

vzl vertex connecting a source arc to line segment j; V (v1 , V5 /)

\ jn vertex connecting a source arc line segment j + 1; V (vl i v3h ;

vlja vertex connecting line segment j to a destination arc; v (v] ) J)

x° radius-weighted center of all disks.

The symbols used in the explanations of the models are summarized in the following sub-

sections.

A.1 Indices and sets

deD

iel
jeJ

A.2 Data

E4
L
R;
Si

w

index for the dimension with D = {1, 2}; d = 1 represents the length-axis, and
d = 2 the width-axis of the rectangle.

objects (disks) to be packed; Z:={1, ..., n}.

line segments potentially connecting disks and tangential to the convex hull;
J={1,...,m < N! < n}. Note that the number m of active line segments is
identical to the number of circular arcs contributed to 97H.

length (d = 1) and width (d = 2) of the rectangle.

length of the rectangle; also called E.

radius of disk i to be packed.

indicator specifying to use a major (S; = 1) or minor (S; = 0) sector of disk i
contributing an arc to the boundary of the convex hull.

width of the rectangle; also called E5.

A.3 Decision variables

Xid

@ Springer

distance of hyperplane 7; induced by line segment j to the origin of the coor-
dinate system.

distance of hyperplane H;; induced by circle segment i to the origin of the
coordinate system.

a specific orthogonal vector onto the circle line segment of disk i connecting V]ja
and vj!“.

the normal vector onto hyperplane 7 ; induced by line segment j connecting two
disks (direction d).

(continuous) extension of the rectangle in dimension d.

(continuous) coordinates of the center vector of disk i to be packed.
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A.4 Decision variables used in MinPerim

d}{ distance of hyperplane #; induced by line segment j to the origin of the coor-
dinate system.

mg distance of hyperplane #;; induced by circle segment i to the origin of the
coordinate system.

mgli j a specific orthogonal vector onto the circle line segment of disk i connecting vljf“
and v?“ .

ngj the norn}al erctor onto hyperplane 7 ; induced by line segment j connecting two
disks (direction d).

xg (continuous) extension of the rectangle in dimension d.

X;y (continuous) coordinates of the center vector of disk i to be packed.

a;j (continuous) sector angle of disk i induced by line segment ;.

8ij (binary) indicates whether disk i has incoming (ending) or outgoing (starting)

line segment j.

8? (binary) indicates whether vertices V?l and Vlja are active, i.e., line segment j is
used.

85 (binary) indicates whether disk i is the destination of line segment j.

(SJL. (binary) indicates whether line segment j is the last active one used.

(Sisj (binary) indicates whether disk i is the origin of line segment j.

£ (continuous) length of the convex hull perimeter.

% (integer) the number of active line segments.

B Computational geometry basis for the minimal convex hull problems

If the size of a given problem becomes so large that it cannot be solved analytically,
semi-analytically, or by mathematical programming alone, we resort to different com-
putational methods. For this purpose, we use two computational geometry algorithms:
The VOROPACK-D algorithm for packing circular disks in a container [35], and the
QuickhullDisk algorithm for constructing the convex hulls of disk arrangements [26].

The VOROPACK-D algorithm

VOROPACK-D can pack input disks in a circular or rectangular design container by taking
advantage of the powerful spatial reasoning capability of the Voronoi diagram of disks in
a container. With the Voronoi diagram, VOROPACK-D can locate the vacancy information
in a container such that no disk intersects both other disks and the container. In litera-
ture, the phi-function [5,31,34,37] and no-fit polygon [2,6,8] were exploited to incorporate
the non-overlap condition among disks and container for packing and cutting problems.
VOROPACK-D takes an argument denoting the container shape: A circular or rectangular
design container. VOROPACK-D (CC) and VOROPACK-D (RC) are for a circular and rect-
angular container, respectively. The VOROPACK-D (CC) algorithm actually implements the
Shrink&Shake algorithm which packs circular disks in a circular container by taking
advantage of the Voronoi diagram of disks in the container [35,39]. The method solves a disk
packing problem of either congruent or non-congruent disks. The idea of the algorithm is,
beginning with a sufficiently large container, to repeat shrinking the container and shaking
mutually disjoint disks to reposition in the shrunken container. With the correct implemen-
tation of the Voronoi diagram of disks in a circular container, the algorithm is extremely fast
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compared to the other reported algorithms. The algorithm, during the shake process, pushes
each protruding disk by repositioning every disk at a new position through an average O (1)
time decremental and incremental operations from and to the existing Voronoi diagram. With
these enhancements, Shrink&Shake takes an O (Mn log n) time for each container shrink-
age where M < n represents the number of protruding disks which intersect the boundary
of the shrunken container. M depends on input data and tends to increase until it reaches
some constant as the algorithm iterates. The number of shrinkage also depends on input data.
We note that Shrink&Shake takes full advantage of the vacancy information among the
generators in the container.

In this study, we also use the VOROPACK-D (RC) algorithm for packing disks in a rectan-
gular container. VOROPACK-D (RC) is designed to handle a rectangular container case using
the basicidea of Shrink&Shake. VOROPACK-D (RC) begins with a sufficiently large con-
tainer and repeatedly shrink the container and reposition all disks in the shrunken container.
Due to the correct implementation of the Voronoi diagram of non-congruent circular disks in a
rectangular container, the algorithm can take full advantage of the vacancy information among
the generators in the container. Hereafter, if necessary, we will use VOROPACK-D (CC) to
name an algorithm for packing disks in a circular container and VOROPACK-D (RC) for
packing disks in a rectangular container instead of Shrink&Shake.

The QuickhullDisk algorithm

Convex hull is one of the most fundamental concepts in geometry and its construction has
been extensively studied, particularly the convex hull of points. Here, we use the recently
reported simple and fast QuickhullDisk algorithm for the construction of the convex
hull of a set of disks in R? by generalizing the quickhull algorithm for points [26]. The
QuickhullDisk algorithm is a divide-and-conquer algorithm and is based on the idea of
the well-known quick sort algorithm. It constructs the convex hull of a disk set D by dividing
it into two subsets and quickly conquering the results of the subsets to get the solution of the
entire set D. The algorithm recurs until one or two disks are left in the set so that a stopping-
condition for a further recursion is encountered. QuickhullDisk takes O (n logn) time on
average and O (mn) time in the worst case where m represents the number of extreme disks
which contribute to the boundary of the convex hull of n disks. Experimental result shows
that the proposed Quickhul1Disk algorithm runs significantly faster than the O (n logn)
time incremental algorithm, proposed by [7], particularly for big data. QuickhullDiskis
approximately 2.6 times faster than the incremental algorithm for random disks.

Voronoi diagrams

Voronoi diagrams are powerful geometric constructs which are used to solve diverse
problems related with spatial reasoning. We briefly introduce Voronoi diagrams because of
their critical uses in the proposed algorithm. For Voronoi diagrams in general, we recommend
readers to refer to [1,29]. Hereafter “V-" denotes “Voronoi” for notation simplicity. We limit
the discussion in R? unless otherwise stated. We store all Voronoi diagrams in R? in the
winged-edge or half-edge data structure which takes O (n) memory for n entities because the
Voronoi diagram is a planar subdivision [1,28,29,32]. The geometry of the V-edges in this
paper is either linear, parabolic, hyperbolic, or elliptic which are in fact quadratic polynomial
curves that can be all represented as a rational quadratic Bézier curve in a unified manner
[21].

The ordinary Voronoi diagram of points
The ordinary Voronoi diagram VD(P) of a point set P in R? is a tessellation where each
V-cell of the tessellation is a set of locations in the plane which is closer to the associated
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point, called a generator, in P than to the other generators. Each V-edge is equidistant from
two generators, is a subset of a line, and is the boundary between two adjacent V-cells;
Some V-edges may be unbounded to emanate to infinity while the others are bounded. Each
V-vertex is equidistant from three points. Figure 12a shows an example of VD(P).

In the ordinary Voronoi diagram VD(P) of n point generators in R?, there are O(n) V-
vertices, O (n) V-edges, and n V-cells. VD(P) can be constructed in the optimal O (n logn)
time using the divide-and-conquer algorithm [1,29,32]. However, we prefer to use the robust
topology-oriented incremental algorithm which was introduced by [38] which takes O (n)
time on average (although O (n?) time in the worst case). Ordinary Voronoi diagrams of
approximately 50,000 points in the plane can be robustly constructed in a second on an
ordinary desktop computer.

The Voronoi diagram of disks

The Voronoi diagram VD(D) of a circular disk set D = {d;,da,...,d,} in R? is a
tessellation of the plane so that every location in a V-cell is closer to its generating disk than
to other disks. Each V-edge is the locus of the center of circular probe that simultaneously
contacts the boundaries of two generating disks: If the generating disks are of different sizes,
the V-edge is hyperbolic and if they are of an identical size, it is linear. Hence, they can be all
represented as a rational quadratic Bézier curve. The Voronoi diagram of congruent disks is
identical to the ordinary Voronoi diagram of disk centers. A V-vertex is the center of circular
probe that simultaneously contacts three generating disks. If two generator disks intersect
each other, their V-edge passes through the two intersection points between the boundaries
of the two disks. Figure 12b shows an example of VD(D).

VD(D) has O(n) V-vertices, O(n) V-edges, and n V-cells and can be constructed by an
optimal O(nlogn) time for n disks using the plane sweep method [12,40] or the divide-
and-conquer method [24,36]. However, we prefer to use the topology-oriented incremental
algorithm which guarantees robustness [25] (or the edge-flipping algorithm [22,23]) for its
robust construction. Both algorithms take O (n?) time in the worst case but O (n) time on
average. VD for approximately 15,000 disks can be robustly constructed in a second on an
ordinary desktop computer.

The Voronoi diagram of disks in a container

Let VD(k, D) be the Voronoi diagram of a set D of non-intersecting circular disks con-
tained in a container « [19]. In this paper, « is either a circle or a rectangle. We define VD
only in d«k, i.e., the interior of the container. VD shares many similarities with the Voronoi
diagram VD of D but it also has some differences, particularly near d«.

VD is a tessellation of the interior of x, where every location of each V-cell is closer to its
generating disk. The container « itself is regarded as a generator but its interior is considered
to be the outside of «. In other words, the interior of d« is regarded as the entire Euclidean
space of the outside of x. Hence, a V-cell can also be well-defined for the container as the
set of locations closer to d« than to boundaries of any input disks.

If « is a circle, a rectangle, or a polygon [9,10,20], the V-edge defined between dx and
an input disk is elliptic or parabolic, respectively. Note that both ellipse and parabola are
quadratic. The V-edges between input disks are hyperbolic. Hence, all V-edges can be rep-
resented by a rational quadratic Bézier curve [21]. Figure 12c, d shows the examples of
VD(k, D), where « is a circular and a rectangular container, respectively.

Both VD and VD can be constructed with a similar efficiency. Even if an optimal algorithm
taking O (nlogn) time is known, we prefer to use the topology-oriented incremental algo-
rithm (with an average O (n) time and the worst case O (n?) time) [25] with the winged-edge
data structure. This is because of the guaranteed robustness with a sufficiently good efficiency
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(d)

Fig. 12 Voronoi diagrams used in the proposed algorithm. a VD(P): The ordinary Voronoi diagram of a point
set P. b VD(D): The Voronoi diagram of a disk set D. ¢ VD(D, CC): The Voronoi diagram in a circular
container. d VD(D, RC): The Voronoi diagram in a rectangular container

(a)

- actually significantly faster than the optimal algorithm for large problem instances. We skip
the details of the combinatorial properties of VD because they are identical or similar to VD.

Incremental maintenance of Voronoi diagram

Removing a disk d € D from one location and inserting it to another location, both in the
container, is essential to Shrink&Shake. If we reconstruct the entire Voronoi diagram for
each removal or insertion of d, it takes an optimal O (n log n) time for each reconstruction. As
the removal and insertion of disks occur very frequently in Shrink&Shake, itis desirable to
do it efficiently. We developed an average O (1)-time (but a worst case O (n) time) algorithms
for the maintenance of Voronoi diagram in an incremental manner.

The insertion of a disk into a Voronoi diagram is done as follows. Let VD;_; be the
Voronoi diagram of i — 1 disks in the container. We want to compute VD; including a new
disk d;. We try to reuse the information in VD;_; as much as possible. VD;_; is a planar
subdivision: i.e., the network of V-edges of VD;_; forms a planar graph. The basic idea of
the topology-oriented increment is to maintain the planarity of the V-edge graph of VD; after
the incremental insertion of d;. Therefore, the topology-oriented increment is to consistently
maintain the planarity of VD; by (i) identifying a tree subset of V-edge graph of VD;_;
contained in the V-cell of the incrementing disk d;, (ii) trimming the tree from VD;_1, (iii)
creating new V-vertex(es), V-edge(s), and a new V-face corresponding to d;, and (iv) properly
establishing topology connections among the Voronoi entities remaining in VD;. While an
insertion (and a delete, too) can be done in O (i) time in the worst case for i disks in the
container, its average time complexity is O(1). This average O (1) time holds particularly
well during the disk packing process because most disks are in contact with a constant number
of other disks on average. For details, see [25].

The removal of a disk from a Voronoi diagram is, roughly speaking, the reverse of the
insertion of a disk to a particular location in a given Voronoi diagram and a removal can be
done in O(1) on average and in O (i) time in the worst case for i disks in the container. In
the incremental insertion, however, identifying the proper location for disk packing in the
Voronoi diagram and the bookkeeping after the insertion requires at least O (log n) time with
a priority queue.
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C Detailed derivations and proofs
C.1 Importing results from QuickhullDisk

Here we provide analytic expression for importing the result of QuickhullDisk as an
initial value to MinPerim. The analytic expression improves the usage of the solver BARON
and LINDO, especially, if all variables used in MinPerim are initialized. QuickhullDisk
provides a list of hull disk vertices, v4' and v'2. A subset of hull disk is called extreme disks
in the context of QuickhullDisk. These extreme disks Z. correspond to outer disks of
MinPerim. Therefore, Quickhul1Disk could provide more vertices than those required in
MinPerim because some hull disk vertices can touch the boundary dH of the convex hull H.
In order to cope with this situation we consider those hull disks as well by adjusting ¢ = 0 in
inequality (2.42) of KF19. Vertex vz}l is the outgoing (starting) vertex and tangential to the arc
of that disk from which line segment j leaves. Line segment j ends in an ingoing (ending)
vertex v i Wthh is the extreme vertex of the arc of the adjacent outer disk. The arc ends

in vertex v4 +l which is then the outgoing vertex for line segment j + 1. The line segment
ends in an incoming vertex v 't1 Which is the start vertex for the arc of the neighbored outer
disk. We continue the constructlon in anti-clockwise order until llne segment j = m ends in
vertex V 2 which is the start vertex of the arc ending in vertex V . This construction closes
oH. From vl and Vljf“ we derive

j
A LYl
54— {0

al la

FOND |V

else

: vj.

Note that for importing the results of QuickhullDisk into MinPerim, at first, we fix
all binary variables, i.e., we keep the selected hull disks, arc, and line segments. Once, we
have an accepted initial point in LINDO, we relax this fixation. The last active line segment
is computed by

L .
sh=oi — 58, V).

Whether disk i € Z is the source of line segment j is traced by

2
1 2
(xl-d — V; ) —R;

else

SR W)l € Te)

S _
8 = 0.
which measures whether V’}l is a point on the circumference of disk i. For numerical purposes

we set g = 107, Similarly, we proceed for tracing whether disk i € Z, is the destination
of line segment j

12 2
(x,d—va) —R;| <er

else

8) = 0’ . VGl e Ze}

This allows us to derive

P~ 05vssS 05
V’”> Vo =00 i e 7).

bij = 0, else

The vertex on the circular arc, which is the source of line segment j + 1, is given by

Vj —V +vv018L vj,
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where v01 denotes the first line segment counted counterclockwise. In case we have more
than 99 line segments, the first one would be named v001. Note that it is also necessary to
define upper bounds on the variables v2!, v'2, and v&". For simplicity, we put the dimension of
the rectangle as upper bounds (the coordinate frame 1). The normal vector on line segment
J (pointing into the interior of the convex hull) is given by

Xy = v
IEEDY %55, v{dj}. (C.1)
ieT !
The distance to the origin is
H _ _H.al .
dj =n;v;, Vj. (C.2)

The orthogonal vector ml.}; onto the circle line segment of disk i connecting Vllf“ and Vj‘.“ is
constructed as the vector from the center of disk i to the midpoint of the chord

1 . .
Mas) = 5 (”ff} + vif}) 80 —xgi8p. Vi, j). (C3)

In the half-space inequality we use the negated vector pointing into the interior of H. If

norm Hms ' ,” 0, the right-hand side value m . of the Hessian normal form mljx = mg is
computed as
Zmduvdj DL ). (C.4)
Hm

The angles «;; of the circular arcs follow from

O{,’j V§n_v]ja 2 B
1 AL N — R A T A C5
sin 5 R, {i, j} (C.5)
and
an __ . la D
b ‘Vj Uil % .
aij:2715,]81]+2(1—ZS,J)arcsm —r |’ VZ{LJ}- (C.6)
1

Finally, we also need to initialize the objective function variable, i.e., the length £ of the
perimeter of the convex hull

=y /Z[vd/—vd/] +3°3 Ria. (o)
jeJ Y deD i€ jeJ

C.2 Computing the length in the partition model

To demonstrate how to compute the length contribution of blocks, let us inspect the solution
corresponding to C13 of Table 5 in the main text. This solution is composed by block 3,
which is a little complicated, and by block 4 (upside down). If we inspect block 3 as an
independent arrangement of six congruent disks with radius R, the length ¢3 of its complete
perimeter is given by

{3 =41 + 2R,
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Table9 Non-congruent disks in

SET-B (Called Set B in KF19) Instance L w n Disk radii np
DCO03 8 4 3 1,2x0.5 2
DCO04 8 4 4 2x1,2x0.5 2
DCO05 8 4 5 2x0.75,3x 0.5 2
DCO06 8 4 6 3x0.75,3x 0.5 2
DCO07 8 4 7 1,2 x0.75,4 x 0.5 3
DCO08 8 4 8 1,2x0.75,5x 0.5 3
DC09 8 4 9 1,2 x0.75,6 x 0.5 3
DCI10 8 4 10 1,2 x0.75,7 x 0.5 3

Instance: instance names. L and W: the length and width of target rect-
angular domain. n: the number of disks. Disk radii: a list of disk radii.
np: the number of different-sized disks

where £1, is the sum of lengths of all line segments given by

0 =5-QR) + H(R,4R)— (R+[f3R],R+3~2R)H.

The term H ((R,4R)) — (R + [V/3R], R +3-2R) H represents the length of the line segment

from the very right disk of the block’s lower layer with origin at (R, 4R) to the very right
disk of its upper layer centered at (R + [v/3R], R + 3 - 2R). This length is identical to the
distance of these disks. Disks in contact have line segments of length 2 R. Therefore, we have

o = [10 ¥ H (—/3, —3) H] R= [10 n \E] R.
From this, inspecting the geometry, we further derive
l63=R+{L+27R)—3-2R+nR)+R.
The summands R’s at the very left and very right are the contributions of a half layer while
the term —(3 - 2R + 7 R) reflects that the upper layer of the block does not fully contribute

to the length of the perimeter in the partition model; only the lower layer of block 3 and half
the upper layer of disks contribute. Therefore, the total contribution of block 3 is

t=[6+vVi24x]R (C3)
Similarly, for the upper blocks ¢4 and ¢5 we obtain

by =[104+m]R , 25:[2+\/§+n]R. (C.9)

D Tables for input disks

We provide Tables 9, 10, and 11 for non-congruent disks in SET-B (DC03-DC10), SET-C
(TCO03-TC28), and SET-D (D series) of Sect. 7 in the main text, respectively.
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Table 10 Non-congruent disks in SET-C (Called Set C in KF19)

Instance L w n Disk radii np
TCO03 8 4 3 1,0.6,0.4 3
TCO03a 8 4 3 2x1,0.1 2
TCO03b 8 4 3 1,0.8,0.1 3
TCO03c 8 4 3 2x2,1.5 2
TCO04 8 4 4 1.0.4,0.3.0.2 4
TCO04a 8 4 4 3x1,0.1 2
TC04b 16 4 4 2,1.7,1.3,1.2 4
TCO04c 8 4 4 1,1,1,1 4
TCO5 8 4 5 1,0.4,0.3.0.2,0.1 5
TCO05a 8 4 5 1.7,1.2,0.8,0.6,0.5 5
TCO5b 2.0625 2.0625 5 1,4 x (3—/38) 2
TC06_0 8 4 6 1.7,1.3,1.2,0.8,0.6,0.5 6
TCO6a 8 4 6 0.7,5x 0.5 2
TCO06b 8 4 6 0.9,5x0.5 2
TCO06¢ 4 4 6 0.9,0.7,4 x 0.5 3
TCO7 8 4 7 1.7,1.3,1.2,0.8,2 x 0.6,0.5 6
TCO8 16 4 8 2,1.7,1.3,1.2,0.8,2 x 0.6,0.5 7
TC09 20 4 9 2,1.7,1.3,1.2,0.8,3 x 0.6,0.5 7
TCI10 16 4 10 2,1.7,2x1.3,1.2,0.8,0.7,2 x 0.6,0.5 8
TC20 130 130 20 R, =21—i 20
TC20a 80 40 20 R =(Q21—-1)/2 20
TC28 8 4 28 7x(1.7,1.3,1.2,0.8,2 x 0.6,0.5)/2 6

Instance: instance names. L and W: the length and width of target rectangular domain. n: the number of disks.
Disk radii: a list of disk radii. np: the number of different-sized disks

Table 11 Non-congruent disks in SET-D (Called Set D in KF19)

Instance L w n Disk radii np
D5b 18 5 5 1.7,1.2,0.8,0.6,0.5 5
D12 12 8 12 2x(1.7,1.3,1.2,0.8,0.6,0.5) 6
DI2b 9 5 12 2x(1.7,1.3,1.2,0.8,0.6,0.5) 6
D14 12 6 14 2x(1.7,1.3,1.2,0.8,2 x 0.6, 0.5) 7
D16 20 8 16 2x(2,1.7,1.3,1.2,0.8,2 x 0.6, 0.5) 7
D18 14 7 18 3x(1.7,1.3,1.2,0.8,0.6,0.5) 6
D21 7 3.5 21 3x(1.7,1.3,1.2,0.8,2 x 0.6,0.5)/2 6
D24a 30 9 24 3x(2,1.7,1.3,1.2,0.8,2 x 0.6,0.5) 7
D24b 16 8 24 4x(1.7,1.3,1.2,0.8,0.6,0.5) 3

Instance: instance names. L and W: the length and width of target rectangular domain. n: the number of disks.
Disk radii: a list of disk radii. np: the number of different-sized disks
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E Conjecture

Let C be set of all arrangements of disks fitting into the minimal convex container (with
radius r, in the case of a circular container, otherwise in more general situations with a finite
set of variables x;, for rectangular, polygonal, ellipse, or oval containers) and let P be the
set of all arrangements of disks whose convex hull has minimal perimeter with length £... In
both sets C and P we only consider irreducible arrangements, i.e., not translated, rotated or
arrangements obtained by symmetry operations.

Then the following statements hold:

ST1: The intersection of C and P is not empty, i.e., CNP # &.

ST2: There exists at least one element ¢ € C, which is also an element of P, i.e.,c € CAc¢ €
P.

ST3: There exists at least one element p € P, which is also an element of C, i.e., p €
PApecC.

ST4: There exists an arrangement a, whose convex hull has minimal perimeter £, and fits
into the minimal convex container, a € CN P, i.e.,

£, = min €.
ceC

While the equivalences are obvious, it is not easy to see how to prove one of them eas-
ily. ST1 through ST4 basically express that minimal container configurations can be found
within the set of minimal perimeter length configurations, and, the other way round, that
minimal perimeter length configurations can be found within the set of minimal container
configurations.

Note that C and P may have the dimensionality of the continuum if smaller disks (named
orphans in this context) can be placed anywhere into the empty areas between other disks
with changing the shape and size of either C and P. The other extremes we expect to find are
the cases with cardinalities |C| = 1, |P| = 1, or |C| = |P| = 1. If we neglect the orphans in
the arrangements, we almost always found |C| = |P| = 1, i.e., the minimal perimeter length
configuration and the minimal container configuration coincide for the unique arrangement
a. In one case, we found |C| = 1 and |P| > 1 (Refer to Fig. 13).

In the formulation of the conjecture we have implicitly used the assumption that minimal
configurations are really realized and not only approached in the sense of the infimum.
This assumption is justified by the extreme value theorem on compact sets (Weierstral3). It
is important to note that while the disks do not overlap they are allowed to touch in one
common point. Without this possibly touching point we would not have a compact set. If the
conjecture is true, we have the following two conclusions:

1. In an iterative procedure, we could compute the minimal radius of the container (not
necessarily optimal), and add this as an constraint to the minimal perimeter problem
extended by the inequalities of the minimal container problem. For the convex hull
obtained that way (not necessary optimal), we can compute the minimal radius (very
cheaply), and see whether that improves what we have.

2. If we are able to compute the solution of the minimal convex hull problem and know
for some reason that it is unique (problems with all disks having different radii are good
candidates), all the other specific-type minimal convex container follow immediately
from the arrangements of the convex objects within the minimal convex hull. We just
need to solve the minimal container problem with the variables describing the container
but not the positions of the convex objects hosted. Examples are: The radius r75 » of the
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.

(a) Square arrangement. (b) Oblique arrangement.

Fig. 13 The left figure shows the square arrangement of four congruent disks with radius R = 0.5, £ = £, =
4 4 7, and circular container with radius 1.2062. The right one: An oblique arrangement of the same disks,
the same ¢ = {4 = 4 + m but larger, circular container with radius 1.3608

circular container, the sides a and b of the rectangular container as well as the angle 6 of
its orientation, the semi-major axis a and b of the ellipse container as well as the angle
6 of its orientation.

If the opposite of the conjecture was true, the implication

£, < min £,
ceC

would hold, i.e., all arrangements with the perimeters of the minimal convex hull are outside
the set of minimal container arrangements. Of course, it could also be that for some problem
instances we have £, = minccc £, and for others £, < min.cc ..

Let us focus a little more on the special case of uniqueness. If an arrangement A, of disks
is the only arrangement which leads to the minimal perimeter length convex hull, then the
smallest enclosing circle of A, is the minimal enclosing circle of all possible arrangements
A of those disks in the plane. In other words, a unique disk arrangements with the minimal
convex hull is also the disk arrangement with minimal circular containers, i.e.,

min £ = min rmmR

Equivalently, a necessary condition for £ to be minimal is that ry - is minimal. Note that
this holds only when the disk arrangement is not subject to any target container constraint.
The conjecture does not hold if we allow several arrangements leading to the same minimal
£, as seen in the counter example displayed in Fig 13. Both have minimal length ¢, = 44,
but the radius of arrangement in Fig. 13ais r; o = 1.2062 (the global minimum of 7% )
while the one in the oblique arrangement (Fig. 13b) has radius 1.3608 > r:% o.

If this conjecture holds, we can check easily whether a given disk arrangement is not
minimal w.r.t. £. For a given disk arrangement with perimeter length ¢ (quickly computed
by QuickhullDisk) we compute g (£) for this disk arrangement using minRadiusCC
(this problem has only two free variables, rr‘;ﬁnR = rpir (£) and xc, and solves in seconds
to global optimality). Then we compare r  (£) by the value r: - obtained for the free
disk arrangement obtained by minRadiusCC or VOROPACK-D (CC). If riS n(£) > ri o,
£ is not minimal. If 7% - (€) = r% o, we cannot conclude anything as the minimal circular
container property is not sufficient for £ to be minimal.
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This conjecture, if true, can also be the basis for an efficient heuristic iteration scheme
for larger problem instances in which we are not able to compute r: . to global
optimality by minRadiusCC: We plan to develop a simulated annealing enhanced ver-
sion of VOROPACK-D(CC) and subsequently solve for £ subject to rpy n(€) < ry.
VOROPACK-D (CC) might follow up on a disk arrangement produced by MinPerim and

. ce . cc . .
further improve w.r.t. to ri: » producing a new value ry’. The conjecture motivates us to

perform also a few numerical experiments using the discrete perimeter approach with the
objective function z = r& ., + ¢ and inequality (3.9). For CCO05, ..., CC10 of SET-P in

minR
Sect. 7.1 of the main text, this simultaneous minimization of 7 » and £ yields indeed the
minimal circular container and perimeter minimal convex hull. For CC11 and higher this is

not the case as the values of < . are larger than the Packomania values rg; , . Authors would

welcome the opportunity for other researchers to either prove or disprove the conjecture.
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