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ABSTRACT
Objective CD4+ T cells have been suggested as the 
most disease- relevant cell type in rheumatoid arthritis 
(RA) in which RA- risk non- coding variants exhibit allele- 
specific effects on regulation of RA- driving genes. This 
study aimed to understand RA- specific signatures in 
CD4+ T cells using multi- omics data, interpreting inter- 
omics relationships in shaping the RA transcriptomic 
landscape.
Methods We profiled genome- wide variants, gene 
expression and DNA methylation in CD4+ T cells from 
82 patients with RA and 40 healthy controls using high- 
throughput technologies. We investigated differentially 
expressed genes (DEGs) and differential methylated 
regions (DMRs) in RA and localised quantitative trait 
loci (QTLs) for expression and methylation. We then 
integrated these based on individual- level correlations 
to inspect DEG- regulating sources and investigated 
the potential regulatory roles of RA- risk variants by a 
partitioned- heritability enrichment analysis with RA 
genome- wide association summary statistics.
Results A large number of RA- specific DEGs were 
identified (n=2575), highlighting T cell differentiation 
and activation pathways. RA- specific DMRs, preferentially 
located in T cell regulatory regions, were correlated 
with the expression levels of 548 DEGs mostly in the 
same topologically associating domains. In addition, 
expressional variances in 771 and 83 DEGs were partially 
explained by expression QTLs for DEGs and methylation 
QTLs (meQTLs) for DEG- correlated DMRs, respectively. A 
large number of RA variants were moderately to strongly 
correlated with meQTLs. DEG- correlated DMRs, enriched 
with meQTLs, had strongly enriched heritability of RA.
Conclusion Our findings revealed that the methylomic 
changes, driven by RA heritability- explaining variants, 
shape the differential expression of a substantial fraction 
of DEGs in CD4+ T cells in patients with RA, reinforcing 
the importance of a multidimensional approach in 
disease- relevant tissues.

INTRODUCTION
Rheumatoid arthritis (RA) is an inflammatory 
autoimmune disease causing chronic symmetrical 
polyarthritis of large and small joints and mostly 
occurs in women between 30 and 50 years of age.1 
The causes of RA are not yet fully understood 

but a family- based genetic approach estimated 
an overall genetic heritability of RA to be up to 
65%.2 Genome- wide association studies (GWASs) 
revealed a highly polygenic genetic aetiology of 
RA, identifying RA- associated common variants in 
~120 susceptibility loci.3–5 Most (~90%) of the 
RA- risk association signals in RA loci come from 
non- coding variants. The biological functions of 
most non- coding RA- risk variants have been largely 

Key messages

What is already known about this subject?
 ► Rheumatoid arthritis (RA) has a highly polygenic 
genetic architecture, with nearly 120 reported 
RA susceptibility loci and a large number of 
unidentified RA loci.

 ► The majority of disease variants are located 
in non- coding elements, most of which 
significantly overlap with CD4+ T cell regulatory 
elements. In addition, many genes in RA loci are 
involved in CD4+ T cell pathways.

What does this study add?
 ► This study provides the landscapes of 
transcriptomic and methylomic features in RA 
CD4+ T cells, with catalogues of quantitative 
trait loci for expression and methylation.

 ► The integrative approaches using individual- 
level genetic, epigenetic and transcriptomic 
data with recent Korean genome- wide RA 
association statistics dissected the regulatory 
sources for differentially expressed genes in RA 
CD4+ T cells, newly suggesting that the RA- risk 
variant- driven methylation changes result in the 
differential expression of a large number of the 
genes in RA CD4+ T cells.

How might this impact on clinical practice or 
future developments?

 ► Our findings contribute to a better 
understanding of the CD4+ T cell alterations 
underlying RA association of non- coding 
variants and identify disease- relevant gene 
candidates that may be used for novel 
therapeutic targets.
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unknown,6 but bioinformatic analyses using non- coding RA- risk 
variants and cell type- specific features (eg, regulatory annota-
tions and cellular pathways) were highly fruitful in narrowing 
down disease- relevant cell types in RA pathogenesis.

Several studies reported that the non- coding variants, which 
were associated with autoimmune disorders, were significantly 
enriched within enhancers and around expression quantitative 
trait loci (eQTLs) in immune cell types,7–10 implying a possible 
allele- specific regulatory effect of non- coding variants in disease- 
relevant cell types in the pathogenesis of autoimmune disorders. 
Several studies on the RA- risk non- coding variants highlighted 
the importance of CD4+ T cells in RA. The RA- risk variants 
are strongly enriched in cell type- specific annotations including 
enhancers, histone modification marks and transcription factor- 
binding sites (TFBSs) in CD4+ T cells in RA pathogenesis.5 7 9–12 
Indeed, a large number of the genes within RA susceptibility loci 
are involved in the activation and differentiation pathways of 
CD4+ T cells.3 13–15

Despite the significant enrichment of non- coding disease vari-
ants in cell- type specific annotations, only a minor fraction (10% 
to 20%) of the GWAS signals in autoimmune diseases including 
RA were directly explained by known eQTLs or TFBSs.6 16 
Therefore, a new approach is needed to understand how the 
disease variants exert regulatory effects on disease effector genes. 
Indirect regulatory effects of disease variants through epigenetic 
changes are likely to be undetectable in limited sample sizes of 
most eQTL analyses.

Here, we generated genomic, transcriptomic and epigenomic 
(DNA methylation) data from purified CD4+ T cells in iden-
tical patients with RA and healthy controls. This study provides 
comprehensive landscapes of RA- specific transcriptomic and 
epigenomic signatures in CD4+ T cells, identifies the variants 
associated with expression or methylation levels and integrates 
them with recent Korean GWAS data4 to understand how RA 
heritability- explaining variants shape RA- specific differential 
expression in CD4+ T cells on a genome- wide scale.

METHODS
Subjects and CD4+ T cell isolation
A total of 122 study subjects consisting of 82 patients with RA 
and 40 healthy controls were recruited at Hanyang University 
Hospital for Rheumatic Diseases (Seoul, South Korea). Sample 
sizes in each omics data set are summarised in figure 1. All the 
subjects provided written informed consent for participation. 
After collecting ~16 cc peripheral blood mononuclear cells 
using BD Vacutainer CPT, CD4+ T cells were purified within 3 
hour (without freezing and thawing) using Invitrogen Dynabeads 
CD4+ Isolation Kit, and genomic DNA and messenger RNA were 
extracted. The CD4+ T cell purification method was internally 
verified to yield a high purity of CD4+ T cells by fluorescence- 
activated cell sorting and all samples showed >90% purity of 
CD4+ T cells in a methylation- based cell composition analysis 
(online supplemental figure S1). All patients with RA were diag-
nosed according to the American College of Rheumatology 1987 
classification criteria for RA.17 The characteristics of the study 
subjects at the time of blood sampling are provided in online 
supplemental table S1.

Gene expression analysis
The gene expression level in CD4+ T cells was measured using 
the Illumina HumanHT-12 v4 BeadChip. Normal exponen-
tial background correction and quantile normalisation were 
performed for each slide using limma.18 A total of 9414 expres-
sion probes were retained after a general quality control (QC) 
procedure (see the details in online supplemental table S2). A 
batch effect was removed by ComBat implemented in sva19 using 
batch variables (slide and array position; online supplemental 
figure S2). A multivariate linear model was applied using limma 
to identify differentially expressed genes (DEGs) in RA at a false 
discovery rate (FDR) threshold of 0.05, controlling for potential 
confounders (sex, age and T cell purity) and computing moder-
ated statistics by empirical Bayes shrinkage.18

Figure 1 Summary of sample sizes and overlap in three omics data sets. The study subjects consisted of 82 patients with rheumatoid arthritis 
and 40 healthy controls. Methylome data were generated for all the subjects (n=122) using a methylation array; a subset of the same subjects was 
used to generate MBD- Seq methylome data. Transcriptome and genome data for subsets (n=103 and 104, respectively) were generated using array 
technologies. The sample sizes were additionally summarised according to the combination of available omics data sets. MBD- Seq, methyl- CpG- 
binding domain sequencing.
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Gene set enrichment analysis
For each gene tested in the DEG analysis, π - value20 was calcu-
lated based on the log2- fold expression change (K ) in patients 
with RA and its significance level ( p ), as follows:

 π = K ·
(
− log10 p

)
  

If a gene was analysed by multiple probes, the probe with 
the lowest  p  value for the differential expression was used in π  
calculation. A π - based gene set enrichment analysis (GSEA) for 
immune- related biological process terms under GO:0002376 
was performed using clusterProfiler.21

DNA methylation analysis
DNA methylation data were generated from genomic DNAs 
in CD4+ T cells using both methyl- CpG- binding domain 
sequencing (MBD- Seq) for profiling of DNA methylation 
on a whole- genome scale and the Illumina Infinium Human 
Methylation 450K BeadChip mostly for profiling of CpG sites 

around genic regions. In the MBD- Seq data analysis, reads were 
mapped to the human reference genome hg38 using bowtie222 
and filtered out with <10 MAPQ values. Methylation peaks 
were called by MACS223 with default parameters and quantified 
by DiffBind24 in 304 301 regions found in >1/3 in each group. 
Differentially methylated peaks (DMPeaks) were examined by 
DESeq225 with the same confounding factors used in the DEG 
analysis.

In methylation array data analysis, 413 718 CpG- targeting probes 
passed general QC filters (see the details in online supplemental table 
S3) and were analysed to identify differentially methylated probes 
(DMProbes) in RA using ChAMP.26 Specifically, the fluorescence 
intensities of array probes were normalised by beta- mixture quantile 
normalisation27 and transformed into M value28 to avoid heterosce-
dasticity. We eliminated the batch effect using batch variables (data 
production time, slide and array position) by ComBat implemented 
in sva19 (online supplemental figure S3). DMProbes between patients 

Figure 2 DEGs in RA CD4+ T cells and DEG- enriched gene sets. (A) The statistical significance level for differential expression (y- axis; a negative 
log10 scale) was plotted according to the log2- transformed fold change in expression in patients with RA compared with controls (x- axis). Significant 
data points above a significance threshold (depicted as a dashed line; FDR of 5%) are marked in red. (B) Dot plot represents the GO terms significantly 
enriching DEGs in a GSEA. The significance of enrichment is shown on the x- axis. The gene ratio indicates the ratio of the number of input genes to 
the total number of genes in the gene set (=set size). (C) Heat map shows the π  values of the genes strongly contributing to the enrichment in T cell 
pathways. (D) Enrichment plot was created for the GO term, T cell differentiation with normalised enrichment score (NES)=−1.68 and enrichment p 
value=1.28×10−4. The x- axis represents query genes ordered by their π  values (shown in the lower part of the plot). The upper part of the plot shows 
the running enrichment score (ES) that means the sum of ESs from the top ranked gene to a corresponding gene. Bars in the middle part indicate 
the location of gene members of the query GO term. (E and F) Box plots represent normalised expression levels of (E) CD83 and (F) SMAD7 on a 
log2 scale. The expressions of both genes were decreased in patients with RA compared with controls (fold change=−0.89 and PFDR=1.1×10−9 for 
CD83; fold change=−0.83 and PFDR=6.0×10−6 for SMAD7). DEGs, differentially expressed genes; FDR, false discovery rate; GSEA, gene set enrichment 
analysis; PFDR, FDR- corrected p values; RA, rheumatoid arthritis.
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with RA and controls were investigated under a multivariate linear 
model considering the same covariates used in the DEG analysis.

Differential methylation regions (DMRs; DMPeaks or DMProbes) 
with FDR- corrected p values (PFDR) <0.05 were considered as 
significant.

Profiling the genome-wide landscape of RA-specific DMPeaks
Genome- wide DNA methylation data from MBD- Seq were used to 
profile the overlap between genomic annotations and DMPeaks in 
RA. Genomic annotations for CD4+ T cell- specific ChromHMM 
chromatin states,29 gene- based positional annotations and TFBSs 
were retrieved from the Roadmap Epigenomics Project data30 
and ChIPseeker31 and PAINTOR (https:// github. com/ gkichaev/ 
PAINTOR_ V3. 0/ wiki/ 2b.- Overlapping- annotations), respectively. 
The distribution of DMPeaks around transcription start sites (TSSs) 
was drawn using ChIPseeker.31 A Fisher’s exact test was performed 
to assess an enrichment of DMPeaks on a query annotation using 
LOLA32 with all methylation peaks as background.

Correlation analysis between expression level of DEGs and 
methylation level of DMR
The RA- specific DEGs and DMRs in the same topologically asso-
ciating domain (TAD) of CD4+ T cells33 (available at https:// osf. io/ 
u8tzp) were tested for their individual- level correlation. In the region 
not characterised by any TADs, DMRs in a 2 kb region around the 
TSS of a DEG were used in the pairwise correlation analysis. Signif-
icant individual- level correlations between DMR and DEGs were 
identified in a linear regression controlling for the same covariates 
used in the DEG analysis, at a gene- level FDR of 5%.

Analysis of genetic associations with the level of expression 
and methylation
Linear regression was performed to identify cis- QTLs adjusting 
for sex, age, T cell composition, disease status and the top five 
genotypic principal components using FastQTL34 at peak- wise 
or probe- wise FDR of 5%. Cis- variants within 1 Mb of TSSs 
or methylated regions were used in the analyses. We employed 

QTLtools35 to identify trans- QTLs ≥5 Mb away from each 
target site using the same model in cis- QTL analyses (p value 
threshold=1×10-10). We retained a subset of independent QTLs 
by linkage disequilibrium (LD) clumping (r2 >0.2) in each gene 
or methylated region.

The methylation- mediated effects of methylation QTLs 
(meQTLs) on regulation of DEGs were assessed by a mediation 
analysis with quasi- Bayesian CIs36 at a gene- wide FDR of 5%.

Estimating heritability of RA partitioned by RA-specific DEGs 
or DMRs
The enrichment of heritability (h2) of all variants in the identi-
fied annotations was estimated using stratified LD score regres-
sion7 based on the 1KGP East Asian LD scores (https:// data. 
broadinstitute. org/ alkesgroup/ LDSCORE/) and the RA associa-
tion summary statistics of our recent Korean GWAS.4 According 
to the observed distribution of eQTLs and meQTLs in this study, 
the regulatory genomic region enriched with eQTLs for DEGs 
or non- DEGs was defined as a 5 kb region around the TSS of 
each gene. Similarly, the genomic region enriched with meQTLs 
for DEG- expression- correlated DMRs, expression- uncorrelated 
DMRs or non- DMRs was defined as a methylation region of 
interest with a 5 kb buffer region.

Detailed methods of MBD- Seq data analysis, genotyping and 
whole- genome imputation, validation of eQTLs with public 
eQTLs, enrichment of QTLs on TFBSs and colocalisation test 
for RA association and QTL signals are described in online 
supplemental note.

RESULTS
Brief overview of the main analyses
This study consisted of four main analyses to understand RA- spe-
cific features in CD4+ T cells at the level of genomics, methy-
lomics and transcriptomics in a single cohort and to scope out 
the inter- omics relationship in regulating RA- specific DEGs in 
CD4+ T cells. (1) An expression microarray analysis followed 

Figure 3 DMRs and DMR- enriched genomic annotations in RA CD4+ T cells. (A and B) Volcano plots were generated from the DMR analysis results 
using (A) methylation array and (B) MBD- Seq data. The negative log10- transformed statistical significance level for differential methylation (y- axis) 
was plotted according to log2- transformed fold change in methylation in patients with RA compared with controls (x- axis). Significant data points 
(DMProbes and DMPeaks) above a significance threshold (depicted as a dashed line; FDR of 5%) are marked in red. (C) Distribution of DMPeaks and 
total MBD- Seq peaks is shown based on the distance from TSSs. The 95% CIs estimated by bootstrapping are shown as shaded areas. (D) ORs for 
DMRs that are located in each genomic feature are shown with error bars indicating 95% CIs. (E) LOLA analysis results are summarised in the heat 
map highlighting T cell- specific ChromHMM chromatin states enriched with DMRs. Significant OR values (FDR ≤5%) are shown in the heat map. The 
Roadmap Epigenomics Project data was used in the analysis (E037, CD4+ memory T cells; E038, CD4+ naïve T cells; E039, CD4+CD25-CD45RA+ T cells; 
E040, CD4+CD25-CD45RO+ T cells; E041, stimulated CD4+CD25-IL17- T cells; E042, stimulated CD4+CD25-IL17+ T cells; E043, CD4+CD25- cells; E044, 
CD4+CD25-IL127- Treg cells; E045, CD4+CD25-IL127+ T cells). DMPeaks, differentially methylated peaks; DMProbes, differentially methylated probes; 
DMRs, differential methylated regions; FDR, false discovery rate; MBD- Seq, methyl- CpG- binding domain sequencing; RA, rheumatoid arthritis; TSSs, 
transcription start sites. U
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by a GSEA was carried out to identify DEGs and DEG- enriched 
pathways in CD4+ T cells in patients with RA. (2) DNA meth-
ylation analyses using both MBD- Seq and methylation arrays 
were conducted to determine genome- wide methylation profiles 
in CD4+ T cells and RA- specific DMRs. (3) QTL analyses were 
performed by integrating genome- wide variant data with expres-
sion and methylation data in CD4+ T cells. (4) An inter- omics 
analysis was performed to better understand plausible DEG- 
regulating mechanisms in RA CD4 +T cells and the potential 
contribution of RA heritability- explaining variants.

RA-specific DEGs in CD4+ T cells highlighting the 
differentiation and activation of CD4+ T cells
Expression analyses identified 2575 DEGs in RA CD4+ T cells, 
based on the differential fluorescence signal of 2785 expression 
probes. Among the identified DEGs, 1585 and 1200 DEGs were 
upregulated and downregulated in RA, respectively (figure 2A). 
In a GSEA, RA- specific DEGs were significantly enriched in 
10 immune processes, most of which were T cell- related path-
ways including lymphocyte activation and CD4+ T cell differ-
entiation (figure 2B–D and online supplemental table S5). The 

Figure 4 Summary of regulatory features associated with differential expression in RA CD4+ T cells. (A and B) The numbers of DEGs are shown 
according to potentially regulatory features; DMRs, cis- meQTLs or cis- eQTLs. (A) DMR- regulated genes refer to genes whose expression level was 
significantly correlated with the methylation level of nearby DMRs in the same topologically associating domain (TAD) or the promoter region. If 
cis- meQTLs were detected in the corresponding DMRs, the genes are referred as meQTL- regulated genes. The mediation effects of cis- meQTLs on 
DEGs were estimated using a mediation analysis with quasi- Bayesian CIs. (B) Genes that were regulated by cis- eQTLs in this study or other studies 
were defined as eGenes. The eGenes were stratified into meQTL- regulated and DMR- regulated eGenes according to methylation features associated 
with eGenes. (C) The expression level of CD83 was regulated by the meQTL rs75943492, mediated by the differential methylation on the DMProbe 
cg03903472 (mediation effect=−0.12, PFDR=0.01) in a TAD. The associations were significant between expression and methylation levels (beta=0.55, 
PFDR=0.03) and between rs75943492 and methylation level (beta=0.16, PFDR=0.02). DEGs, differentially expressed genes; DMProbe, differentially 
methylated probe; DMRs, differential methylated regions; eQTLs, expression quantitative trait loci; FDR, false discovery rate; meQTLs, methylation 
QTLs; PFDR, FDR- corrected pvalues; RA, rheumatoid arthritis.
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most significant DEGs included some known genes relevant to 
T- cell biology (eg, CD83,37 38 SMAD739 and IRF140; figure 2C, 
E and F). For example, the anti- inflammatory gene CD8337 
in an RA susceptibility locus showed an approximate twofold 
decrease in expression level in patients with RA compared with 
controls (log2 fold change=−0.89; PFDR=1.1x10−9; figure 2E) 
and belonged to most of the identified pathways including T- cell 
differentiation, contributing to the pathway enrichment with the 
largest size of π - value20 (π =−11.0).

RA-specific DMRs preferentially within regulatory regions
We used MBD- Seq and methylation microarrays to capture 
the genome- wide methylation architecture in CD4+ T cells in 
RA, with a high resolution on genic CpG sites. We observed a 
high correlation between 300bp- bin MBD- Seq read counts and 
methylation probe intensities (Pearson’s r=0.75 for cases, 0.71 
for controls, (online supplemental figure S4). A total of 94 898 
DMPeaks (30.4%; out of 304 301 peaks) and 28 786 DMProbes 
(7.0%; out of 413 718 probes) in RA were identified in MBD- 
Seq and microarray data, respectively (figure 3A,B). There 
was a significant overlap between DMPeaks and DMProbes 
(p=9.9×10−94 in a Fisher’s exact test for the region tested in 
both analyses), showing the concordant direction of methylation 
changes in >90% of co- localising DMPeak- DMProbe pairs.

The unbiased genome- wide methylation landscape through 
MBD- Seq revealed how the DNA methylation sites are distrib-
uted based on genomic annotation and emphasised the strong 
enrichment of RA- specific DMRs in the likely regulatory region 
around TSSs (figure 3C), including the 5’ UTR (OR=1.87, 
p=1.34×10−39) and proximal promoters (OR=1.58, 
p=2.29×10−245; figure 3D and online supplemental table 
S6). Consistently, DMRs were significantly enriched in CD4+ 
T cell- specific ChromHMM chromatin states30 associated 
with transcription- activating, repressing or bivalent regions 
(figure 3E).

Identification of QTLs
We identified 2125 cis- eQTLs for 682 expression probes, 120 
424 meQTLs for 43 526 methylation probes and 23 690 cis- 
meQTLs for 11 998 methylation peaks within 1 Mb of corre-
sponding TSSs or methylated regions. The detected cis- eQTLs 
and cis- meQTLs were very closely located to corresponding 
TSSs and methylated regions, respectively (online supplemental 
figure S5). Although the sample size and data type41 might 
be insufficient to ensure statistical power to detect QTLs, we 
observed that the identified CD4+ T cell cis- eQTLs were highly 
consistent with publicly available cis- eQTLs from the CD4+ T 
cell RNA- Seq data (online supplemental figure S6). Similarly, by 
comparing with the publicly available lead meQTLs in whole 
blood,42 we found consistent effect sizes in our study (online 
supplemental figure S7).

We further identified trans- eQTLs for 17 expression probes, 
233 trans- meQTLs for 234 methylation probes and 21 trans- 
meQTLs for 21 methylation peaks outside 5 Mb of the TSSs or 
methylated sites.

RA variants in many susceptibility loci are correlated moder-
ately to strongly with eQTLs or meQTLs (online supplemental 
table S7-9). For example, the cis- eQTL signals (rs8046707) of 
FBRS downregulated in RA were statistically showed r2=0.42 
with a lead RA variant rs12918327 in the same locus (posterior 
probability of a shared causal signal >50% in a colocalisation 
analysis).

In addition, we observed that QTLs were significantly enriched 
on binding sites of 109 transcription factors. Most of the identi-
fied transcription factors also significantly bound within DMRs 
at FDR of 5% (online supplemental table S10 and figure S8). 
Some top- ranked transcription factors that preferentially bind 
to QTLs and DMRs are known to be relevant to RA or T cell 
functions (eg, MAZ, a Myc- associated protein.43)

Methylation-mediation effects of meQTLs on RA-specific 
DEGs
We integrated the individual- level data of DEGs, DMRs and 
genome- wide genetic variants to understand the regulatory 
factors underlying the differential expression of DEGs in RA 
CD4+ T cells.

A total of 548 RA- specific DEGs (22%) were significantly 
correlated with RA- specific DMRs in the same TADs or 2 kb 
windows around their TSSs, at a gene- level FDR of 5%, and 
eQTLs in this study and other CD4+ T cell eQTL studies44 45 
were detected in 771 DEGs (figure 4A,B). Half of the DMR- 
methylation- correlated DEGs showed significantly nega-
tive correlations with the DNA methylation levels in DMRs, 
suggesting bivalency of DNA methylation in transcriptional 
regulation. Indeed, we found that DMRs were significantly 
localised in bivalent chromatin states bound to both activating 
and repressing epigenetic regulators (figure 3E). Among DMR- 
methylation- correlated DEGs, 83 DEGs were regulated by 
meQTLs. We statistically confirmed the presence of methylation- 
mediation effects of meQTLs on 69 DEGs (83.1%; out of the 83 
DEGs).

Several known immune genes, involved in diverse immune 
pathways, were detected as potentially meQTL- regulated DEGs 
mediated by DNA methylation changes. For example, CD83 
was regulated by rs75943492, mediated by a DMProbe at 100 
kb upstream of the TSS (mediation effect=0.12, PFDR <5%; 
figure 4C).

Variants in differential expression-associated DMRs that 
explained significantly more heritability of RA
We observed DEGs in 79 loci out of 118 non- HLA RA- risk 
loci.4 5 46 In addition, 43 loci with DEGs had DMRs correlated 
with expression levels of DEGs in CD4+ T cells. Considering 
the highly enriched meQTLs and eQTLs around methyla-
tion sites and TSSs, respectively (online supplemental figure 
S5), we estimated RA heritability explained by all variants in 
the 5 kb regions around methylation sites or TSSs to examine 
the potential contribution of DMR- mediated DEG- regulating 
meQTLs and DEG- regulating eQTLs to RA susceptibility on a 
genome- wide scale. Strikingly, a relatively large fraction of RA 
heritability was explained by variants within RA- specific DMRs 
whose methylation levels correlated with the expression level 
of DEGs in RA CD4+ T cells (15.4- fold more heritability than 
control variants, 8.6- fold more than variants in non- DMRs and 
5.3- fold larger than variants in expression- uncorrelated DMRs; 
figure 5 and online supplemental table S11). The TSS regions 
with significantly more eQTLs explained a relatively large frac-
tion of RA heritability but the enrichment estimate in DEGs 
(=33.4) was only 1.6- fold more than that in non- DEGs (=20.5). 
Although most of the disease association signals are reported to 
be little correlated with QTL drivers,33 the genome- wide herita-
bility partitioning analysis strongly suggests a potential regula-
tory effect of RA variants in DMRs that results in the differential 
expression of some disease- relevant genes in RA CD4+ T cells 
and eventually leads to T cell alteration in patients with RA.
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DISCUSSION
This is the first multi- omics analysis for CD4+ T cells in patients 
with RA to profile the plausible causal factors underlying RA- spe-
cific DEGs using genomic, transcriptomic and epigenetic data in 
a single cohort. This study identified the differential expression 
of several key immune regulator genes involved in the prolif-
eration and differentiation of CD4+ T cells. A large number of 
DMRs were identified in genome- wide and targeted methylation 
quantification approaches, suggesting that DMRs were prefer-
entially located in highly regulatory elements in CD4+ T cells 
or TFBSs. A large number of DEGs could be partially explained 
by meQTL- mediated DMRs or eQTLs and were located in RA 
susceptibility loci. Nevertheless, it is not common that RA- risk 
variants are genetically linked in known eQTLs,33 suggesting a 
low statistical power in most eQTL analyses and the complex 
gene regulations involving multiple variants and indirect 
(epigenetic) regulation. We demonstrated the high enrichment 
of RA heritability in the region enriched with DMR- mediated 
DEG- regulating meQTLs.

Our results suggest that several key immune regulators (such 
as CD83, SMAD7 and GATA3) in CD4+ T cells are involved in 
the T- cell alteration in RA. For example, we observed decreased 
expression of CD83 in patients with RA possibly by a meQTL- 
mediated DMR. Deficiency of CD83 in mice downregulates the 
differentiation of Treg cells38 and leads to the proliferation of 
CD4+Foxp3− T cells and the differentiation to Th1 and Th17 
cells, enhancing the immune response.37 As another example, 
SMAD7, encoding an inhibitor of TGF-β signalling in Treg differ-
entiation,39 was downregulated in RA CD4+ T cells. Consistently, 
a recent study revealed the decreased expression of SMAD7 
in synovial tissues of patients with RA as well as severe joint 
inflammation in a SMAD7- knockout mouse model displaying 

imbalanced Th17/Treg responses.47 As a third example, GATA3, 
which is downregulated in RA CD4+ T cells, is a master regu-
lator of T cell function48 and a promising target of non- steroidal 
drugs for the treatment of autoimmune diseases.49–51

In conclusion, our findings shed light on how genetic variants 
can shape the disease- specific transcriptomic signatures in CD4+ 
T cells in patients with RA, illustrating the advantage of the 
same- sample inter- omics data analysis on disease- relevant tissues 
in dissecting the complex transcriptional regulation driven by 
genome- wide genetic variants.
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