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The relationship of soluble TREM2 
to other biomarkers of sporadic 
Alzheimer’s disease
So‑Hee Park1,5, Eun‑Hye Lee2,5, Hyung‑Ji Kim3, Sungyang Jo3, Sunju Lee3, Sang Won Seo4, 
Hyun‑Hee Park2, Seong‑Ho Koh2* & Jae‑Hong Lee3*

Microglial activation is a central player in the pathophysiology of Alzheimer’s disease (AD). The 
soluble fragment of triggering receptor expressed on myeloid cells 2 (sTREM2) can serve as a marker 
for microglial activation and has been shown to be overexpressed in AD. However, the relationship of 
sTREM2 with other AD biomarkers has not been extensively studied. We investigated the relationship 
between cerebrospinal fluid (CSF) sTREM2 and other AD biomarkers and examined the correlation of 
plasma sTREM2 with CSF sTREM2 in a cohort of individuals with AD and without AD. Participants were 
consecutively recruited from Asan Medical Center from 2018 to 2020. Subjects were stratified by their 
amyloid positivity and clinical status. Along with other AD biomarkers, sTREM2 level was measured in 
the plasma as well as CSF. In 101 patients with either amyloid‑positive or negative status, CSF sTREM2 
was closely associated with CSF T‑tau and P‑tau and not with Abeta42. CSF sTREM2 levels were found 
to be strongly correlated with CSF neurofilament light chain. The comparison of CSF and plasma 
sTREM2 levels tended to have an inverse correlation. Plasma sTREM2 and P‑tau levels were oppositely 
influenced by age. Our results suggest that neuroinflammation may be closely associated with tau‑
induced neurodegeneration.

Biomarkers have now become an essential component of Alzheimer’s research. Extracellular amyloid plaque and 
intraneuronal hyperphosphorylated tau accumulation are considered hallmarks of Alzheimer’s disease (AD) 
and many biomarkers have been developed to reflect these central pathophysiological events. By virtue of these 
biomarkers, we possess a valuable window into the changes occurring in the brain of individuals with Alzheimer’s 
disease and can identify the disease process at the earliest possible  stage1.

Neuroinflammation has been deemed a secondary phenomenon, but is now emerging as a central player in 
the development of  AD2–4. This theory is centered on microglial activation, which can be brought about by vari-
ous stimuli, including beta-amyloid. Failure of activated microglia to wall off amyloid plaques from surround-
ing neurons and phagocytize them leads to the accumulation of amyloid plaques and neurofibrillary  tangles5,6. 
Microglial activation is mediated by its membrane-bound receptor, triggering receptor expressed on myeloid 
cells 2 (TREM2)7. The activity of TREM2 can be measured by evaluating the levels of the soluble fragment of 
TREM2 (sTREM2), which is generated during the TREM2 cleavage  process8. The concentration of sTREM2 in 
the cerebrospinal fluid (CSF) has been shown to be elevated in AD, raising the possibility that sTREM2 can serve 
as a reliable biomarker for  AD9–11. It is important to investigate at the relationship of one biomarker with another 
to better understand the pathophysiology of AD. The role of microglial activation in the amyloid cascade is a 
matter of curiosity and requires further  exploration12. However, the relationship between sTREM2 and other 
conventional biomarkers across the various stages of AD has not been extensively studied, particularly in patients 
with sporadic AD. Whether the change in CSF sTREM2 can be reflected in the plasma is also  controversial13,14. 
If sTREM2-induced changes in the brain can be reflected in the plasma levels of sTREM2 akin to neurofilament 
light chain in multiple sclerosis, we will be able to elucidate neuroinflammation associated with AD throughout 
the course of the disease.

OPEN

1Seongnam Center of Senior Health, Seongnam-si, Gyeongi-do 13200, Republic of Korea. 2Department of 
Neurology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Gyeongchun-ro, Guri-Si, 
Gyeonggi-do 11923, Republic of Korea. 3Department of Neurology, University of Ulsan College of Medicine, Asan 
Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea. 4Department of Neurology, 
Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea. 5These 
authors contributed equally: So-Hee Park and Eun-Hye Lee. *email: ksh213@hanyang.ac.kr; jhlee@amc.seoul.kr

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-92101-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:13050  | https://doi.org/10.1038/s41598-021-92101-6

www.nature.com/scientificreports/

The purpose of this study was to investigate the relationship between CSF sTREM2 and other AD biomark-
ers and to examine the plasma levels of sTREM2 and its correlation with CSF sTREM2 in a cohort population 
of AD and non-AD conditions.

Results
Demographics. The clinical characteristics of the participants are presented in Table 1. The amyloid-positive 
and amyloid-negative groups showed a significant difference in age (P = 0.025). The mean age of the amyloid-
positive group, in which 21 early-onset patients are included, was lower than that of the amyloid-negative group 
(66.7 vs. 71.2 year). The frequency of the APOE ε4 allele was significantly higher in the amyloid-positive group 
than that in the amyloid-negative group (P = 0.003, hazard ratio = 16.57). The frequency of diabetes mellitus 
was higher in the amyloid-negative group than that in the amyloid-positive group (P = 0.01). The amyloid-pos-
itive group had poor performances in K-MMSE compared to those of the amyloid-negative group (P = 0.029). 
The amyloid-positive group showed significantly higher serum LDL levels (P = 0.042) and albumin (P = 0.02). 
The amyloid-negative group showed higher serum ESR than did the amyloid-positive group (P = 0.025). Other 
demographic features, including sex distribution, CRP serum levels, frequency of hypertension (HTN), and 
hyperlipidemia, did not show significant differences between the two groups.

AD biomarkers in the cohort. The CSF Aβ42, T-tau, and P-Tau S199 levels were compared between the 
two groups (amyloid-positive and amyloid-negative) to demonstrate that the cohort had typical patterns of AD 
core biomarkers. As expected, the CSF Aβ42 levels were significantly lower in the amyloid-positive group than 
those in the amyloid-negative group (P < 0.001) (Fig. 1a). The CSF P-Tau S199 (P < 0.001) and T-tau (P < 0.001) 
levels were significantly higher in the amyloid-positive group than those in the amyloid-negative group 
(Fig. 1b,c).

CSF and plasma sTREM2 levels, CSF and plasma biomarkers. In the whole group, the CSF sTREM2 
levels were negatively correlated with the plasma sTREM2 levels (Spearman’s rho [ρ] = –  0.202, P = 0.043; 
n = 101) (Fig. 2a,b). The CSF sTREM2 levels positively correlated with the CSF P-Tau S199 (ρ = 0.296, P = 0.003; 
n = 100) and T-tau levels (ρ = 0.427, P < 0.001; n = 99) (Fig. 2a). In contrast, the plasma sTREM2 levels were nega-
tively correlated with the CSF P-tau S199 (ρ = – 0.264, P = 0.008; n = 100) and T-tau levels (ρ = – 0.248, P = 0.013; 
n = 99)    (Fig.  2a). Plasma sTREM2 levels were significantly correlated with the CSF NfL levels (ρ = 0.359, 
P < 0.001; n = 101) (Fig. 2a). The CSF sTREM2 levels were not significantly correlated with the CSF NfL levels 
(ρ = 0.085, P = 0.401; n = 101). With respect to the age effects, age correlated positively with the plasma sTREM2 

Table 1.  Demographics and clinical characteristics of amyloid-negative and amyloid-positive groups. 
Demographics and characteristics of the dataset. Student’s t-test was used for analyzing the age, educational 
level, disease duration, MMSE, CDR, neutrophil, monocyte, ESR, CRP, and LDL levels. χ2 test was used 
in the analysis of sex distribution, APOE ε4, DM, HTN, and hyperlipidemia. DM diabetes mellitus, HTN 
hypertension, ESR erythrocyte sedimentation rate, CRP C-reactive proteins, LDL low-density lipoprotein. 
*Significant at P < 0.05. **Significant at P < 0.01.

Amyloid-negative (N = 47) Amyloid-positive (N = 54)

Population

Sex, n (female) 47 (22) 54 (32)

Age (SD), year* 71.18 (8.66) 66.73 (10.36)

Education level (SD), year 11.76 (4.67) 11.41 (4.77)

Disease duration (SD), months 28.84 (28.12) 35.62 (27.10)

APOE ε4 carrier, n (%)** 9 (18.8) 30 (57.7)

Underlying disease

DM, n (%)* 22 (44.9) 10 (19.2)

HTN, n (%) 22 (44.9) 25 (48.1)

Hyperlipidemia, n (%) 20 (40.8) 26 (50.0)

Global cognition

MMSE (SD)* 24.12 (4.65) 22.00 (4.90)

CDR (SD) 0.67 (0.52) 0.72 (0.45)

Laboratory test

Neutrophil count, % (SD) 56.46 (8.81) 56.64 (8.91)

Monocyte count, % (SD) 8.13 (1.61) 11.05 (19.01)

ESR (SD), mm/h* 15.47 (11.41) 10.91 (7.00)

CRP (SD) 0.23 (0.45) 0.21 (0.48)

LDL (SD), mg/dL* 104.78 (38.70) 127.03 (38.21)

Albumin (SD), g/dL* 3.69 (0.39) 3.84 (0.26)
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levels (ρ = 0.409, P < 0.001; n = 101) and negatively with the CSF P-tau S199 (ρ = – 0.240, P = 0.016; n = 100) and 
T-tau levels (ρ = – 0.258, P = 0.010; n = 99) (Fig. 2c).

The plasma sTREM2 levels were positively correlated with the plasma NfL levels (ρ = 0.416, P < 0.001; n = 100). 
In contrast, the CSF sTREM2 was not significantly correlated with the plasma biomarkers (Table 2 and Fig. 2a).

Plasma neurodegeneration biomarkers. The plasma sTREM2 positively correlated with plasma NfL 
(ρ = 0.416, P < 0.001; n = 100) and age (ρ = 0.409, P < 0.001; n = 101). Furthermore, NfL and age were strongly 
correlated with each other (ρ = 0.523, P < 0.001; n = 100). In contrast, the leukocyte TL was negatively correlated 

Figure 1.  Alzheimer’s disease (AD) biomarkers in the cohort. To demonstrate that the cohort had typical AD 
biomarker patterns, the levels of CSF Aβ42, T-tau, and P-tau S199 were compared between the two groups. Aβ42 
levels were significantly lower in the amyloid-positive group than those in the amyloid-negative group (a). The 
cerebrospinal fluid (CSF) P-tau S199 (b) and T-tau (c) levels were significantly higher in the amyloid-positive 
group than those in the amyloid-negative group. Statistical analysis was performed using the Mann–Whitney 
test. sTREM2 soluble triggering-receptor expressed on myeloid cells 2, NfL neurofilament light chain, NRGN 
neurogranin. Statistical significance *P < 0.05, **P < 0.01.

Figure 2.  Relationship among biomarkers as a whole dataset. The relationship between cerebrospinal fluid 
(CSF) and plasma biomarkers is displayed in the heatmap (a). The levels of soluble triggering-receptor expressed 
on myeloid cells 2 (sTREM2) in CSF and plasma were negatively correlated (b). Age was also positively 
correlated with the plasma sTREM2 levels (c). Statistical analysis was performed by linear regression analysis. 
sTREM2 soluble triggering-receptor expressed on myeloid cells 2, NfL neurofilament light chain, NRGN 
neurogranin. Statistical significance *P < 0.05, **P < 0.01.
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with sTREM2 (ρ = – 0.216, P < 0.03; n = 101), plasma NfL (ρ = – 0.429, P < 0.001; n = 100), and age (ρ = – 0.387, 
P < 0.001; n = 101), showing that the aging and neurodegeneration factors were progressing together (Fig. 2).

CSF and plasma sTREM2 in the AD continuum. In the amyloid-positive group (AD continuum), the 
association between CSF and plasma sTREM2 which was observed in the whole dataset disappeared. The CSF 
sTREM2 levels significantly correlated with CSF T-tau level (ρ = 0.455, P = 0.0014; n = 51), and Aβ42/P-tau S199 
(ρ = – 0.331, P = 0.017; n = 52). The plasma sTREM2 levels correlated with CSF P-tau S199 (ρ = –  0.288, P = 0.038; 
n = 52) and Aβ42/P-tau S199 (ρ = 0.316, P = 0.022; n = 52), CSF NfL (ρ = 0.457, P = 0.001; n = 52), and plasma 
NfL (ρ = 0.349, P = 0.012; n = 51). The plasma sTREM2 levels correlated positively with age (ρ = 0.345, P = 0.012; 
n = 52) (Table 3 and Fig. 3a).

CSF and plasma sTREM2 in non‑AD condition. In the amyloid-negative conditions, the CSF sTREM2 
levels showed a positive correlation with the CSF P-tau S199 (ρ = 0.301, P = 0.038; n = 48) and T-tau (ρ = 0.425, 
P = 0.003; n = 48) levels. No significant significance was found between the plasma sTREM2 and CSF bio-
marker levels. The plasma sTREM2 levels were correlated with the plasma NfL (ρ = 0.436, P = 0.002; n = 49), TL 
(ρ = – 0.312, P = 0.029; n = 49), and age (ρ = 0.430, P = 0.002; n = 49) (Table 4 and Fig. 3b).

Relationship of CSF P‑tau and T‑tau with age stratified by amyloid status. To avoid age bias, all 
participants were categorized into three different groups, i.e., amyloid-negative, amyloid-positive early-onset 
(younger than age 65), and amyloid-positive late-onset disease. In case of CSF P-Tau S199, T-tau levels, and 

Table 2.  Correlation of cerebrospinal fluid (CSF) and plasma soluble triggering receptor expressed on 
myeloid cells 2 (sTREM2) with Alzheimer’s disease (AD) biomarkers in all subjects (N=101). Linear regression 
analyses were used to demonstrate a correlation between biomarkers. NfL neurofilament light chain, NRGN 
neurogranin.

CSF sTREM2 Plasma sTREM2

R P-value R P-value

CSF

Aβ42 – 0.021 0.835 0.104 0.303

P-tau S199 0.296 0.003 -0.264 0.008

T-tau 0.427 < 0.001 -0.248 0.013

Aβ42/P-tau S199 – 0.273 0.006 0.267 0.007

NfL 0.085 0.401 0.359 < 0.001

Plasma

NfL 0.056 0.582 0.416 < 0.001

NRGN 0.012 0.906 – 0.068 0.512

Telomere – 0.127 0.205 – 0.216 0.030

Age – 0.057 0.573 0.409 < 0.001

Table 3.  Correlation of cerebrospinal fluid (CSF) and plasma soluble triggering receptor expressed on myeloid 
cells 2 (sTREM2) with Alzheimer’s disease (AD) biomarkers in patients with AD continuum (amyloid-positive 
group) (N=47). Linear regression analyses were used to demonstrate a correlation between biomarkers. NfL 
neurofilament light chain, NRGN neurogranin.

CSF sTREM2 Plasma sTREM2

R P-value R P-value

CSF

Aβ42 – 0.152 0.281 0.128 0.365

P-tau S199 0.254 0.069 -0.288 0.038

T-tau 0.455 < 0.001 -0.227 0.110

Aβ42/P-tau S199 – 0.331 0.017 0.316 0.022

NfL 0.018 0.901 0.457 <0.001

Plasma

NfL 0.323 0.021 0.349 0.012

NRGN 0.080 0.584 0.126 0.389

Telomere – 0.072 0.610 – 0.146 0.303

Age 0.080 0.574 0.345 0.012
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age correlation, we found that the CSF P-tau S199 and T-tau levels were inversely influenced by age in the 
whole dataset, as previously noted (Fig. 3). The tau pathology over the age course was negatively correlated with 
CSF P-tau S199 only in the early-onset amyloid-positive group, but this was not significant (Fig. 4a,b). In case 
of plasma sTREM2, the amyloid-negative group still showed a strong positive correlation with age (ρ = 0.430, 
P = 0.002). However, no significance was observed in the amyloid-positive early or late onset group (Fig. 4c).

Discussion
We collected both plasma and CSF samples from participants in this AD biomarker study to examine whether 
CSF sTREM2 can be mapped onto other AD biomarkers and also correlate with plasma sTREM2. The major 
findings of this study were as follows: first, we observed that CSF sTREM2 was closely associated with CSF T-tau 
and P-tau, but not so much with Aβ42; second, the CSF sTREM2 levels were found to be strongly correlated with 
CSF NfL; third, comparison of the CSF sTREM2 and plasma sTREM2 levels tended to show an inverse correla-
tion; fourth, the plasma sTREM2 and P-tau levels were influenced by age in an opposite way (higher levels of 
sTREM2 and lower levels of P-tau were associated with older age). Taken together, these results suggest that 

Figure 3.  Relationship between biomarkers in the amyloid-positive and -negative groups. The relationship 
between cerebrospinal fluid (CSF) and plasma biomarker in the amyloid-positive group is displayed in the 
heatmap (a). The relationship between CSF and plasma biomarker in the amyloid-negative group is displayed 
in the heatmap (b). Statistical analysis was performed by linear regression analysis. sTREM2 soluble triggering-
receptor expressed on myeloid cells 2, NfL neurofilament light chain, NRGN neurogranin. Statistical significance 
*P < 0.05, **P < 0.01.

Table 4.  Correlation of cerebrospinal fluid (CSF) and plasma soluble triggering receptor expressed on myeloid 
cells 2 (sTREM2) with Alzheimer’s disease (AD) biomarkers in the amyloid-negative group (N=54). Linear 
regression analyses were used to demonstrate a correlation between biomarkers. NfL neurofilament light chain, 
NRGN neurogranin.

CSF sTREM2 Plasma sTREM2

R P-value R P-value

CSF

Aβ42 0.204 0.159 –0.041 0.779

P-tau S199 0.301 0.038 –0.142 0.335

T-tau 0.425 0.003 –0.126 0.394

Aβ42/P-tau S199 – 0.178 0.225 0.115 0.438

NfL 0.183 0.208 0.196 0.177

Plasma

NfL –0.083 0.572 0.436 0.002

NRGN –0.109 0.465 – 0.246 0.095

Telomere –0.175 0.230 – 0.312 0.029

Age –0.140 0.338 0.430 0.002
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sTREM2 can serve as a reliable biomarker of AD and that neuroinflammation may be closely associated with 
tau-induced neurodegeneration.

With regard to the relationship of sTREM2 to well-known AD biomarkers, a longitudinal study of the DIAN 
cohort revealed that CSF sTREM2 levels were higher in patients with MCI due to AD than in AD and control 
 groups9. Their levels were closely associated with P-tau levels but not with Aβ42 levels. The role of sTREM2 in 
AD is  contentious2,6,15–17. It could be either a byproduct of full-length TREM2 shedding or an active peptide 
playing a role in microglial  modulation18,19. The increase in CSF sTREM2 levels in the early symptomatic stage 
of AD was interpreted to reflect a corresponding change in status of microglial activation in response to neuro-
degeneration induced by hyperphosphorylated tau  aggregation8. Another cross-sectional study of sporadic AD 
patients showed that the levels of sTREM2 peaked at the early symptomatic phase of the disease and that the 
CSF sTREM2 levels were positively correlated with the concentrations of T-tau and P-tau in the CSF, suggest-
ing the important role of sTREM2 in the development of AD pathology and  neurodegeneration9,20,21. We can 
suggest that elevated levels of sTREM2 may have close relationship to inducing tau phosphorylation in neur-
ites neighboring amyloid  plaques22,23. Microglial clustering around amyloid plaques represented by increased 
sTREM2 levels play a role in initially providing a barrier  function24. If it fails to wall off amyloid plaques from 
surrounding neurons and phagocytize them, this can lead to the propagation of amyloid plaques and formation 
of neurofibrillary  tangles25,26. Dystrophic neurites containing hyperphosphorylated tau can be found around 
amyloid plaques during this  process27. Why CSF sTREM2was not significantly associated with Aβ42 in our sam-
ple is unknown. Given the early appearance of Aβ42 and its plateau in the prodromal stage of AD, giving way 
to the increase in P-tau, sTREM2 may be closely linked with Aβ-triggered tau phosphorylation occurring after 
Aβ42  accumulation11,28. Tau aggregations might affect the microglial activation state, suppressing Aβ clearance 
and producing  neurodegeneration29,30. sTREM2 could serve as a marker for the tau-dependent pathogenetic 
pathway of  AD31,32.

Plasma sTREM2 levels were found to be strongly correlated with CSF neurofilament light chain (NfL). These 
results are in accordance with those of prior  studies33. Increased levels of NfL are thought to represent axonal 
damage induced by neuroinflammatory conditions, typically exemplified by multiple  sclerosis34. These two pro-
teins moving in the same direction indicate that sTREM2 can reflect microglial activation and consequent neu-
roinflammation. The comparison of CSF sTREM2 and plasma sTREM2 levels revealed no definite relationship 
with AD continuum. The CSF sTREM2 levels showed a trend toward having an inverse correlation with the 
plasma sTREM2 levels. This disconnect between CSF sTREM2 and plasma sTREM2 is somewhat difficult to 
explain. In multiple sclerosis, there is a strong positive correlation between CSF NfL and plasma NfL, indicating 
the same direction for peripheral and central  neuroinflammation13,35. In AD, however, the relationship between 
CSF sTREM2 and plasma sTREM2 is not straightforward, and previous reports on this are  inconsistent36–38. 
One study performed on AD showed a significant association between peripheral sTREM2 and CSF sTREM2 
 levels13. The opposite results were reported in a study performed on AD and healthy subjects, where increased 
levels of CSF sTREM2 were observed in AD patients, particularly in the early stage; however, plasma levels 
were not different between the two groups, suggesting incorrect plasma sTREM2  levels11,39. In AD, the plasma 
sTREM2 levels may not necessarily reflect the CSF sTREM2 levels, and may not follow the same dynamics as 
CSF  sTREM233,40. Further studies are required to clarify this.

It is well known that there is an age-related increment in tau pathology, as with the increasing production of 
tau protein in the brain of aging  individuals41–43, however the different way that age impacts the CSF sTREM2 
and tau levels is  intriguing44,45. Higher levels of plasma sTREM2 were associated with older age, whereas lower 
levels of tau were correlated with older age. Aging per se is represented by a chronic and systemic low-grade 
inflammatory process. In this context, increased levels of plasma sTREM2, a potential neuroinflammatory bio-
marker, are not surprising in older subjects, but decreased levels of CSF P-tau and T-tau in the elderly are quite 
puzzling, even more so given the apparent positive correlation between the CSF sTREM2 and tau levels. These 
are the findings derived from the group as a whole across the amyloid and clinical status. When we focused on 

Figure 4.  Effect of age on biomarkers. All participants were categorized into three groups: amyloid-negative, 
amyloid-positive early-onset (younger than age 65), and amyloid-positive late-onset. The tau pathology over the 
age course was negatively correlated with CSF P-tau S199 only in the early-onset amyloid-positive group, but 
this was not significant (a,b). In the case of plasma sTREM2, the amyloid-negative group still showed a strong 
positive correlation with age (c). Statistical analysis was performed by linear regression analysis.
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the AD continuum, however, the age effect on the CSF tau levels  disappeared46. As we broke down the subjects 
into earlier onset (< 65 years) and late onset AD (Fig. 4), we found that this inverse relationship was primarily 
driven by the earlier onset AD patients. It is well known that EOAD has higher AD pathology burden including 
P-tau47–51. Since a significant proportion of earlier onset AD subjects happened to be enrolled into our study, this 
age disproportion was likely to have affected the results, giving rise to the spurious finding.

Our study has several limitations. First, this is a single-center prospective study; thus, sampling bias might 
exist. Second, with many groups present based on the amyloid status and cognitive severity, the sample size 
of each group is not large enough to show sufficient statistical power; the validation of our findings through a 
large-scale study is required. Third, the data on biomarkers in this study are from the baseline of this cohort and 
longitudinal changes in sTREM2 are not available. It would be more interesting if we continued to collect follow-
up data on biomarkers in this cohort to see how the sTREM2 levels fluctuate over the course of AD. Fourth, we 
chose P-tau S199 for tau hyperphosphorylation status over P-tau181 or P-tau217 either of which is generally 
preferred for phosphorylated tau measurement. Prior to this study, we verified that P-tauS199 was comparable 
to the other epitopes through a literature  search52,53. Fifth, we did not incorporate the apolipoprotein E genotype 
into the relationship between sTREM2 and other biomarkers, which needs to be further  explored54,55.

However, despite these limitations, to the best of our knowledge, to date, this is the first attempt to explore 
the importance of sTREM2 in relation to other AD biomarkers using both CSF and plasma in individuals with 
and without AD pathology. We are planning to analyze forthcoming longitudinal data using more competitive 
markers such as Aβ42/Aβ40 ratio, P-tau 181 and P-tau 231 in order to solidify our data.

Conclusion
The results of this study suggest that soluble TREM2 may serve as a potentially useful biomarker for the micro-
glial status and consequent neuroinflammation in the AD continuum. Thus, great emphasis should be placed 
on sTREM2 so as to obtain a more complete picture of AD.

Methods
Participants. We enrolled 104 participants prospectively from the memory clinic of Asan Medical Center, 
Seoul, Korea from June 2018 to July 2020. All participants or their proxies signed an informed consent form. All 
subjects underwent brain MRI, comprehensive neuropsychological testing, fluorine-18  [18F]-florbetaben amy-
loid positron emission tomography (PET), and CSF analysis. Subjects were included based on the following cri-
teria: (1) aged over 40 years and under 90 years; (2) no evidence of parenchymal lesions that could influence the 
cognitive function based on brain MRI. Three subjects were excluded from the dataset because of the withdrawal 
of consent and thus a total of 101 subjects were included in this study.

All PET images were obtained using Discovery 690, 710, and 690 Elite PET/computed tomography scanners 
(GE Healthcare; Chicago, IL, USA). Amyloid PET images were collected for 20 min, beginning 90 min after injec-
tion of 300 ± 30 MBq 18F-florbetaben. Two neurologists (H.J.K and J.H.L) and two nuclear medicine physicians 
(J.S.K. and M.O.) reviewed the PET scans according to the predefined regional cortical tracer uptake (RCTU) 
and brain amyloid plaque load (BAPL) scoring system. In general, four regions of interest, comprising the frontal, 
temporal, and parietal cortex and posterior cingulate/precuneus, were interpreted in the visual assessment of the 
 [18F]-florbetaben PET scans. The RCTU scores were then condensed into a single three-grade scoring system 
for each PET scan (BAPL score): 1, no β-amyloid load; 2, minor β-amyloid load; 3, significant β-amyloid load. 
The final score was reached by consensus, with a BAPL score of 1 regarded as amyloid negative (Aβ-) and BAPL 
scores of 2 and 3 considered to be amyloid positive (Aβ+)56. All participants were classified into one of these 
two groups according to the PET results.

We divided subjects into amyloid positive and negative groups according to the amyloid status on PET 
irrespective of the cognitive status. In each group, therefore, there exists a cognitive continuum spanning from 
SMI to dementia.

All of the participants underwent the following blood tests: complete blood count; lipid profile; erythrocyte 
sedimentation rate (ESR); vitamin  B12, folate, and homocysteine serum level test; and thyroid function test. The 
apolipoprotein E (APOE) genotype was identified after extracting genomic DNA from the venous blood. All 
CSF samples were subjected to complete cell count, protein, and albumin tests.

This study was approved by the Institutional Review Board of Asan Medical Center, Republic of Korea 
(#2018–0614). All methods were carried out in accordance with relevant guidelines and regulations.

Reagents. Proximity ligation assay (PLA) buffer, comprising 1 mM D-biotin (Life Technologies), 0.1% puri-
fied BSA (Bovogen), 0.05% Tween-20 (Sigma), 100 nM goat IgG (Sigma), 0.1 μg/μL salmon sperm DNA (Life 
Technologies), and 5 mM EDTA in PBS (pH 7.4) (Sigma), was stored at – 20 ℃. Conjugate probe sequences 
were provided as below. Streptavidin conjugated oligonucleotide SLC1 (Streptavidin-5′-CGC ATC GCC CTT 
GGA CTA CGA CTG ACG AAC  CGC TTT GCC TGA CTG ATC GCT AAA TCGTG-3′) and SLC2 (5′–TCG TGT 
CTA AAG TCC GTT ACC TTG ATT CCC CTA ACC CTC TTG AAA AAT TCG GCA TCG GTGA-3′-streptavidin) 
were purchased from Solulink. The ligation was conducted by using polymerase chain reaction (PCR) primer 
1 (reverse) 5′-GGG AAT CAA GGT AAC GGA CTT TAG -3′, PCR primer 2 (forward) 5′-CAT CGC CC TTG GAC 
TACGA-3, and PCR primer 3 (splint) 5′-TAC TTA GAC ACG ACA CGA TTTAG TTT-3′.

Solid phase proximity ligation assay (spPLA). To detect sTREM2 in the CSF and plasma, a spPLA was 
conducted following the previous  protocol57. spPLA is able to detect proteins from 1 or 10 nM to femtomolar 
concentrations. sTREM2 concentrations in the CSF and plasma were measured using biotinylated anti-sTREM2 
polyclonal antibody and recombinant TREM2 protein (R&D systems). Briefly, 1 mg/mL Dynabeads MyOne 
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Streptavidin T1 (Invitrogen) was incubated with 50 nM biotinylated anti-sTREM2 polyclonal antibody (R&D 
systems) for 1 h at room temperature (RT) under rotation to immobilize the sTREM2 antibodies to the mag-
netic beads. The magnetic beads were washed twice with 0.05% Tween 20 in 1X PBS (washing buffer). During 
the reaction, plasma samples were diluted twofold in PLA buffer, and the recombinant TREM2 protein (R&D 
systems) was serially spiked in PLA buffer from 1 nM to 1 fM as a standard. The diluted plasma samples and 
serial dilution of the standards were then mixed with the antibody-conjugated magnetic beads and incubated 
for 90 min under rotation. Then, the beads were washed two times with washing buffer. The PLA probes were 
formed by separately incubating 50 nM of the streptavidin–oligonucleotide conjugates SLC1 and SLC2 with 
50 nM biotinylated anti-sTREM2 antibody for 1 h at RT. Prior to use, the SLC1- and SLC2-anti-sTREM2 anti-
bodies were mixed at an equal ratio and incubated for 5 min at RT. The final concentration of each probe was 
500 pM. Finally, the magnetic beads were mixed with 1 nM of PLA probe mix and incubated for another 90 min 
at RT followed by washing twice with washing buffer. Real-time PCR mix (1X PCR buffer [QIAGEN] comprising 
2.5 mM  MgCl2 [QIAGEN], 0.22 μM Sybr Green [Life Technologies], 0.1 μM of each primer [reverse primer, for-
ward primer, and splint primer] [IDT], 80 μM ATP [ThermoFisher], 0.2 mM dNTP with U [ThermoFisher], 0.03 
U/μL Taq polymerase [QIAGEN], 0.01 U/μL T4 DNA ligase [ThermoFisher], 0.02 U/μL UNG [ThermoFisher], 
and nuclease-free water [QIAGEN]) was prepared as previously described. Before the cycling stage, a heat incu-
bation step was performed for 15 min at 95 °C, and application steps were performed at 40 cycles for 30 s at 
94  °C, 1 min at 50  °C, and 1 min at 72  °C. A StepOnePlus real-time PCR instrument (Applied Biosystems) 
was used for the experiment and analysis. To investigate the performance efficiency of sTREM2 spPLA, LLOD, 
LLOQ, precision, and dilutional linearity were measured. The LLOD formula was CtLOD = CtN-2SN. CtN is the 
average of Ct value gained from the background noise and SN is the standard deviation of this value. sTREM2 
spPLA had inter-assay precision < 17.5% and intra-assay precision < 2%. In terms of inter-assay precision, previ-
ous study explained that the relatively large coefficients of variation are the results of the PCR step, which can be 
highly variable at low target copy numbers. The sTREM2 spPLA showed LLOD 50.58 pg/mL, LLOQ 151.75 pg/
mL and average 95.9% dilutional linearity.

Plasma and CSF biomarkers. To measure the levels of the biomarkers, we conducted ELISA and SIMOA 
following the instructions provided from commercial suppliers. For p-tau S199 measurement, Tau (Phospho) 
pS199 Human ELISA Kit (Invitrogen) was performed with CSF samples. Briefly, standards and samples were 
spiked with standard diluent buffer at 1:1 ratio and added 96 wells plate coated with capture antibodies against 
P-Tau S199 for 2 h. Then, unattached antigens were washed out. The human P-Tau S199 detection antibody solu-
tion applied to the wells for 1 h following 30 min of incubation with anti-rabbit IgG HRP solution. Finally, the 
chromogen was added to each well and incubated for 30 min. The reaction was stopped with stop solution and 
read the absorbance at 450 nm. For total-tau in CSF, human tau (Total) ELISA kit (Invitrogen) was conducted. 
The standards and samples were diluted with standard diluent buffer at 1:1 ratio and added to the wells coated 
with capture antibodies for 2 h at room temperature. After washing, human total tau biotin conjugate antibodies 
were added to each well for 1 h. Then, streptavidin-HRP solution was applied to the wells for 30 min. Finally, sta-
bilized chromogen and stop solutions were added to each well. The level of total tau in CSF was read at 450 nm. 
In case of Aβ42 levels, the CSF was diluted threefold with sample diluent due to high endogenous levels. The 
standards and samples were added and incubated for 2 h at 2–8 °C. After 4 times of washing, human amyloid β 
(aa1-42) conjugate added to each well and incubated for another 2 h at at 2–8 °C. The wells were washed out and 
substrate was applied and reacted with for 30 min at room temperature. The level of Aβ42 was determined using 
a microplate reader (Biotek) set to 450 nm.

For plasma neurogranin, Human Neurogranin ELISA (Lifespan Biosciences) was used. Samples were applied 
to the wells for 1 h. After washing step, detection reagent A and B was added to the wells for 1 h each at 37 °C. 
TMB substrate reaction was proceeded for 15 min and the optical density was determined at 450 nm. Finally, 
the level of NfL in CSF and plasma was detected using Simoa NF-light Advantage Kit. Plasma and CSF were 
diluted 4-folds and 100-folds, respectively. CSF and plasma NfL were measured in the DNA Link Laboratory, 
South Korea, on the Simoa-HD1 platform as previously  described57.

Telomere length (TL) assay. DNA was extracted from the whole blood using D-DEX IIb RBC Lysis 
Buffer and D-DEX IIb Cell Lysis Buffer (Intron, MA, USA). DNA hydration was performed with 300 μL of DNA 
hydration solution (QIAGEN, Hilden, Germany). TL analysis was carried out using a nonradioactive TeloT-
AGGG TL Assay (Roche Boehringer-Mannheim, Grenzach-Wyhlen, Germany) according to the manufacturer’s 
instructions. Approximately 2–4 μg of DNA from each sample was digested with Hinf I/RsaI enzyme mix and 
isolated by gel electrophoresis. DNA fragments were transferred to a nylon membrane (Millipore, Bedford, MA, 
USA) by Southern transfer and hybridized to digoxigenin (DIG)-labeled probes specific for telomeric repeats. 
The membrane was incubated with DIG-specific antibodies conjugated to alkaline phosphatase, and the probe 
was visualized by chemiluminescence detection and an image analyzer (ImageQuant LAS 4000; GE Healthcare, 
Little Chalfont, UK). The mean telomeric repeat binding factor lengths were determined by comparing them to 
the molecular weight standards.

Statistical analysis. The statistical analyses included a χ2 test to compare group differences in dichoto-
mous variables, such as sex, diabetes, hypertension, and dyslipidemia, between two groups including the effect 
of the APOE genotype. To compare the levels of CSF Aβ42, T-tau, and P-tau S199 between amyloid positive and 
negative groups, Mann–Whitney test was used. Linear regression analyses were used to demonstrate a correla-
tion between the CSF and plasma biomarkers. We defined a p-value less than 0.05 was statistically significant 
(SPSS Version 21.0; IBM Corp., Armonk, NY, USA).
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