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A B S T R A C T   

Single resonant nonlinear Schrodinger equation RNLSE has wide applications in sciences. It describes the 
transient state between self-focusing and self-defocusing polarization. This motivated researchers to study and 
investigate the physical characteristics behind. Here, we are concerned with analyzing the solutions of two-mode 
RNLSE which may reveal complex phenomena. Novel shapes of pulses propagation in optical fibers are shown 
Further, the colliding dynamics of waves are inspected. The different characteristics of pulses are defined and 
interpreted. These features are studied via finding the exact solutions of the two modes RNLSE. These solutions 
are obtained. by using the unified method. It is found that the criteria of the polarization of the two modes may 
be, mutual, or of the same polarization. Which depends on the crucial values of the coefficients of the quantum 
potential. Also, it is shown that the propagation of pulses exhibits multiple-geometric structures.Which are 
complex chirped, M-W-shaped pulses, rhombus (diamond) and tun able conoidal pulses. These are novel features 
of pulses propagation.The spectral characteristics show a variety of some important results. Here, it is inspected 
that the collision is elastic.   

Introduction 

Diverse formulation of nonlinear Schrodinger equations NLSEs were 
the objectives of huge number of research works in the literature. These 
equations are integrable when the real and imaginary parts are taken 
linearly dependent [1]. Recent works [2,3] show that the solutions of 
NLSEs with Kerr nonlinearity describe pulses that exhibit common 
shapes. A class of an infinite number of the stable bright and dark soli-
ton, was obtained [3] are. Non local NLSE was introduced in [4]. In [5], 
the generalized Darboux transformation was performed to solve NLSE. 
The dynamics of rogue waves of multiple orders were presented, Some 
relevant properties are remarked. It was found that NLSEs possess an 
infinite number of conservation laws [6]. The solutions of NLSE coupled 
with Maxwell equations have shown standing waves, which are non- 
radially symmetric [6].The analytic solutions of thel NLSE under peri-
odic boundary conditions, in the case of the self-focusing Kerr medium, 
were presented in [7]. NLSEs may take may have a diversity of forms. 
They can describe optical wave propagation in highly dispersive me-
dium. It was shown that pulses propagation may lead to a variant 
refractive index Kerr medium [1]. Which, in turn may produce a phase 
shift in the pulse [8] In mathematical terms, an extra nonlinear 

correction to the NLSE is considered. Indeed, for nonlinear short-pulse 
propagation in optical fibers, the governing equation has to include 
the pulse envelope derivative.Thus, symmetric pulse will undergo an 
asymmetric self-phase modulation [9]. Further, the effect of self-phase 
modulation of a pulse propagation was analyzed in [10]. Tun-able de-
lays in optical fiber via a dispersive one or double stages of broadening 
the spectral content, are observed [11]. It is found that the RNLSE results 
when describing the transmission of uni-axial waves in a cold colli-
sionless plasma subject to a transverse magnetic field [11]. RNLAEoc-
cupied a wide area of research in the literature [12–25].In those works, 
the solutions obtained are mainly bright (dark) soliton or lumps.Also, 
further relevant research work on RNLSE were carried in the literature 
[26–38]. In[26] the self-similar pulse propagation of optical pulses, for 
RNLSE with time dependent coefficients, was studied. In the present 
work different geometric shapes of pulses are inspected. In [27], The 
resonant pulses are analytically investigated in terms of Gaussian beams, 
Airy beams, and periodic beams. While in [28], the conservation laws 
are constructed. In [29], exact solutions were found with varying the 
refractive index. In [30,31], exact solutions were obtained when the 
coefficients are time dependent. In [32,33], the modulation instability 
was studied. In [24] exact solutions were obtained in the presence of 
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external periodic force. Further relevant works in this area were carried 
in the literature [43–48]. 

In the present work, we study the TM-RNLSE, which was not 
considered in the literature, and it is shown that novel shapes; M-W and 
diamond shapes of pulses propagation, are observed. 

The model equations 

The single RNLSE reads 

ip(x, t)t + αp(x, t)xx + λ|p(x, t)|2p(x, t) − β
|p(x, t)|xx

|p(x, t)|
p(x, t) = 0, (x, t)∊R × R+

(1) 

We mention that when β = 0, (1) reduces to the conventional NLSE, 
where α is the dispersion coefficient and λ is the refractive index that 
stands to self-focusing or self-defocusing polarization when λ > 0 or λ <

0 respectively. Thus when β ∕= 0 , (1) describes the pulses propagation 
in an intermediate state between self-focusing and self-defocusing. The 
last term stands for quantum potential. Which is observed in the prop-
agation of chiral solitons in quantum hall-effect [26]. The mentioned 
potential was introduced in [27]. The Eq. (1) may be considered as the 
response of a resonance- medium to an action of a normal wave with 
complex amplitude. Further, it can be recast to Madeluing fluid equa-
tions [28]. The two-mode RNLSE, (TM- RNLSE), is 

ip(x,t)t+α1p(x,t)xx+λ1|ψ(x,t)|2p(x,t)− β1
|φ(x,t)|xx

|φx,t)|
p(x,t)=0,

iψ(x,t)t +α2ψ(x,t)xx+λ2|p(x,t)|2ψ(x,t)− β2
|ψ(x,t)|xx

ψ(x,t)| ψ(x,t)=0, (x,t)∊R×R+,

(2)  

where p and q are complex functions, x and t represent the normalized 
displacement ant time variables. 

The TM-RNLSE in (2) leads to affect the pulses propagation in optical 
fibers. That is, on the characteristic parameters.Thus, we are led to 
identify these physical parameters that describe the pulses propagation 
in such a complex medium. We write 

p(x, t) = |p(x, t)|ei(k1x− ω1 t), φ(x, t) = |φ(x, t)|ei(k2x− ω2 t), (3)  

where |.|stands for the intensity. k and ω are the wave number and 
frequency which are defined in 

k1 =

∫
∫

R×R+

|p(x, t)x|dxdt

∫
∫

R×R+

|p(x, t)|dxdt
, ω1 =

∫
∫

R×R+

|p(x, t)t|dxdt

∫
∫

R×R+

|p(x, t)|dxdt
.

k2 =

∫
∫

R×R+

|φ(x, t)x|dxdt

∫
∫

R×R+

|φ(x, t)|dxdt
, ω2 =

∫
∫

R×R+

|φ(x, t)t|dxdt

∫
∫

R×R+

|φ(x, t)|dx dt

(4) 

The spectrum is defined by 

P(k0, t) =
1

2π

∫

R
φ(x, t)e− ik0xdx., Q(k0, t) =

1
2π

∫

R
ψ(x, t)e− ik0xdx. (5) 

Now, we find the exact solutions of (2). To this end, we introduce the 
following transformations [29]. 

p(x, t) = (u1(x, t)+ iv1(x, t))ei(k1x− ω1 t), ψ(x, t) = (u2(x, t)+ iv2(x, t))ei(k2x− ω2 t).

(6) 

It is worthy to mention that the colliding dynamics can be inspected, 
whenever the different pulses structures are determined. 

By inserting (6) into (2), we get the following equations for the real 
and imaginary parts of (2); 

u4
1(− k2

1α1 + ω1) + λ1u1(u2
2 + v2

2) + v4
1(− k2

1α1 + ω1 + λ1(u2
2 + v2

2))

− β1v2
1u1x 2̂ − u3

1(v1t + 2k1α1v1x + (− α1 + β1)u1xx) − u1v1(− 2β1u1xv1x

+v1(v1t + 2k1α1v1x + (− α1 + β1)u1xx)) + v3
1(u1t + 2k1α1u1x + (α1 − β1)v1xx)

+u2
1(− β1v2

1x + v1(2v1(− k2
1α1 + ω1 + λ1u2

2 + v2
2)) + u1t + 2k1α1

+(α1 − β1)v1xx)) = 0,
(7)  

v1(v1t + 2k1α1v1x − α1u1xx)+ u1(u1t +α1(2k1u1x + v1xx)) = 0, (8)   

u4
2(− k2

2α2 +ω2 +λ2(u2
1 +v2

1)) − u3
2(v2t +2k2α2v2x +(− α2 +β2)u2xx)

− u2v2(− 2β2u2xv2x +v2(v2t +2k2α2v2x +(− α2 +β2)u2xx))

+v2
2((− k2

2α2 +ω2 +λ2(u2
1 +v2

1))v
2
2 − β2u2

2x +v2(u2t +2k2α2u2x +(α2 − β2)v2xx))

+u2
2(− β2v2

2x +v2(2(− k2
2α2 +ω2 +λ2(u2

1 +v2
1))v2 +u2t

+2k2α2u2x +(α2 − β2)v2xx))=0,
(9)  

u2
2v2(v2t + 2k2α2v2x − α2u2xx) + v3

2(v2t + 2k2α2v2x − α2u2xx)

+u2v2
2(u2t + α2(2k2u2x + v2xx)) + u3

2(u2t + α2(2k2u2x + v2xx)) = 0.
(10) 

Here, we search for traveling waves solutions of (7)-(10). To this end 
we put ui(x, t) = Ui(z), vi(x, t) = Vi(z), i = 1,2 and z = μx + σt. Thus, 
(7)–(10) reduce, respectively, to 

U4
1(− k2

1α1 + ω1 + λ1(U2
2 + V2

2)) + U3
1(− (2k1α1μ + σ)V ′

1 + (α1 − β1)μ2U′ ′
1)

+U1V1(− ((2k1α1μ + σ)V1 − 2β1μ2U′

1)V
′

1 + (α1 − β1)μV1U ′ ′
1)

+V2
1(V1(− k2

1α1 + ω1 + λ1(U2
2 + V2

2) − β1μ2U′2
1 + V1((2k1α1μ + σ)U′

1

+(α1 − β1)μ2V
′ ′
1)) + U2

1(2V2
1(− k2

1α1 + ω1 + λ1(U2
2 + V2

2))

− β1μ2V ′2
1 + V1((2k1α1μ + σ)U′

1 + (α1 − β1)μ2V ′ ′
1) = 0,

(11)  

V1((2k1α1μ+ σ)V ′

1 − α1μ2U′ ′
1)+U1((2k1α1μ+ σ)U′

1 +α1μ2V ′ ′
1) = 0, (12)  

U4
2(− k2

2α2 + ω2 + λ2(U2
1 + V2

1)) + U3
2(− (σ + 2k2α2μ)V ′

2

+(α2 − β2)μ2U ′ ′
2) + U2V2(− ((2k2α2μ] + σ)V2 − 2β2μ2U ′

2)V
′

2

+(α2 − β2μ2V2U′ ′
2) + V2

2((− k2
2α2 + ω2 + λ2(U2

1 + V2
1)V

2
2

− β2μ2U
′2
2 + V2((2k2α2μ + σ)U ′

2 + (α2 − β2)μ2V
′ ′
2)) + U2

2(2(− k2
2α2 + ω2+

λ2(U2
1 + V2

1))V
2
2 − β2μ2V ′2

2 + V2((2k2α2μ + σ)U′

2 + (α2 − β2)μ2V ′ ′
2)) = 0,

(13)  

U2
2V2((2k2α2μ + σV ′

2 − α2μ2U′ ′
2) + V3

2((2k2α2μ + σ)V ′

2 − α2μ2U′ ′
2 )

+U2V2
2((2k2α2μ + σ)U′

2 + α2μ2]) + U3
2((2k2α2μ + σ)U′

2 + α2μ2V
′ ′
2 ) = 0.

(14) 

Here,the exact solutions of (11)–(14) (or (7)–(10)) are found by using 
the unified method [39–42]. By this method solutions of a NLPDE are 
written in a polynomial or a rational functions (PF or RF) in auxiliary 
functions, with appropriate auxiliary equations. 

PF. Solutions of (11)–(14) 

The solutions are represented in polynomial forms in an auxiliary 
function that satisfies an auxiliary equation, 

U1(z) =
∑n1

i=0
ai gi(z), V1(z) =

∑n2

i=0
bi gi(z),

U2(z) =
∑m1

i=0
hi gi(z), V2(z) =

∑m2

i=0
pi gi(z),

g′(z)p
=

∑pk

i=0
ci gi(z), p = 1, 2,

(15)  

where ni,mi and k are integers. First we consider the case p = 1. Here, 
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the objective is to finding ni,mi and k. To this end, balance of the 
nonlinear and higher order derivative terms are invoked. Which de-
termines ni = ni(k), mi = mi(k), which is called the balance condition. 
These conditions read ni = mi = k − 1,i = 1,2. To determine the value of 
k, we need to evaluate: (i) The number of equations that result from 
substituting (15) into. (11)–(14) and setting the coefficients o gi(z), j = 0,
1, 2 equal to zero (sayr(k)). (ii) The number of arbitrary paymasters {aj,

bj, hi, pi, cj}in (15) (says(k)), and the highest order derivative (say m). 
When (11)–(14) are integrable, we have r(k) − s(k)⩽m, which leads to 
get k. This last condition is the consistency condition and, in the present 
case, it reads 1⩽k ≤ 3. By the same the case p = 2 is dealt with. 

Elliptic pulses: p = 2 and k = 2. 

In this case, (15) becomes 

U1(z) = a1g(z) + a0, V1(z) = b1g(z) + b0,

U2(z) = h1g(z) + h0, V2(z) = p1g(z) + p0

g′

(z) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

c4g(z)4
+ c2g(z)2

+ c0

√

.

(16) 

By substituting (16) into (11)–(14), and for the real and imaginary 
parts to be linearly dependent, we take b0 = a0b1/a1and p0 = h0p1/h1. 
By setting the coefficients of g(z)j

, j = 0,1,…, equal to zero, we get 

Fig. 1. Figs. 1(i)–(iii) In (i) 3D plot to Rep(x, t) is displayed against x and t. In (ii) 3D plot to |p(x, t)| against x and t. In (iii) Rep(x, t) is displayed against x for different 
values of t. When a0 = 2, a1 = 1.5, h1 = 0.8, λ11.5, α1 = 5.5, β1 = 0.5, σ = 5, μ = 6, k1 = 1.5, λ2 = − 0.5, α2 = 5.8, k2 = 3, β2 = 6,m = 1.5, n = 1.3. 

Fig. 2. Fig. 2(i), (ii) for the first and second modes respectively. The 3D- and contour plots are shown in (i) and (ii) respectively.When B0 = − 20,a1 = 5,h1 = 0.7,
λ1 = 1.5, α1 = 3.5, β1 = 0.5, σ = 5, = 0.6, k1 = 0.5, λ2 = 0.5, α2 = 3.8, β2 = 0.8, k2 := 0.2, a = 0.7, c = 1.3, b := 4. 
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ω1 =
h2

1k2
1α1 − (h2

1 + p2
1)h

2
0λ1

h2
1

, = −
a0h1

2a1
, c2 = 0,

p1 = ±
1̅
̅̅̅̅
λ1

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− h2
1λ1 − 2c4α1μ2 + 2c4β1μ2

√

, ao :=
a1

̅̅̅̅̅
c2

√

̅̅̅̅̅̅̅̅̅̅̅
− 2c4

√ ,

(17)  

ω2 = − (
k2

2((a2
1 + b2

1)λ2 − 2c4β2μ2)

2c4μ2 , b1 = ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− a2

1λ2 + 2c4(− α2 + β2)μ2
√

̅̅̅̅̅
λ2

√ .

(18) 

The solution of the auxiliary equation, in (16), is 

c4 = − m2, c0 = n2, g(z) = ±
nsn(

̅̅̅
2

√
nmz, 1̅̅

2
√ )

m
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2 − sn(
̅̅̅
2

√
nmz, 1̅̅

2
√ )

2
√ , z = μx+ σt. (19) 

Finally the solutions of (11)–(14) are 

It is worthy to mention that the presence of ± signs reflect a fact that 
each solution ui(x, t) and vi(x, t), i = 1,2 can be expressed by two solu-
tions which may be called right and left solutions, They correspond to 
the upper and lower signs respectively. Here, we confine our selves to 
consider the upper sign. 

The results in (20) are represented in Figs. 1(i), (ii) and (iii) for the 
first mode. 

Fig. 1(i) shows complex chirped while (ii) shows Mixed M-W-shaped 
pulses. Fig. 1(iii) shows chaotic waves. 

The critical values of βi, i = 1, 2 that distinguish the polarization of 
the first and second modes are given in the following 

Fig. 3. Fig. 3(i) and (ii). The 3D and contour plots are displayed against x and t for the same caption as in Figs. 2.  

Fig. 4. Fig. 4(i) and (ii) are displayed for the same caption as in Figs. 2(i) and (ii).  

u1(x, t) = ±

a1 n sn(
̅̅̅
2

√
nmz,

1̅
̅̅
2

√ )

m
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2 − sn(
̅̅̅
2

√
nmz,

1̅
̅̅
2

√ )
2

√ , v1(x, t) = ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− a2
1λ2 + 2c4(− α2 + β2)μ2

√

a1
̅̅̅̅̅
λ2

√ u(x, t),

u2(x, t) =
h1

a1
u1(x, t), v2(x, t) = ±

1
a1

̅̅̅̅̅
λ1

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− h2
1λ1 − 2c4α1μ2 + 2c4β1μ2

√

u1(x, t).

(20)   
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λ1 < 0, β1 >
− h2

1λ1 + 2m2α1μ2

2m2μ2 , or λ1 > 0, β1 <
− h2

1λ1 + 2m2α1μ2

2m2μ2 ,

λ2 < 0, β2 >
− a2

1λ2 + 2m2α2μ2

2m2μ2 , or λ2 > 0, β2 <
− a2

1λ2 + 2m2α2μ2

2m2μ2 .

(21)  

Lumps: p = 2 and k = 2 

In this case we consider the solutions given in (16), but the auxiliary 
equation is 

g′

(z) = cg(z)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

a2 − b2g(z)2
√

. (22) 

By using (16) and (22) in (11)–(14), we have 

a0 = 0, h0 = 0, ω1 = k2
1α1 + a2c2(− α1 + β1)μ2,

p1 = ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− h2
1λ1 − 2b2c2(− α1 + β1)μ2

√

̅̅̅̅̅
λ1

√ ,

(23)  

b1 = ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− a2

1λ2 + 2b2c2μ2(α2 − β2)
√

̅̅̅̅̅
λ2

√ , ω2 = k2
2α2 − a2c2(α2 − β2)μ2. (24) 

Finally the solutions are, where the upper sign is taken, 

u1(x,t)=
(aa1sech(a(B0+cz))/

b
, v1(x,t)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− a2
1λ2+2b2c2μ2(α2 − β2)

√

a1
̅̅̅̅̅
λ2

√ u1(x,t),

u2(x,t)=
h1

a1
u1(x,t), v2(x,t)=

1
a1

̅̅̅̅̅
λ1

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− h2
1λ1 − 2b2c2(− α1+β1)μ2

√

u1(x,t).

(25) 

The results for the first and second modes are shown in Figs. 2, (i) and 
(ii) respectively. 

Figs. 2(i) shows multiple lumps while (ii) shows wavy soliton. 
The characteristics of the pulses configurations are demonstrated in 

what it follows. We mention that the Eqs. (3)–(5) are used. The spectrum 
for the first mode is shown in Figs. 3 (i) and (ii). 

Figs. 3 show chaotic optical pulses near k0 = 0. Otherwise, it shows 
Random optical pulses. 

The frequencies and wave lengths are shown in Figs. 4(i) and (ii). 
Here, both ωi and ki, i = 1, 2 are constant for any parameters in the 

solution (25). 
In this case the polarization of the two modes is determined when-

ever the following equations hold 

λ1 < 0, β1 >
− h2

1λ1 + 2b2c2α1μ2

2b2c2μ2 or λ1 > 0, β1 <
− h2

1λ1 + 2b2c2α1μ2

2b2c2μ2 ,

λ2 < 0, β2 >
− a2

1λ2 + 2b2c2α1μ2

2b2c2μ2 or λ2 > 0, β2 <
− a2

1λ2 + 2b2c2α1μ2

2b2c2μ2 .

(26)  

Fig. 5. Figs. 5(i)–(iii). The 3D and contour plots are shown in (i) and (ii). In (iii0 the solutions in (30), for the first mode,are displayed against x for different values 
of t. 

Fig. 6. Figs. 6(i) and (ii). The 3D plot and the variation against x for different values of time for the second mode are shown in (i) and (ii) respectively. The same 
caption as in Figs. 5(i) and (ii) are used.. 
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Solitary: when p = 1 and k = 2 

In this case we consider the solutions given in (16), but the auxiliary 
equation is 

g′

(z) = c2g(z)2
+ c1g(z)+ c0. (27) 

By inserting (16) and (27) in (11)–(14), we have 

ω1 = k2
1α1 −

h2
0(h

2
1 +p2

1)h
2
0λ1

b2
1

+
a1c1c0(− α1 +β1)μ2

a0
, c0 =

a0(a1c1 − a0c2))
a21

,

p1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− h2
1λ1 +2c2

2(− α1 +β1)μ2
√

̅̅̅̅
λ‘

√ , h0 =
h1

4a1c2
(− 2a0c2 +3c1a1).

(28)  

b1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2c2

2(− α2 + β2)μ2a2
1λ2

√

̅̅̅̅̅
λ2

√ , c2 =
a1c1

2a0
, ω2 = k2

2α2. (29) 

Finally, we have 

g(z) = −
a0(2 + c2z + 2a1a0A0)

a1(c1z + 2a1a0A0)
, u1(x, t) = −

2a0

2a1a0A0 + c1z
,

v1(x, t) = −

̅̅̅
2

√
a0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− 2a2
0λ2 + c2

1(− α2 + β2)μ2
√

(2a1a0A0 + c1z)
̅̅̅̅̅
λ2

√ , u2(x, t) = h1u1

v2(x, t) = −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− 4h1λ11a0 + 2a1c1(− α1 + β1)μ2

√

(2a1a0A0 + c1z)
̅̅̅̅̅
λ1

√ uz = μx + σt.

(x, t), (30) 

The results in (30) for the first and second modes are displayed in 
Figs. 5(i)–(iii) and 6(i) and (ii). 

When A0 = 100,a0 = 2,a1 = 5,c1 = 4,h1 = 0.8,λ1 = − 0.5,α1 = 1.5,
β1 = 3,σ = 5,μ = 6; k1 = 5,λ2 = 2.5,α2 = 0.8,β2 = 1.8,k2 := 10. 

Figs. 5 (i) shows soliton cascade, (ii) shows random optical lattice 
and (iii) show self modulation waves. 

The behavior of the solutions for second mode are shown in Figs. 6(i) 
and (ii). 

In this figure, the behavior of the solution is mainly the same as in 
Figs. 5. 

RF solutions of (11)–(14) 

When p = 1 and k = 1 

Here, we find rational solutions in the form 

U1(z) =
a1g(z) + a0

s1g(z) + s0
, V1(z) =

b1g(z) + b0

s1g(z) + s0
,

U2(z) =
h1g(z) + h0

s1g(z) + s0
, V2(z) =

p1g(z) + p0

s1g(z) + s0
.

g′

(z) = c1g(z) + c0

(31) 

For linearly dependent solutions, we takeb0 = a0b1
a1

, p0 = h0p1
h1

. By 
inserting (31) into (11)–(14), we get   

Fig. 7. Figs. 7(i), and (ii). The 3D and contour plots are displayed Rep(x, t) are displayed when a0 = 0.2,s1 = 1.5,B0 = 4,c = 1.8,a1 = 0.5,h1 = 0.8,α2 = 1.5,λ1 =

0.09, λ2 = − 1.5, μ = 0.7, σ = 1.5, a = 1.1, = 4, c = 1.8, h0 = 3.1, s0 = 1.3, β2 = − 0.4, β1 = 3.7. 

h0 =
h1(a0c2

1s3
1(− α1 + β1)μ2 + 2a1s0λ1(h2

1 + p2
1 − c2

1s2
1(− α1 + β1)μ2))

2a1(h2
1 + p2

1)s1λ1
,

c0 =
1

12a1(h2
1 + p2

1)s1λ1
c1(8a1s0λ1(h2

1 + p2
1) + c2

1s2
1(α1 − β1)μ2) + 4a0s1λ1(h2

1 + p2
1) + c2

1s2
1(− α1 + β1)μ2),

ω2 = k2
1α1 −

(h2
1 + p2

1)λ1

s2
1

, p1 =
1̅̅̅
̅̅̅̅

2λ1
√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− 2h2
1λ1 + c2

1s2
1(− α1 + β1)μ2

√

,

(32)   
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ω2 = k2
2α2 −

(a2
1 + b2

1)λ2

s2
1

, b1 =
1̅̅̅
̅̅̅̅

2λ2
√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− 2a2
1λ2c2

1s2
1(− α2 + β2)μ2

√

(33) 

Finally the solutions are 

u1(x, t) =
a1(a0s1 + 2a1A0ec1zs1 − a1s0)

s1(− a0s1 + a1(2A0ec1zs1 + s0)
, v1(x, t) =

b1

a1
u1(x, t),

u2(x, t) = −
h1

a1
u1(x, t), v2(x, t) =

p1

a1
u1(x, t).

(34)  

When p = 1 and k = 2 

In this case we use (31) but the auxiliary equation is taken 

g
′

(z) := c2 g(z)2
+ c1 g(z)+ c0, (35)  

g[z]g[z]and we take b0 = a0b1
a1

, and p0 =
h0p1
h1

. By substituting from (31) 
and (35) into (11)–(14), we get   

ω2 = −
k2

2(a
4
1λ2 + a2

1b2
1λ2 − 32a2

0c2
2s2

1β2μ2)

32a2
0c2

2s2
1μ2 , h0 =

a0h1

a1
,

b1 = ̅̅̅̅̅
λ2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− a4
1λ2 − 32a2

0c2
2 2̂s2

1α2μ2 + 32a2
0c2

2s2
1β2μ2

√

.

(37) 

Finally the solutions are 

u1(x, t) =
a2

1

(a1s1 + 4a2
1a0A0s1 + 4a0c2s1z)

, v1(x, t) =
b1

a1
u1(x, t),

u2(x, t) = −
h1

a1
u1(x, t), v2(x, t) =

p1

a1
u1(x, t), z = μx + σt.

(38)  

When p = 2 and k = 2 

Here, we use (31) together with the auxiliary equation 

g′

(z) = cg(z)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

a2 − b2g(z)2
√

. (39) 

By using (31) and (39), we have  

Fig. 8. Figs. 8(i), (ii) and (iii). The spectrum, intensity frequency and wave number are shown in (i), (ii) and (iii) respectively for the same caption as in Figs. 7(i), (ii).  

ω1 = k2
1β1 −

(a0h1 − a1h0)
2
(h2

1 + p2
1)λ1

9 hs2
1

−
2a2

1h2
1(5a0h1 + a1ho)2k2

1(h
2
1 + p2

1)λ1

9c2
2h2s2

1μ2 ,

h = (3a0h1 + a1h0)
2
, c0 =

a0c2(− a2
0h2

1 + 5a1a0h1h0 + 2a2
1h2

0)

a2
1h1(5a0h1 + a1h0)

,

c1 =
4a2

0c2h2
1 + 6a1a0c2h1h0 + 2a2

1c2h2
0

a1h1(5a0h1 + a1h0)
, p =

̅̅̅̅
K

√

̅̅̅
2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

[− a2
1h2

1(5a0h1 + a1h0)
2λ1

√ ,

K = λ1(50a2
1a2

0h6
1 + 20a3

1a0h5
1h0 + 2a4

1h4
1h2

0) + 9c2
2(3a0h1 + a1h0)

4s2
1α1μ2 − 9c2

2(3a0h1 + a1h0)
4s2

1β1μ2,

(36)   

ω1 = k2
1α1 −

h2
0(h

2
1 + p2

1)λ1

h2
1s2

0
, b =

a
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

3h2
0s2

1 + 4h1h0s1s0 + h2
1s2

0

√

2
̅̅̅
2

√
h0s0

,

a1 =
ao

a2c2h2
1s3

0(α1 − β1)μ2(λ1(2h2
0p2

1s1 − 2h3
1h0s0 − 2h1h0p2

1s0) + h2
1s1(2h2

0λ1 + a2c2s2
0(α1 − β1)μ2)),

p1 =
h1

̅̅̅̅
K

√

2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

h2
0(h0s1 − h1s0)λ1

√ , K = (− 4h3
0s1 + 4h1h2

0s0)λ1 + (− α1 + β1)μ2(5a2c2h0s1s2
0 + a2c2h1s3

0),

(40)   
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ω2 = k2 2̂α2 −
(b2

1s2
0 − a2

0s2
1)λ2

s2
1s2

0
, h1 = −

h0s1

s0
,

b1 =
s1
̅̅̅
2

√
s0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− 2a2
0 +

a2c2s2
0(− α2 + β2)μ2

λ2

√

.

(41) 

The solutions of (11)–(14) are 

u1(x, t) =
a0(bs0cosh(a (B0 + cz)) − as1)

s0 (as1 + bs0cosh(a (B0 + cz)))
, v1(x, t) =

b1

a0
u1(x, t)

u2(x, t) =
h1

a0
u1(x, t), v2(x, t) =

p1

a0
u1(x, t).

(42) 

The results (41) and (42) are used to display Rep(x, t) in Figs. 7(i) and 
(ii). 

Figs. 7(i) and (ii) show tunable conoidal pulses.This result is novel 
We mention that when displaying Req(x,t), we found that the figures 

show mainly the same behavior, apart from the numerical values of 
Rep(x, t) and Req(x, t). So, they will not produced here. 

The characteristic of pulses, spectrum, frequency wave length and 
intensity are shown for the two modes Are shown in Figs. 8(i)–(iii). 

Fig. 8(i) shows lumps supported by periodic waves, while (ii) shows 
W-shaped with double kinks. 

The same figures are displayed for the second mode.The same be-
haviors as in Fig. 8(i)–(iii) hold, but with different numerical values and 
they will not shown here. 

Conclusions and future work 

Here, the two-mode resonant nonlinear Schrodinger equations are 
considered. A new transformation that allows to inspect the waves 
resulting from soliton- periodic wave collision is invoked. Exact solu-
tions of the model equations are found by using the unified method. A 
class of polynomial and rational solutions have been obtained. It is 
observed that there is no rogue (or sharp) waves formation, thus colli-
sion is elastic. It is shown that the pulses propagation occurs in different 
geometric structures. Self-phase optical pulses modulation, soliton- 
cascade, multi-lumps, M-W-shaped, complex chirped and tunable 
conoidal pulses. It is found that the pulse- polarization, self-focusing or 
self-defocusing, depends basically on the coefficient of the quantum 
potential. Further the spectrum content is investigated. It shows mixed 
lattice and Chaotic spectrum are observed. For future work we shall 
investigate the pulses configuration in a medium in two-mode chiral 
nonlinear schrodinger equation. 
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