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ABSTRACT The nonhomogeneous Poisson process (NHPP) has become a useful approach for modeling
failure patterns of recurrent failure data revealed by minimal repairs from an individual repairable system.
Sometimes, multiple repairable systems may present system-to-system variability owing to operation
environments or working intensities of individual systems. In this paper, we go over the application of
generalized mixed-effects models to recurrent failure data from multiple repairable systems based on the
NHPP. The generalized mixed-effects models explicitly involve between-system variation through random-
effects, along with a common baseline for all the systems through fixed-effects for non-normal data. Details
on estimation of the parameters of the mixed-effects NHPP models and construction of their confidence
intervals are examined. An applicative example shows prominent proof of the mixed-effects NHPP models
for the purpose of reliability analysis.

INDEX TERMS Empirical Bayes, minimal repair, power law process, random-effects model, reliability
analysis.

I. INTRODUCTION
Modern systems consist of numerous parts working together,
making the maintenance action for the systems more dif-
ficult. In general, systems can be classified into repairable
and non-repairable systems according to feasibility of main-
tenance activity. A repairable system is one that can be
restored to an operating condition without replacement of
the entire system after some repair activity is executed. For
the repairable system, the patterns of failure collected after
successive repairs are of fundamental importance to establish
an effectivemaintenance policy. For example, increasing time
intervals between failures suggest reliability improvement.
Conversely, decreasing time intervals imply reliability dete-
rioration. To model the patterns of recurrent failure data,
stochastic point processes are commonly employed. Specifi-
cally, the nonhomogeneous Poisson process (NHPP) has gar-
nered significant attention in the reliability literature [1], [2].

Occasionally, multiple repairable systems may present
system-to-system variability due to changes in operating
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environments and working intensities of individual systems.
In this case, it may be more reasonable to assume a het-
erogeneity among all the systems. To take the heterogeneity
among systems into account, Bayesian methods (both empiri-
cal and hierarchical) have been applied to multiple repairable
systems due to their flexibility in accounting for parameter
uncertainty and allowing the incorporation of a prior knowl-
edge into the process under study (see, e.g., Hamada et al. [3];
Reese et al. [4]; Arab et al. [5]). System heterogeneity may be
described via the prior distributions of the model parameters,
however, there may also be homogeneity between individual
systems. This homogeneity can be explicitly modeled by
assuming common parameters in the Bayesian model. If prior
distributions are unnecessarily assigned to the common
parameters, the prior information employed to the common
parameters can make the parameter estimation procedure
more complicated. The computational complexity and the
difficulty in choosing proper prior distributions have been
obstacles for reliability engineers whowish to apply Bayesian
methods to such practical reliability problems.

In this article, we will go over the application of mixed-
effects models for recurrent failure data from multiple
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repairable systems for the purpose of reliability analysis. The
mixed-effects model, which is also called a ‘‘random-effects
model’’, allows explicit modeling and analysis of between-
individual and within-individual variation, along with a com-
mon baseline for all the individuals. In the formation of a
mixed-effects model, the probability distributions for multi-
ple observations are each generally assumed to be normal. If a
more flexible class of models for non-normal data involving
both fixed and random effects is appropriate, a generalized
mixed-effects model can be a useful tool for such purposes.

We aim to provide flexible applications of the gener-
alized mixed-effects model for the reliability analysis of
multiple repairable systems, based mainly on the NHPP.
In biostatistics research, there have been a few studies
on the application of the generalized mixed-effects mod-
els to Poisson process data. Lawless [6] introduced the
random-effects model for mammary tumor data following
the Poisson process. Cooil [7] studied Poisson process mod-
els with random effects to predict the malpractice claims
filed against individual physicians. However, the applica-
tion of the generalized mixed-effects model seems not to be
emphasized in evaluating the reliability of repairable sys-
tems. Recently, Tan et al. [8] proposed a generalized linear
mixed model (GLMM) for the power law process to ana-
lyze recurrent failure data from multiple repairable genera-
tors. Giorgio et al. [9] proposed a regression model for the
PLP intensity function of the power train system of a fleet
of 33 buses employed in urban or suburban service. They
modeled the unobservable heterogeneity among the buses
by assuming prior distributions for the model parameters in
a Bayesian framework. To our knowledge, applications of
nonlinear mixed-effects Poisson process models to multiple
repairable systems, however, have been seldom observed in
the reliability literature.

The rest of this paper is organized as follows. In Section II,
we illustrate several NHPP models with monotonic failure
intensity functions in reliability analysis of repairable sys-
tems. In Sections III and IV, a generalized mixed-effects
model is presented to model recurrent failure data of multiple
repairable systems. We also examine issues regarding param-
eter estimation for the mixed-effects NHPP models and con-
fidence interval construction. Recurrent failure data collected
from repairable systems are analyzed in Section V. Analytical
results from several mixed-effects NHPP models are com-
pared with corresponding individually fitted NHPPmodels in
terms of parameter estimation and its precision. We conclude
in Section VI with a discussion on future research.

II. NONHOMOGENEOUS POISSON PROCESS MODEL
NHPPs represent a broad class of models for failure data
generated by repairable systems. The NHPP can provide a
minimal repairmodel in which the occurrence of failures and
subsequent repairs tend to have a negligible effect on overall
system reliability, restoring the system performance to the
exact same condition as it was just before the failure. The
NHPP is defined by its nonnegative intensity function ν(t).

The expected number of failures in the time interval (0, t]
is obtained by 3(t) =

∫ t
0 ν(u) du. The intensity function

ν(t) is equal to the rate of occurrence of failures (ROCOF)
associated with the repairable system [2]. When the intensity
function is constant, i.e., ν(t) ≡ ν, the process reduces
to a homogeneous Poisson process (HPP). The NHPP has
been widely used in modeling failure frequency for repairable
systems because of its flexibility and mathematical tractabil-
ity via its intensity function ν(t) (Ascher and Feingold [1];
Krivtsov [10]).

The most commonly applied form of NHPP is the power
law process (PLP). Crow [11] suggested a PLP model under
‘‘find it and fix it’’ conditions with the intensity function

ν(t) =
ϑ

ζ

(
t
ζ

)ϑ−1
, t > 0, (1)

where ϑ(> 0) and ζ (> 0) are the shape and scale parameters,
respectively. The corresponding mean cumulative number of
failures over (0, t] is 3(t) = (t/ζ )ϑ . As another functional
form of NHPP, a log linear process (LLP) has intensity
function

ν(t) = γ eκt , t > 0 (2)

and the corresponding mean cumulative number of failures
over (0, t] is 3(t) = γ κ−1(eκt − 1), for the parameters
γ (> 0) and κ . The LLP model was first proposed by
Cox and Lewis [12] to model air conditioner failures. The
PLP and LLP model have been employed to model failure
patterns of a repairable system having monotonic intensity,
i.e., decreasing failure patterns (reliability improvement) with
ϑ < 1 (κ < 0) or increasing failure patterns (reliability
deterioration) with ϑ > 1 (κ > 0). When ϑ = 1 (κ = 0),
the PLP (LLP) reduces to the HPP.

The intensity function of the PLP model tends to infinity
as the system age increases, whereas the observed failure
process may have a finitely bounded intensity function. Con-
sidering NHPPs with a finite and bounded intensity function,
Pulcini [13] proposed a bounded intensity process (BIP) with
intensity function

ν(t) = a[1− e−t/b]. a, b > 0; t > 0 (3)

The intensity function is increasing and bounded, approach-
ing an asymptote of a as t tends to infinity.
Attardi and Pulcini [14] proposed a modified form of the BIP
model (so-called 2-parameter Engelhardt & Bain process
(2-EBP) model) to represent a compromise between the PLP
and BIP models as

ν(t) = υ · t/(t + ρ), υ, ρ > 0; t > 0. (4)

The modified BIP model tends to reach at its asymptote more
slowly than the BIP intensity (3). See [14] for the character-
istics of the 2-EBP model including the physical meaning of
its parameters in details.
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III. GENERALIZED MIXED-EFFECTS MODEL
Sometimes, inter-individual (or inter-system) variability is
substantial enough to warrant inclusion of an individual effect
in the model. Lawless [6] refers to such effects as ‘‘unob-
served heterogeneity’’. In the formulation of mixed-effects
model, the unobserved heterogeneity has been explicitly
incorporated into the model under study. Mixed-effects mod-
els are widely used in medical studies [15], [16] because they
can model both between-individual and within-individual
variation found in repeated-measurements data.

For many applications dealing with repeated measure-
ments involve non-normal data (e.g., binary data, count data,
categorical data), a class of generalized mixed-effects models
have been introduced. A generalized mixed-effects model
relates the conditional mean for the ith individual to the fixed-
and random-effects. Given the vector of fixed-effects β and
the vector of random-effects bi, which form the ith parameter
vector β i as β i = Aiβ + Bibi, the response vector yi for the
ith individual has conditional mean and variance-covariance
matrix

E(yi|bi) ≡ g−1(xi;β, bi) = µi(β, bi),

and

Var(yi|bi) = V i(β, bi),

respectively, where g is a monotonic differentiable link func-
tion that relates the mean vector µi of response vector yi to a
covariate vector xi. In general, the (ni × 1) conditional mean
vector, µi(β, bi), can be a linear (or nonlinear) function in
both β and bi. The conditional response yi|bi is assumed to
have an exponential family member distribution. The (k × 1)
random-effects bi are assumed to be normally distributed
withmean zero and variance-covariancematrixD. The condi-
tional variance-covariance matrix, V i(β, bi), which may also
be dependent on the fixed- and random-effects parameters,
is assumed to be positive-definite.

As a kind of generalized mixed-effects model, the gener-
alized linear mixed-effects model (GLMM) is an extension
of generalized linear model (GLM) which includes random-
effects. The GLM extends the Gaussian-based linear model
to the larger class of distributions in the exponential family.
Through a linear predictor ηi = xTi β, the GLM can be
expressed as: g(µi) ≡ ηi = xTi β. ln the GLMM context,
the linear predictor is given by ηi = xTi β + z

T
i bi, where zi is

the (ni × k) vector of random-effects associated with the ith
individual. The general expression of the conditional mean is
given by

E(yi|bi) ≡ g−1(ηi) = g−1(xTi β + z
T
i bi).

When the response and random-effects are normally dis-
tributed, the marginal distribution of yi is easily obtained by
taking expectation and using variance operation (e.g., delta
method) through the corresponding model. Due to the poten-
tial non-normality in the response, obtaining the marginal
distribution of yi is a more challenging task for a GLMM.

There are three popular approaches for deriving the marginal
likelihood in the GLMM settings [17]: (1) linearizing the
conditional mean and then repeatedly applying mixed-effects
model techniques to the linearizedmodel; (2) using numerical
methods to approximate the integrals involved in themarginal
likelihood; (3) introducing a Bayesian approach. The lineariz-
ing methods include pseudo-likelihood and marginal quasi-
likelihood for parameter estimation. Breslow and Lin [18]
discussed bias correction problems in the GLMM model
and limitations of the pseudo-likelihood and marginal quasi-
likelihood methods.

Under the assumption that the errors in the generalized
mixed-effects model are independent of the random-effects,
the marginal distribution of the response can be obtained as

p(yi) =
∫
p(yi|bi)p(bi) dbi,

where p(yi|bi) is the conditional distribution of yi given
the random-effects bi, and p(bi) is the probability density
of bi. In general, this integral does not have a closed-form
expression and the linearization methods do not work with
the marginal distribution directly. Instead, approximation
methods such as Laplace approximation [19] and adaptive
Gaussian quadrature [20] are used to numerically approxi-
mate the integral involved in the marginal likelihood.

IV. MIXED-EFFECTS NHPP MODEL
Suppose that there are m independent systems; the system i
is observed over the time interval (0, τi) and ni failures are
observed to occur, at times ti1 < · · · < tini . For the parameters
θ of the NHPP, the likelihood function is

L(θ ) =
m∏
i=1


ni∏
j=1

ν(tij; θ )

 exp{−3(τi; θ )}, (5)

with failure intensity ν(·) and its cumulative mean function
3(·). By incorporating the inter-individual variation into the
random effects bi for ith system, along with fixed effects
β (identical to all the systems), the conditional mean for
a failure process of the ith system t i = (ti1, . . . , tini )

T is
E[t i|bi] ≡ µi = 3(t i|bi). The distribution of random effects
bi is the same over all the systems. The contribution to the
likelihood function (5) having observed failures ni at times tij
for individual system i is

Li(β) =
∫
bi


ni∏
j=1

ν(tij|bi)

 exp{−3(τi|bi)}p(bi) dbi.

The likelihood function with parameters β and bi from the
sample of m systems has the form

L(β) =
m∏
i=1

∫
bi


ni∏
j=1

ν(tij|bi)

 exp{−3(τi|bi)}p(bi) dbi, (6)

and maximizing the likelihood function (6) yields the maxi-
mum likelihood estimate (MLE) of β, denoted by β̂.
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Suppose that the failure process of each system follows
the PLP, then the recurrent failure-times have the mean
3(tij) = (tij/ζi)ϑi , where ζi and ϑi are the scale and shape
parameters for system i, respectively. With a functional form
of η that relates the mean3 of the failure times in the GLMM
conxext, the mean function of PLP model can be expressed

ηij ≡ ln(3(tij)) = ϑi
{
ln(tij)− ln(ζi)

}
, (7)

and by re-parameterizing the log-linear function (7) as

βi1 = −ϑi ln(ζi), βi2 = ϑi, and xij = ln(tij),

we have ηij = xTi β i, for xi = (1, xij)T and β i = (βi1, βi2)T .
Reflecting the system-to-system variation into the parameters
β i as βi1 = β1 + bi1 and βi2 = β2 + bi2, where (bi1, bi2) are
assumed to be bivariate normally distributed with mean 0 and
variance6, the GLMM for multiple repairable systems under
the PLP is represented as

ηij = xTi β + z
T
i bi, bi ∼ N2(0,6), (8)

for β = (β1, β2)T and bi = (bi1, bi2)T . The likelihood
function for multivariate normally distributed bi is

L(β) ≈
m∏
i=1

∫
bi


ni∏
j=1

ν(tij|bi)

 exp{−3(τi|bi)}

× |6|−1/2 exp
{
−
1
2
bTi 6

−1bi

}
dbi.

In the nonlinear mixed-effects model (NLMM) context,
the functional form of η relating the mean3(t) of the failure-
times may not exist. The NLMM is a further generalization
of the GLMM. The NLMM permits more flexible variance-
covariance structure for the parameters of the NLMM,
as well as random errors. The likelihood function with the
LLP failure intensity for multivariate normally distributed
bi ≡ (bi1, bi2)T , for example, is

L(β) ≈
m∏
i=1

∫
bi1

∫
bi2


ni∏
j=1

(β1 + bi1)e(β2+bi2)tij


× exp

{
−

(
β1 + bi1
β2 + bi2

)(
e(β2+bi2)tij − 1

)}
|6|−1/2

× exp
(
−
1
2
(bi1, bi2)T6−1(bi1, bi2)

)
dbi1 dbi2.

A. ESTIMATION OF PARAMETERS IN MIXED-EFFECTS
NHPP MODEL
When the mixed-effects model contains a single random-
effect, it is relatively easy to evaluate the integral in the
likelihood function. The likelihood function can be max-
imized numerically to find the ML estimates. In general,
the integral calculations in the likelihood function (6) involve
high-dimensional integration, and do not produce closed-
form expressions, requiring numerical integration techniques
to estimate the likelihood function. Bae and Kvam [21]
introduced various approximation methods to numerically

optimize the likelihood function from repeated-measured
degradation data of vacuum fluorescent displays (VFDs)
when the distribution of bi is multivariate normal. SASr

NLMIXED procedure provides several approximation meth-
ods including adaptive Gaussian quadrature [20] and first-
order method [22] for the mixed-effects model.

In the mixed-effects NHPP model, ML estimates of β
are obtained by maximizing the likelihood function (6)
numerically or using approximation methods (if necessary).
The random-effects in the mixed-effects NHPP model are
assumed to have normal distributions with zero means. Their
specific values for a given individual are just realizations
from the normal distributions. These random effects can be
efficiently estimated using empirical Bayes methods [23].
Empirical Bayes methods are concerned first with estimating
distributions from which random-effects have been gener-
ated. Once a distribution of random-effects has been esti-
mated, this distribution is used to estimate the realized values
of random-effects using Bayes’ theorem. For the failure pro-
cess of the ith system t i, empirical Bayes estimates of bi
(denoted by b̂i) is given by the posterior mean of bi as

b̂i = E(bi|t i) =

∫
bi
bi p(t i|bi) p(bi) dbi∫
bi
p(t i|bi) p(bi) dbi

,

for the conditional probability function of t i given bi, p(t i|bi).
If parametric assumptions on the distribution of random-
effects are made, e.g., normal, then empirical Bayes methods
are equivalent to best linear unbiased prediction (BLUP)
methods [24].

B. CONSTRUCTING CONFIDENCE INTERVALS
Confidence intervals can be constructed for the parameters
of the mixed-effects model or their functions based on stan-
dard errors derived from the (observed) Fisher information
matrix. In generalized mixed-effects NHPP model without
covariates, a large-sample approximation of standard errors
of the ML estimators is given through the estimated variance-
covariance matrix 4̂

β̂
, which is computed as the inverse

of the observed Fisher information matrix. That is, 4̂
β̂
≡

I(β̂)−1 for I(β̂) = −∂2 l/∂β2 evaluated at β = β̂, where
l = logL(β).

Based on the ML estimates of β = (β1, β2)T , the point
estimates of the shape and scale parameters in the PLP, for
example, can be obtained by ϑ̂ = β̂2, and ζ̂ = exp(−β̂1/β̂2),
respectively. The estimated standard errors of (or functions
of) ϑ̂ and ζ̂ are computed using the delta method; that is,
ŝ.e.(β̂1) =

√
4̂
β̂
(1, 1) and ŝ.e.(β̂2) =

√
4̂
β̂
(2, 2). Their

Wald-type confidence intervals are also computed based on
the estimated standard errors. Approximate 100(1 − α)%
point-wise confidence intervals for the fixed-effects param-
eters are, respectively

β̂1 ± tα/2(ψ) · ŝ.e.(β̂1) and β̂2 ± tα/2(ψ) · ŝ.e.(β̂2)
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where tα/2(ψ) is the 100(1−α/2) quantile of the t-distribution
with ψ degrees of freedom. The degrees of freedom are
approximated by simply using the minimum number of
degrees of freedom contributed by random-effects that affact
the term being tested or using the Satterthwaite’smethod [25].
The Wald t-statistic accounts for the uncertainty in the esti-
mates of overdispersion for the GLMMs. Unlike classical
balanced ANOVA algorithms, because computing the test
statistics for fixed effects do not generate correct values of
degree of freedom automatically, the Wald z-statistic can be
used instead of the Wald t-statistic for the GLMMs without
overdispersion. Then 100(1 − α)% point-wise confidence
intervals for the fixed-effects parameters are approximated
as: β̂1 ± zα/2 · ŝ.e.(β̂1), and β̂2 ± zα/2 · ŝ.e.(β̂2), respectively,
where zα/2 is the (1 − α/2) quantile of the standard normal
distribution.

C. GOODNESS-OF-FIT TEST & MODEL CHECKING
After fitting mixed-effects NHPP model to failure-time data
from multiple repairable systems, we need to assess the sig-
nificance of the terms in the model. The significance test can
be done through a likelihood ratio statistic. Denote LF as the
likelihood for the full model, and LR as the likelihood for
the reduced model. Then under the null hypothesis that the
reduced model is adequate, the likelihood ratio test (LRT)
statistic

2 log(LF/LR) = 2(logLF − logLR)

will approximately follow a χ2 distribution with (ϕF − ψR)
degrees of freedom, where ψF and ψR are the number of
parameters to be estimated in the full and reduced model,
respectively. However, the LRT statistic is not recommended
for testing or constructing confidence intervals for fixed-
effects in the generalized mixed-effects model because it is
unreliable for small to moderate sample sizes [26]. In general,
the likelihood ratio approach is more appropriate for infer-
ence on the random-effects compared to theWald-type statis-
tic, which requires stronger assumptions on the parameters to
be estimated [27].

Even though the LRT can assess the significance of par-
ticular terms, model selection procedure via such pairwise
comparisons has been criticized owing to an overuse of
hypothesis testing. By contrast, an information-based model
selection procedure allows comparison of multiple candidate
models. Two widely used information criteria for assessing
model fit are Akaike’s information criterion (AIC) [28] and
the Bayesian information criterion (BIC) [29]. For the log-
likelihood of a model, l, the AIC and BIC are, respectively

AIC = −2 l + 2p∗, and BIC = −2 l + p∗ logN ,

where p∗ denotes the total number of parameters in the
model, and N denotes the total number of observations in the
data set; that is, N =

∑m
i=1 ni for the mixed-effects NHPP

model. If we use the AIC to compare several models for the
same data, we prefer the model with the lowest AIC value.

FIGURE 1. Plot of the cumulative number of failures against cumulative
operating time for six LHD machines. (◦: LHD1, M: LHD3, +: LHD9,
×: LHD11, �: LHD17, O: LHD20).

Similarly, when using BIC we prefer the model with the
lowest BIC value.

Residuals can be set up to provide checks on the
assumed model. Under the NHPP model, the quantities
3(tij) − 3(ti,j−1), j = 1, . . . , ni, are independent standard
exponential random variables only when the failure process is
failure truncated, that is, when τi = ti,ni . Therefore, residuals
eij = 3̂(tij)− 3̂(ti,j−1) should look like standard exponential
random variables if the NHPP model under assumptions is
correct. The deviation from the model assumptions can be
checked by plotting (eij, ei,j−1) to detect serial correlation
with respect to j in the eij’s. See Lawless [6] for more details
on the properties of residuals and formal model assessment
using the residuals.

V. HYDRAULIC SYSTEMS DATA
Kumar and Klefsjö [30] analyzed the times between succes-
sive failures of the hydraulic system of some load-haul-dump
(LHD) machines at Kiruna mine for a period of two years.
The data consists of failures from three different machine
groups; old(LHD1 and LHD3), medium old(LHD9 and
LHD11), and new machines (LHD17 and LHD20). Cumula-
tive failure plots for six LHD machines are given in Figure 1.
After fitting a power law process model to the failure intensi-
ties of the six LHD machines, they set up maintenance poli-
cies for such repairable items. Later, Attardi and Pulcini [14]
provided a reliability analysis for recurrent failure data of
the LHD machines with the 2-EBP model to represent a
compromise between the PLP and BIP models.

Figure 1 suggests that recurrent failure data of the LHD
machines have monotonic failure intensities with variability
among individual machines, which implies random-effects
model would be most appropriate for modeling machine
effects in the failure model. In such a case, fixed-effects
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models may lead to biased parameter estimates by incorpo-
rating all failure data from each of the LHD machines to esti-
mate the parameters of the model under consideration, which
ignores the variability among individual items. First, we indi-
vidually fitted the PLP, LLP, and 2-EBP models to the failure
intensities of six LHD machines. The MLEs of the PLP
model, for example, are given by ϑ̂ = ni/

∑ni−1
j=1 ln(tni/tj),

and ζ̂ = tni/n
1/ϑ̂
i . The MLEs of the parameters for the three

NHPP models are summarized (with corresponding standard
errors in parentheses) in Table 1.

TABLE 1. The MLEs and their standard errors for the parameters in the
PLP, LLP, and 2-EBP models.

Meanwhile, because the individual variability can be mod-
eled most effectively using random-effects, we considered a
mixed-effects model with random-effects as well as fixed-
effects to model recurrent failures of six LHD machines.
The likelihood ratio test (LRT) was sequentially executed
to compare the mixed-effects NHPP model fit by the ML
method to decide which of the terms in the model require
random-effects to account for between-individual variation.
The model-building strategy is to start with the model which
includes random-effects for all NHPP model parameters,
and then examine the fitted model to decide which of the
random-effects can be eliminated. The random-effects PLP
for comparison has a mean failure intensity of the PLP with
two random-effects

3ij(t) =
(

tij
ζ + bi1

)ϑ+bi2
, i = 1, . . . ,m, j = 1, . . . , ni

where the random-effects (bi1, bi2) have a general covariance
structure. Similarly, the general models for the LLP and
2-EBP are

3ij(t) =
(
γ + bi1
κ + bi2

)
(e(κ+bi2)tij − 1),

and

3ij(t) = (υ + bi1)
[
tij − (ρ + bi2) ln(1+ tij/(ρ + bi2))

]
,

respectively. The model-building structures for the three
random-effects NHPP models are summarized in Table 2.
We additionally computed the AIC and BIC to ensure
parsimony.

For the mixed-effects PLP model, we compared
the full model (Model 1) with the reduced models
(Model 2, 3, and 4), and the small p-values for the LRT
statistic (which follows asymptotically χ2 distribution with
1 degree of freedom (Model 2) or 2 degrees of freedom

TABLE 2. Likelihood ratio tests comparing different mixed-effects models
for the hydraulic systems data. (G: General, D: Diagonal).

(Models 3 and 4)), along with the smaller value for the
AIC and BIC suggest that the full model (including two
random-effects which have general covariance structure)
is satisfactory for the hydraulic systems data. The final
parameter estimates of the mixed-effects PLP model are:
ζ̂ = 294.9230(hours), ϑ̂ = 1.3174, and (bi1, bi2)T ∼
N
(
(0, 0)T , (1.3010× 104, 12.2149; 12.2149, 0.0157)

)
.

Additionally, we estimated the parameters of the gen-
eralized linear mixed PLP model by transforming the
mean failure intensity as described in (7), and final
parameter estimates of the model are obtained as:
β̂1 = −7.6470, β̂2 = 1.3454, with (bi1, bi2)T ∼

N
(
(0, 0)T , (2.5945,−0.3435;−0.3435, 0.0471)

)
.

Next, for the mixed-effects LLP model, we compared
the full model (Model 5) with the model based on two
random-effects having diagonal covariance structure (Model
6), with the outcome being a p-value > 0.05 for the
LRT statistic, and the smaller values for the AIC and BIC,
which corroborates Model 6. To search for a simpler model,
we consider the LLP model with a random-effect. The
models including a random-effect (Model 7, and 8) have
smaller p-values, and larger AIC and BIC values, showing
that Model 6 is the best mixed-effects model in terms of
LLP for the hydraulic systems data. The final parameter
estimates of the mixed-effects LLP model are: γ̂ = 5.1536×
10−3, κ̂ = 2.6750 × 10−4(hours−1), and (bi1, bi2)T ∼
N
(
(0, 0)T , (2.9467× 10−6, 0; 0, 1.6788× 10−8)

)
. Simi-

larly, the 2-EBP model including two random-effects which
have diagonal covariance structure (Model 10) is selected
for the data. The final parameter estimates of the mixed-
effects 2-EBP model are: υ̂ = 0.0108(hours−1), ρ̂ =
489.6058(hours), and (bi1, bi2)T ∼ N ((0, 0)T , (3.2113 ×
10−6, 0; 0, 1.1977×105)). In choosing the best model among
all the mixed-effects models, the minimization of AIC and
BIC led to the selection of the mixed-effects 2-EBP model
over the mixed-effects PLP and LLP models. All the model
parameters were estimated using R NLME library.

As a diagnostics illustration for the fitted models, Figure 2
features the histograms for the residuals derived from each
of the NHPP models, eij = 3̂(tij) − 3̂(ti,j−1), along with
probability density lines of a standard exponential distribu-
tion. If assumed NHPP models are correct, they should look
like standard exponential random variables. The histograms
in Figure 2 show that the residuals from all NHPP models
appear to follow standard exponential distribution, justifying
the assumptions of the NHPP models.
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FIGURE 2. Histograms of the residuals from each of the NHPP models for
six LHD machines.

To select the most suitable NHPP model for the hydraulic
systems data, we calculated mean squared errors between
observed number of failures,3(tij), and estimated number of
failures from each of NHPP models, 3̂(tij), for individuals as
MSEi = n−1i

∑ni
j=1(3̂(tij) − 3(tij))

2. In Table 3, we observe
that each of mixed-effects NHPP models has smaller MSE
than individually fitted NHPP models, demonstrating that
prediction from the mixed-effects NHPP models are sub-
stantially more reliable by employing flexible structure in
approximating the integrals in the likelihood function (6)
such as adaptive Gaussian quadrature method. We chose the

TABLE 3. Mean squared errors between observed and estimated number
of failures from each of NHPP models for individual LHD machines
(∗NLMM denotes nonlinear mixed-effects model).

FIGURE 3. 3̂(t) and its 95% pointwise confidence intervals, along with
observed points (ti ,N(ti )), under the mixed-effects PLP model for six sets
of hydraulic systems data (The vertical axis is log-scaled for better
representation of the confidence intervals).

nonlinear mixed-effects PLP model which has the smallest
average MSE with respect to hydraulic systems data for fur-
ther analytical study, although the averageMSE of the nonlin-
ear mixed-effects PLPmodel is only slightly smaller than that
from the mixed-effects 2-EBP model. Note that the mixed-
effects 2-EBP model was chosen in terms of the AIC and the
BIC. Table 4 compares parameter estimates of individually
fitted PLP model and those of nonlinear mixed-effects PLP
model and their 95% pointwise confidence intervals for the
six LHD machines.

The parameter estimates of nonlinear mixed-effects PLP
model consist of ML estimates of fixed-effects and BLUP
estimates of random-effects. Because the parameters are
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TABLE 4. Parameter estimates of both individually fitted PLP model and
nonlinear mixed-effects PLP model, along with their approximate 95%
confidence intervals under the lognormal approximation in parentheses
(Unit of measure in ζ̂ : hours).

constrained to be nonnegative, we used the lognormal approx-
imation for the parameters to construct confidence intervals
as: ζ̂ exp

{
±zα/2 · ŝ.e.(ζ̂ )/ζ̂

}
and ϑ̂ exp

{
±zα/2 · ŝ.e.(ϑ̂)/ϑ̂

}
.

The parameter estimates of the nonlinear mixed-effects PLP
model are consistently smaller than those of individually
fitted PLP models. Furthermore, their confidence intervals
are consistently shorter than those of individually fitted PLP
models. It was observed that other mixed-effects NHPP mod-
els have shorter confidence intervals than individually fitted
NHPP models. Under the mixed-effects PLP model ignoring
machine groups, the estimate of cumulative number of fail-
ures, 3̂(t), and 95% (pointwise) confidence intervals for 3̂(t)
are plotted for six individual sets of hydraulic systems data
in Figure 3.

VI. CONCLUSION
We introduced generalized mixed-effects models to recur-
rent failure data from multiple repairable systems, based on
the NHPP. The generalized mixed-effects models explicitly
involve between-system variation through random-effects,
along with a common baseline for all the systems through
fixed-effects for non-normal data. The primary focus for
the research is on repairable systems that exhibit system-to-
system variability. Our featured analysis in Section V shows
key advantages to the mixed-effects modeling for a motivat-
ing example (hydraulic systems data), with model checking
based on both the AIC and BIC. Both model assessment
criteria balance model complexity by compromising variance
versus bias, and are in general agreement in the example.
The model with the smallest BIC has the added convenience,
in the Bayesian framework, of being equivalent to selecting
one with highest posterior probability [31].

The assumption of normally distributed parameters may
produce non-zero probability of being negative when the
parameters of the NLMM are restricted to be positive (as
a referee pointed out). Alternatively, the random effects in
the mixed model can be efficiently estimated using empirical
Bayes methods. Conveniently, then empirical Bayes methods
are equivalent to best linear unbiased prediction (BLUP)
methods in the case the random effects can be assumed
normal. Covariates can be introduced to the mixed-effects
PLP, for example, to incorporate needed system information.
Future applications in which prior system knowledge lends

itself to more sophisticated Bayesian models could lead to
further improvements in model fitting and model assessment
(based on the BIC).

It is possible to investigate the effects of the preventive
(or overhaul) maintenance on the reliability of mixed-Effects
NHPP models. The optimality of preventive maintenance
policy can be defined as the minimization of the expected
cost per unit of time, however, the minimization procedure
requires the calculation of high-dimension integrals because
several random-effects are also involved. Other numeri-
cal or mathematical methods (e.g., stochastic optimizations,
Monte Carlo simulations) can be introduced to the optimiza-
tion procedure in future research.
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