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Abstract: The topological properties of photonic micro-
structures are of great interest because of their experimental
feasibility for fundamental studyandpotential applications.
Here, we show that robust guided-mode-resonance states
exist in photonic domain-wall structures whenever the
complex photonic band structures involve certain topolog-
ical correlations in general. Using the non-Hermitian pho-
tonic analogy of the one-dimensional Dirac equation, we
derive essential conditions for photonic Jackiw-Rebbi-state
resonances taking advantage of unique spatial confinement
and spot-like spectral features which are remarkably robust
against random parametric errors. Therefore, the proposed
resonance configuration potentially provides a powerful
method to create compact and stable photonic resonators
for various applications in practice.

Keywords: guided-mode resonance; non-Hermitian effect;
subwavelength grating; topological effect.

1 Introduction

Non-Hermitian and topological properties in photonic
structures attract considerable attention as they are
related to exotic optical phenomena resulting from the
parity-time symmetry and topological interaction prop-
erties. Such phenomena include wave dynamics related to
half-integer topological invariants at exceptional-point

singularities [1], topological phase transition in complex
photonic band structures [2], and polarization vortices
around optical bound states in the continuum (BIC) [3, 4],
to mention a few. Intriguingly, extra degrees of freedom in
non-Hermitian systems and parametric insusceptibility of
topological effects potentially provide powerful means
for versatile and robust control schemes against various
environmental disturbances, detrimental performance
drift, and uncontrollable errors in practice.

Toward this end, we notice topological interface states

[5] as an operative discrete state for robust guided-mode-

resonance (GMR) effects [6–9] that might significantly

alleviate practical limitations in the conventional ap-

proaches. For instance, narrow-band planar GMR ele-

ments have a fundamental lower limit in their transversal

footprint size D in 100-μm or mm scales [10, 11] because of

in-plane propagation of operative modes within their

lifetime in the order of 102–104 optical cycles. Although D

can be significantly reduced by including additionally

distributed Bragg-reflection lattices at the device bound-

ary areas [12], the additional reflector components not only

occupy inactive surplus areas but also increase additional

complications in design and fabrication. Therefore, the

fundamental size limit significantly restricts potential

applications in which high-density integration is required.
In another consideration, a GMR appears on a char-

acteristic dispersion curve extended over a broad fre-
quency band in general. Consequently, spectral loci of
GMRs change with variation in the angle of incidence or
with spatial drift of lattice’s geometrical parameters
unavoidably included as fabrication imperfections. Asso-
ciated technical issues are the high sensitivity of the exci-
tation efficiency to optical alignment, thermo-optic drift of
intensity and phase, and inhomogeneous broadening of
the spectral resonance features for poorly collimated or
spatially wide excitation-light beams.

Importantly, GMRs by topological interface states are
potentially free from the conventional footprint-size limi-
tation and technical issues resulting from characteristic
dispersion bands because they are essentially confined in

*Corresponding authors: Jae Woong Yoon and Seok Ho Song,
Department of Physics, Hanyang University, Seoul, 04763, Korea,
E-mail: yoonjw@hanyang.ac.kr (J.W. Yoon), shsong@hanyang.ac.kr
(S.H. Song). https://orcid.org/0000-0002-3362-6873 (J.W. Yoon)
Ki Young Lee, Kwang Wook Yoo, Youngsun Choi, Gunpyo Kim
and Sangmo Cheon, Department of Physics, Hanyang University,
Seoul, 04763, Korea

Nanophotonics 2021; 10(7): 1853–1860

Open Access. © 2021 Ki Young Lee et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.

https://doi.org/10.1515/nanoph-2021-0024
mailto:yoonjw@hanyang.ac.kr
mailto:shsong@hanyang.ac.kr
https://orcid.org/0000-0002-3362-6873


both vertical and lateral axes and, thereby, their spectral
features appear at discrete frequency levels, not over
extended frequency bands. In this paper, we theoretically
show that such a topological GMR state indeed exists at an
interface between two different thin-film photonic lattices
whenever certain topological correlations in the complex
photonic band structures are included in general. Using a
photonic analogy of the 1D Dirac equation for relativistic
elementary particles, we derive essential conditions for a
photonic Jackiw-Rebbi state [13, 14] that produces strong
lateral confinement and desired spot-like spectral GMR
feature in the wavevector-frequency domain.

Previously, the optical analogy of the Jackiw-Rebbi
states and associated phenomena have been studied in
various structures including channel waveguide arrays
[15], coupled ring-resonator optical waveguides [16],
magneto-electric Mie-resonance particle chains [17], and
polaritonic micro-cavity lattices [18, 19]. In these struc-
tures, desired topological coupling configurations are
directly coded in optical synthetic atoms bymeans of inter-
atom interactions of electromagnetic wave functions
localized in the explicit position-space domain. In our GMR
configurations, in contrast, each grating ridges do not
operate as synthetic atoms accommodating localized
photonic wave functions. Instead, they provide desired
coupling configurations between delocalized guided-mode

wave functions in terms of discrete diffraction orders in the
implicit wavevector domain. Therefore, our approach
suggests further opportunity of the topological phenomena
over broad classes of diffractive optical systems on which
numerous practical applications are grounded. Along this
line, we present formal consistency between the diffractive
coupled-mode theory of guided-mode resonances and
elementary topological band theory of electrons. The
calculated confinement length of this topological GMR
suggests the possibility of overcoming the fundamental
lower limit of the device footprint size in conventional
planar GMR elements. In addition, we show remarkable
stability of this topological GMR effect against random
parametric errors in the lattice’s structure geometry.

2 Topological guided-mode
resonance

Introducing a photonic analogy of the 1D Dirac equation
and associated topological resonance states, we consider a
simple 1D dielectric grating in the zero-order regime below
the Rayleigh frequency, as schematically illustrated in
Figure 1(a). The structure is defined in terms of period Λ,
thickness d, fill factor F, and dielectric constants εc for

Figure 1: Non-Hermitian topological properties of a second-order guided-mode resonance grating.
(a) Schematic of a thin-film guided-mode-resonance grating. (b) The transition of the real and imaginary frequency bands by Eqs. (5) and (6) as
topology-tuning parameter δ changes. A pair of exceptional points are indicated by EPL and EPR. Skin color indicates relative even-mode
strength |⟨even|ψ⟩| for the corresponding eigenstate. (c) Band-edge frequency change as a function of δ by the FEMmethod. (d) Coupling rate
κ1 − κ2 as a function of δ by the analytic theory in comparison with the numerical analysis (FEM method).
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high-index bars and εd (<εc) for the surrounding medium.
Therefore, the structure can be conveniently represented
by a periodic dielectric function

ϵ(x, z) = ∑
m
ϵm(z)eimqx (1)

with z-dependent Fourier-series coefficient εm(z) and
grating vector q = 2πΛ−1. Describing transverse-electric (TE)
guided-mode-resonance (GMR) states in this structure, we
solve a planar electromagnetic wave equation

[ ∂
2

∂x2
+ ∂

2

∂z2
+ ω2

k

c2
ϵ(x, z)]Ek(x, z) = 0 (2)

for electric-field amplitude Ek taking a modal expansion

Ek ={L(z) + [ψssin (qx + ϕ0)
+ ψccos (qx + ϕ0)]u(z)}eikx  ,

(3)

where k is Bloch wavevector, L(z) is leakage-radiation
amplitude, ψs or c is the amplitude of the periodic guided
modes, and ϕ0 is a phase constant. Guided-mode wave
function u(z) is determined by a wave equation

[ ∂
2

∂z2
+ ω2

c2
ϵ0(z)]u(z) = β2u(z) , (4)

where β denotes propagation constant of the guided mode
on a characteristic dispersion relation ω = ωu(±β).

Solving Eq. (2) with the modal expansion in Eq. (3), we
consider a restricted domain k << q near the second-order
stop band ωk ≈ ωq = ωu(q) and assume that guided-mode
amplitudes ψs and ψc take significant values if phase
matching condition k ± q = ±β is satisfied, in the same
manner as the coupled-mode theory by Kazarinov and
Henry [2, 20–22]. In an approximation taking the lowest-
order diffraction coupling between the forward and back-
ward guided modes into account under such conditions,
Eq. (2) reduces to a non-Hermitian matrix eigenvalue
problem

HGMR|ψ〉 = (E − iΔ)|ψ〉 (5)

with |ψ⟩ representing a column vector [ψs ψc]
T. Here,

Hamiltonian HGMR is given by

HGMR = (κ1 − κ2 + iγ)σx − kvgσy  , (6)

where σj is the Pauli matrix, vg = [∂ωu/∂β]β=q denotes group
speed of the guided mode atω =ωq, κ1 represents coupling
rate between the forward and backward guided modes
through two consecutive first-order diffraction processes,
κ2 represents coupling rate between the forward and
backward guided modes through one second-order
diffraction process, and γ represents leakage-radiation

rate of the uncoupled guided mode. The initial phase
constant ϕ0 is chosen such that ϕ0 = π/4 − qx0 with x0
denoting x position of the structure’s mirror-symmetry
plane. The complex eigenvalue E − iΔ in Eq. (5) is defined to
represent resonance frequencyΩ = Re(ωk) =ωq + κ1 + E and
decay rate Γ = −Im(ωk) = γ + Δ. See Supplementary Material
for detailed mathematical treatment.

HGMR describes resonance states near the second-order
Bragg condition and their frequency bands in terms of its
eigenvalues and eigenvectors. For example, the eigen-
values and corresponding eigenvectors at k = 0 are deter-
mined by

E± − iΔ± = ±p12(κ1 − κ2 + iγ) , (7)

|ψ±〉 =
1̅
2

√ [ 1±p12
] , (8)

where p12 is signum function sgn(κ1 − κ2), i.e., p12 = +1 for
κ1 − κ2 > 0 whereas p12 = −1 for κ1 − κ2 < 0. It immediately
follows that upper band-edge frequency Ω2 = ωq + κ1 +
|κ1 − κ2| and lower band-edge frequency Ω1 = ωq +
κ1 − |κ1 − κ2|. The corresponding eigenvectors and leakage-
radiation rates are determined differently depending on
p12. For p12 = +1, i.e., κ1 − κ2 > 0, |ψ+⟩ takes super-radiant
state |even⟩ = 2−1/2[1 1]T with radiation decay rate Γ+ = 2γ
at upper band-edgeΩ2 whereas |ψ−⟩ takes sub-radiant state
|odd⟩ = 2−1/2[1 −1]T with radiation decay rate Γ− = 0 at lower
band-edge Ω1. We note that super-radiant and sub-radiant
states correspond to the leaky GMR and BIC, respectively,
in common terminology. For p12 = −1, i.e., κ1 − κ2 < 0, in
contrast, |ψ+⟩ = |odd⟩ with Γ+ = 0 at upper band-edge Ω2

whereas |ψ−⟩ = |even⟩ with Γ− = 2γ at lower band-edge Ω1.
This frequency flip between the super-radiant and sub-
radiant states is understood as resulting from the change in
Bragg-reflection phase from 0 to π in response to the sign
flip in κ1 − κ2 value [2].

Importantly, the band-edge state flip depending on
sgn(κ1 − κ2) in our theory reveals topological properties of
waveguide-grating structures in the second-order Bragg-
reflection regime. HGMR in Eq. (6) is formally identical to a
bulk momentum-space Su-Schrieffer-Heeger (SSH) Hamil-
tonian HSSH = (w − v)σx − vkΛσy in the low-energy contin-
uum approximation for a 1D dimer chain, where v is intra-
cell coupling rate and w is inter-cell coupling rate [23]. ψs

and ψc in state vector |ψ⟩ represent amplitudes of two in-
dependent standing guided modes u(z)sin[q(x − x0) + π/4]
and u(z)cos[q(x − x0) + π/4] in analogy to the right and left
site excitations in a 1D-periodic dimer chain. Therefore, we
can intuitively understand topological properties of
second-order GMR gratings in direct analogy to the 1D SSH
model by taking a parametric parallelismw − v = κ1 − κ2 + iγ
and v = Λ−1vg.
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The topological phase of a lattice in the SSH model is
determined by sgn(w − v) such that the lattice is in the
trivial phase for sgn(w − v) = +1 or in the topological phase
for sgn(w − v) = −1. A geometrical phase referred to as the
Zak phase for the energy band takes π in the topological
phase or 0 otherwise [23, 24]. The nonzero Zak phase im-
plies that spatial symmetry of the eigenvector gradually
changes within the associated energy band and it also in-
dicates the existence of an edge-confined state in the
middle of the energy bandgap, which explains surface
electric conduction in topological insulators. Taking the
parametric parallelism between HSSH and HGMR into ac-
count, such topological properties in second-order GMR
gratings appear when sgn(κ1 − κ2) = −1 for the topological
phase and sgn(κ1 − κ2) = +1 for the trivial phase.

Confirming the topological transition of a second-
order GMR grating depending on sgn(κ1 − κ2), we provide
complex-frequency band structure, spatial-symmetry of
the photonic eigenvector |ψ⟩, and key parameters
depending on topology-adjusting parameter δ, as shown in
Figure 1(b)–(d). δ is defined such that refractive index of the
grating bars nc = nd + δ with nd = εd1/2 denoting refractive
index of the surrounding medium and fill factor
F = (nc − nd)/(2δ). Following these specific rules for fill
factor F and refractive index nc with respect to δ, second-
order Bragg-reflection frequencyωq is kept nearly constant
whereas δ is changing over distinguished ranges of δ < δEP
in the trivial phase (κ1 − κ2 > 0), δ = δEP at the critical point
(κ1− κ2 = 0), and δ > δEP in the topological phase (κ1− κ2 < 0).
δEP = 1.035 for the critical point in our case with nd = 2.45.
We use the finite-element method for this numerical
analysis.

In the complex-frequency band structures in
Figure 1(b), the real-frequency bands and associated
spatial symmetry of the resonance modes show drastic
transitions with respect to the critical point at δ = δEP where
κ1 − κ2 = 0. The band-edge state flip between |even⟩ and
|odd⟩ is clearly visible from the skin-color transition be-
tween blue to red as δ increases from the trivial-phase re-
gion (δ < δEP) to the topological-phase region (δ > δEP). For
the critical point at δ = δEP, the real and imaginary fre-
quency bands show self-intersecting Riemann-surface ge-
ometries near two exceptional points (EP), instead of
having a Dirac point, as a result of the non-Hermiticity
induced by nonzero radiation decay (γ > 0). We note that
the EPs at the critical point are inevitable for the second-
order GMRs for which radiation decay cannot be
completely eliminated as far as they appear within the
spectral domain for the external radiation continuum.
Figure 1(c) and (d) show transition of the band-edge
frequencies for |even⟩ and |odd⟩ as functions of δ in

associationwith the change in κ1 − κ2 as the key topological
parameter.

Associatedwith such topological properties, a junction
of two topologically distinguished lattices supports an
interface-localized state known as the Jackiw-Rebbi state
[13]. A Jackiw-Rebbi state is derived from the 1D Dirac
equation as

HDirac|ψD〉 = ED|ψD〉 , (9)

HDirac = mc2σz − pcσx  , (10)

where m and p are Dirac mass and momentum of the basic
state, respectively, and c is the speed of light in vacuum. For
aDiracmassdistributiongivenbym(x) =−mLα(−x)+mRα(x)
(mL > 0 and mR > 0), where α(x) is the Heaviside step func-
tion, the 1D Dirac equation allows an interface-localized
eigenstate as

|ψD〉 =
̅̅̅̅̅̅̅̅̅
c
ℏ

mLmR

mL +mR

√
e−|m(x)cx|/ℏ[ 1

i
] (11)

at p = 0 and ED = 0. This state is a 1D Jackiw-Rebbi state at
an interface between two spaceswith negative and positive
Dirac masses, respectively.

This type of Jakiw-Rebbi state can be excited at a pho-
tonic interface between two GMR gratings with different
topological phases as there is an exact isomorphism
between HDirac and HGMR with unitary transformation
U = 2−1(σ0 − iσx + iσy − iσz), i.e., UHGMRU

† = HDirac with a
parametric parallelism

p = ℏk, c = vg ,  and m = ℏ(κ1 − κ2 + iγ)v−2g (12)

We notice here that the real part of Dirac mass m is deter-
mined by κ1 − κ2 and the unitary transformation preserves
the eigenvalue spectrum and the surface-localized norm
in Eq. (11) as well. Therefore, a Jakiw-Rebbi state in
Eq. (11) must exist at k = 0 and E − iΔ = ED = 0,
i.e., frequency Ω = ωq + κ1 ≈ ωq and decay rate Γ = γ, for a
photonic interface between two second-order GMR grat-
ings, one in the trivial phase and the other in the topo-
logical phase. Under this unitary transformation, Dirac-
equation state vector |ψD⟩ = U|ψ⟩ is interpreted as repre-
senting amplitudes of two standing guided modes u(z)sin
[q(x − x0)] and u(z)cos[q(x − x0)]. Note that these basis
wave functions for the 1D Dirac equation respectively
correspond to |odd⟩ and |even⟩ in the GMR eigenvalue
problem in Eq. (5).

We numerically demonstrate the photonic Jackiw-
Rebbi state at an interface between two second-order GMR
gratings as shown in Figure 2. Therein, we assume
mL = mR = 0.01 for an analytic solution because of Eq. (11)
and corresponding GMR gratings for a numerical solution
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by the FEM method have δ = δEP + 0.1 on the left side and
δ = δEP − 0.1 on the right side of the interface, according to
the parametric correspondence in Eq. (12). This parameter
set corresponds to {nc = 3.385, F = 0.442} for δ = −0.1 and
{nc = 3.585, F = 0.365} for δ = +0.1. Quantitative agreement
between two independent solutions confirms the existence
of the leaky Jackiw-Rebbi state. The field-intensity pattern
in Figure 2(b) shows the localization of this state in both
vertical and lateral axes. In particular, the lateral
confinement because of the topological properties is
characterized by confinement length Lc = ħ|mc|−1 =
vg|κ1 − κ2|−1 according to Eqs. (11) and (12). Lc is favorably
adjustable by tuning |κ1 − κ2| with grating fill factor and
thickness controls in principle. Therefore, the photonic
Jackiw-Rebbi state in second-order GMR gratings can be
considered as a promising guided-mode resonance state

which is localized in space, frequency, and angular do-
mains, as we will show further in the following sections.

3 Resonance properties

In a further study of guided-mode-resonance effects
from photonic Jackiw-Rebbi states, we perform rigorous
numerical analyses on resonant reflection spectra using
the FEM method. Figure 3(a)–(c) are angle-dependent
reflection spectra for three different topological conditions:
the trivial phase (δ = δEP − 0.15), the critical point (δ = δEP),
and the topological phase (δ = δEP + 0.15). They show
characteristic spectral features associated with the topo-
logical phase transition. For the trivial phase in Figure 3(a),
the relatively broad reflection peak at the upper band edge

x

z

| Ek |(b)

x=0 x=30Λ

x

m(x) m0

-m0

(a)

0

Ek (x, z=0)Eq. (11)
Numerical 1

−1

z=0

arb.unit

δ−δEP = 0.1 δ−δEP = −0.1 arb.unit

1

0

Figure 2. Leaky Jackiw-Rebbi state at a photonic topological interface.
(a) Cross-sectional field profile of a leaky photonic Jackiw-Rebbi state in comparison with the analytic solution in Eq. (11). (b) The two-
dimensional field pattern of a leaky photonic Jackiw-Rebbi state.

Figure 3: Spectral features of a leaky Jackiw-Rebbi-state resonance on ω–k plane.
Guided-mode-resonance dispersions in the reflection spectra for (a) the trivial phase, (b) critical point, and (c) topological phase. (d) Photonic
leaky Jackiw-Rebbi-state-resonance feature in the reflection spectrum. We assume a topological interface of two guided-mode-resonance
gratings with δ − δEP = −0.15 and 0.15.
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is an indication of resonant excitation of super-radiant
state |even⟩ whereas vanishingly narrow reflection peak at
the lower band edge is because of the sub-radiant state |
odd⟩ excitation, as described in the previous section. This
sub-radiant resonance is also referred to as symmetry-
protected BIC because of its asymptotically non-radiating
property toward the Γ point. At the critical point in
Figure 3(b), two guided-mode resonance bands are
crossing in analogy to a Dirac point for an effectively
massless state. For the topological phase in Figure 3(c), the
super-radiant and sub-radiant resonance features flip over
their locations each other, as previously studied in [2]. We
note therein that the band crossing, EP emergence, and
band flip effects associated with the topological phase
transition here are explained in terms of superposition of
multiple-order Bragg processes using the coupled-mode
theory by Kazarinov and Henry [20].

A junction of two GMR gratings for Figure 3(a) and (c)
supports a photonic Jackiw-Rebbi state as shown in
Figure 3(d). The Jackiw-Rebbi-state resonance appears at
the mid-point of the two band edges. As described in the
previous section, this topological guided-mode resonance
is localized in both frequency and wavevector (or angle of
incidence equivalently) domains. Although the resonance
bandwidth Δω in frequency is simply given by Δω ≈ γ,
i.e., the decay rate of an uncoupled guided mode, its
resonance bandwidth Δk in wavevector is determined by
Δk ≈ Lc

−1, i.e., inverse lateral-confinement length and the
corresponding angular bandwidth Δθ is Δθ ≈ λ(2πndLc)−1,
where λ is wavelength in vacuum. We note that this spot-
like resonance spectrum is a unique feature which is not
obtainable in conventional GMR configurations.

We further study the lateral confinement effect in
consideration of miniaturization and field-enhancement ca-
pabilities obtainable with the topological GMR by the pho-
tonic Jackiw-Rebbi state. In Figure 4(a),we calculate intensity
envelope distribution ⟨ψD|ψD⟩ from Eq. (11) depending on
|δ − δEP| value. The intensity distributions show stronger
confinement for higher |δ − δEP| value, following the depen-
dence of the confinement length Lc = ħ|mc|−1 = vg|κ1 − κ2|−1. In
particular, Lc is well within 10Λ for |δ − δEP| = 0.4 which
corresponds to Lc < 5 μm for Λ ∼ 500 nm and refractive-index
contrast nc − nd ∼ 0.4. Field enhancement increases as the
confinement get stronger with increasing |δ − δEP|, as shown
in Figure 4(b). From Eqs. (11) and (12), we see that field
enhancement for the photonic Jackiw-Rebbi state scales with
a factor ħ−1c|mLmR(mL + mR)

−1| = vg
−1|κ1 − κ2| = Lc

−1. We note
that this field enhancement by the lateral confinement pro-
vides an additional factor to the enhancement by temporal
accumulationof incident optical energyduring the resonance
lifetime.

Finally, we investigate the robustness of the proposed
topological GMR effect against parametric errors which is
inevitable in experiments in general. We consider a topo-
logical junction of two 50-period Si GMR gratings with
identical thickness d = 500 nm in Si3N4 as the surrounding
medium. Fill factors and periods are denoted by F1 or 2 and
Λ1 or 2 and they are subject to random position error ΔF(xn)
following the Gaussian distribution for a variance at 0.05,
as indicated in Figure 5(a) and (b). Figure 5(c) shows the
calculated reflection spectra for 20 independent random
error distributions in comparison with the ideal case free
from these errors. We clearly notice that the impact of the
random parametric errors on the resonance location and
bandwidth is greatly alleviated for the topological reso-
nance at the center when compared to the two side peaks
by the band-edge GMR features which have been mainly
used previously. In particular, the resonance-center shift
for the topological resonance is only 16% of that for the
band-edge resonances on average. Resonance Q-factor
change for the topological resonance is also reduced down
to 32% of that for the band-edge resonances when

Figure 4: Lateral confinement and subsequent field enhancement of
a photonic Jackiw-Rebbi state.
(a) Absolute amplitude profile across the interface as a function of
topology-tuning parameter δ. (b) Lateral confinement length and
field-enhancement factor at the interface as functions of δ.
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compared at their maxima. Therefore, the proposed topo-
logical GMR has highly favorable characteristics in device
foot-print size, field enhancement, and spectral precision
for various applications in practice.

Considering possible modulation instability with
respect to resonance center position and bandwidth, rele-
vant factors should be refractive indices of constituent
materials, average period, and lateral size of the entire
structure. Change in refractive indices or average period
directly affects resonance position because they change
propagation constant of guide modes or Bragg condition,
respectively, and lead to the overall shift of the dispersion
bands. Associated with such changes in the resonance
position, mismatch in the mid-gap positions between two
GMR gratings forming a topological junction may cause a
detrimental impact on the existence of the topological GMR
states. In particular, the photonic Jackiw-Rebbi state
persistently exists as far as the mid-gap-position mismatch
is limited within the stop-band overlap region. See
Supplementary Material for details. Size reduction within
the lateral-confinement length causes a substantial in-
crease in the resonance bandwidth since leakage radiation

toward the side edges becomes significant, as previously
treated in [25] for purely 1D scattering systems.

4 Conclusion

Incorporating a non-Hermitian photonic analogy of the 1D
Dirac equation for relativistic particles, we have developed
a comprehensive theory of topological guided-mode reso-
nance states in thin-film photonic lattice structures
coupling with external radiation continuum. The theory
predicts topological GMR states in the complex frequency
domain and its unique spatial and spectral characteristics
which are robust against random parametric errors. In
particular, the unique spot-like resonance feature in the
frequency-wavevector domain provides a well-defined
discrete angular and spectral channel in contrast to the
conventional GMR structures having continuous reso-
nance bands which are often problematic in precise filter
applications. In addition, the lateral confinement and
subsequent field enhancement potentially enable compact

Figure 5: Topological robustness against random structural errors.
(a) Schematic drawing of photonic junction consisting of two different Si-gratings with refractive index n1 = 3.485 in Si3N4 with refractive index
n2 = 2.450. The two gratings on the left (topological) and right (trivial) have spatially varying fill factors and periods [Fi, Λi] for each unit-cell
position xn such that F1 = 0.35 + ΔF(xn), Λ1 = 560 nm + aΔF(xn), F2 = 0.45 + ΔF(xn), and Λ2(xn) = 540 nm + aΔF(xn)] with period-error constant
a = 185 nm. (b) One sample of the randomly generated error distribution Δ(xn) following a Gaussian distribution function for variance 0.05. (c)
Calculated reflection spectra with the Gaussian random errors for surface-normal TE incidence. The red curve indicates the error-free ideal case.
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and integration-compatible device configurations without
any loss in the resonance Q factor. Importantly, these
properties are topologically protected against random
parametric errors at significant magnitude. Therefore, the
proposed topological GMR is favorable for various appli-
cations such as optical filters, bio-chemical sensor tem-
plates, surface-emitting lasers, and fundamental study on
non-Hermitian topological physics as well.
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