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Abstract
The accuracy of analytical obtained solutions of the fractional nonlinear space–time
telegraph equation that has been constructed in (Hamed and Khater in J. Math., 2020)
is checked through five recent semi-analytical and numerical techniques. Adomian
decomposition (AD), El Kalla (EK), cubic B-spline (CBS), extended cubic B-spline (ECBS),
and exponential cubic B-spline (ExCBS) schemes are used to explain the matching
between analytical and approximate solutions, which shows the accuracy of
constructed traveling wave solutions. In 1880, Oliver Heaviside derived the
considered model to describe the cutting-edge or voltage of an electrified
transmission. The matching between solutions has been explained by plotting them
in some different sketches.

Keywords: Fractional nonlinear space–time telegraph equation; Approximate
solutions

1 Introduction
Recently, the nonlinearity has been used in distinct fields such as the neural network [2],
infectious disease epidemiology [3], plasma physics [4], thermodynamics [5], optic physics
[6], population ecology [7], biology and mechanics of fluids [8, 9]. Defining empirically
function and parameters in formulating the nonlinear phenomena in nonlinear evolution
equations and systems provides reliable data that explain more about dynamic behavior
processes and complicated physical ones [10, 11]. Many physicists and mathematicians
have focused their attention on formulating some nonlinear phenomena to demonstrate
their characterization of undiscovered models [12–14]. Deriving accurate analytical, semi-
analytical, approximate techniques has taken more attention of many researchers; conse-
quently, many distinct techniques have been derived, such as [15–20].

Nowadays, based on the integer-order derivative’s failure to show the nonlocal property
of the investigated model, many nonlinear phenomena have been formulated in fractional
forms [21–23]. Therefore, many fractional derivative operators have been mathemati-
cally formulated, such as Atangana–Baleanu fractional operator, the conformal fractional,
Caputo fractional, Riemann–Liouville, Caputo–Fabrizio fractional derivative definitions
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[24–26], to transform the fractional nonlinear partial differential equations to nonlinear
ordinary differential ones [27, 28].

In this context, this paper investigates the fractional nonlinear telegraph equation that is
used to describe the transmission of the voltage standard [29]. This mathematical model
is considered as a primary icon in the electromagnetic waves’ area. The fractional model
of this model is given by [30–32]

D2α
tt Q – D2α

xxQ + Dα
t Q + bQ + dQ3 = 0, 0 < α ≤ 1, (1)

where b, d are arbitrary constants, while D = D(x, t). Employing the conformable frac-
tional wave transformation with the next form Q(x, t) = S(T), T = axα

α
– ctα

α
, where a, c are

arbitrary constants, converts Eq. (1) into

(
c2 – a2)S ′′ – cS ′ + bS + dS3 = 0. (2)

The structure of the paper for the rest of its sections is ordered as follows: Sect. 2 inves-
tigates the approximate solutions of the considered fractional nonlinear model. Section 3
studies our obtained solutions to show the matching between the computational and nu-
merical solutions, which shows the accuracy of our solutions. Moreover, this section aims
to show the originality of our solutions by comparing them with other previously obtained
solutions. Section 4 gives the conclusion.

2 Approximate analysis
This section studies the approximate solutions of the fractional nonlinear considered
model through five recent numerical schemes. This study depends on the obtained so-
lutions in [1] by implementing the sech- tanh expansion (STE), extended sinh-Gorden
expansion (ESGE), and extended simplest equation (ESE) methods. Consequently, our in-
vestigation not just aims to find the numerical solutions, but it extends to show the match-
ing between exact and numerical solutions, which explains the accuracy of schemes used
in the previous paper [1] and our used schemes.

STE method’s solutions

Q1(x, t) =
1
2

√
b
d

(
tanh

(
3btα +

√
b
√

9b – 2xα

4α

)
– 1

)
. (3)

ESGE method’s solutions

Q2(x, t) =
–1
2

√
–b
d

(
tanh

(
3btα +

√
b
√

9b – 2xα

4α

)
– 1

)
. (4)

ESE method’s solution
For λ = 0, α∗μ < 0, we obtain

Q3(x, t) = a0 –
a0c√–αμ

6μα∗(a – c)(a + c)
tanh

(√
–α∗μ

(
axα

α
–

ctα

α

)
∓ ln(C)

2

)
. (5)

Using the above-mentioned obtained solutions in [1] gives the initial and boundary con-
ditions which are requested for applying the suggested schemes as follows.
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2.1 The AD method
Applying the AD method Eq. (2) for evaluating the semi-analytical solutions gives

Q0(T) =
T

6
+ 1, (6)

Q1(T) =
T5

699,840
+

T4

23,328
–

T3

5832
–
T2

27
–
T

3
, (7)

Q2(T) =
T10

734,664,038,400
+

T9

12,244,400,640
+

11T8

9,523,422,720

–
19T7

264,539,520
–

7T6

2,361,960
–

289T5

6,298,560
–

7T4

23,328

+
7T3

2916
+

7T2

162
,

(8)

Q3(T) =
T13

24,755,239,437,926,400
+

T12

317,374,864,588,800

+
T11

58,185,391,841,280
–

29T10

4,407,984,230,400

–
13,289T9

55,540,601,303,040
+

193T8

146,932,807,680
+

709T7

2,857,026,816

+
19T6

3,542,940
+

251T5

6,298,560

–
T4

3888
–

19T3

2916
–
T2

81
.

(9)

Hence, the approximate solution of the considered model is given by

QApproximate(x) =
T13

24,755,239,437,926,400
+

T12

317,374,864,588,800

+
T11

58,185,391,841,280
–

23T10

4,407,984,230,400

–
8753T9

55,540,601,303,040
+

2539T8

1,028,529,653,760
(10)

+
2519T7

14,285,134,080
+

17T6

7,085,880
–

29T5

6,298,560

–
T4

1944
–

25T3

5832
–

T2

162
–
T

6
+ 1 + · · · .

Calculating the computational, semi-analytical, and absolute errors with different values
of T gives Table 1.

2.2 The EK method
Using the EK method for finding the semi-analytical solutions of Eq. (2) gives

Q0(T) =
T

6
+ 1, (11)

Q1(T) =
T5

699,840
+

T4

23,328
–

T3

5832
–
T2

27
–
T

3
, (12)
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Table 1 Numerical values of the solutions through the AD method

Value of T Computational Semi-analytical Absolute error

0 1 1 0
0.00001 1.000001667 0.999998333 3.33333E–06
0.00002 1.000003333 0.999996667 6.66667E–06
0.00003 1.000005 0.999995 1E–05
0.00004 1.000006667 0.999993333 1.33333E–05
0.00005 1.000008333 0.999991667 1.66667E–05
0.00006 1.00001 0.99999 2E–05
0.00007 1.000011667 0.999988333 2.33334E–05
0.00008 1.000013333 0.999986667 2.66667E–05
0.00009 1.000015 0.999985 3E–05
0.0001 1.000016667 0.999983333 3.33334E–05

Q2(T) =
T17

15,103,590,515,900,153,856,000
+

T16

148,074,416,822,550,528,000

+
13T15

64,782,557,359,865,856,000

–
67T14

9,357,480,507,536,179,200
–

613T13

1,002,587,197,236,019,200

–
2659T12

282,781,004,348,620,800

+
28,573T11

70,695,251,087,155,200
+

1163T10

71,409,344,532,480

+
85T9

1,586,874,322,944
–

7307T8

1,028,529,653,760

–
1483T7

14,285,134,080
+

T6

3,149,280
+

217T5

18,895,680

+
T4

209,952
–

11T3

2916
–
T2

18
.

(13)

Hence, the approximate solution of the considered model is given by

QApproximate(x) =
T17

15,103,590,515,900,153,856,000

+
T16

148,074,416,822,550,528,000

+
13T15

64,782,557,359,865,856,000

–
67T14

9,357,480,507,536,179,200
–

613T13

1,002,587,197,236,019,200

–
2659T12

282,781,004,348,620,800

+
28,573T11

70,695,251,087,155,200
+

1163T10

71,409,344,532,480

+
85T9

1,586,874,322,944
–

7307T8

1,028,529,653,760
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Table 2 Numerical values of the solutions through the EK method

Value of T Computational Semi-analytical Absolute error

0 1 1 0
0.00001 1.000001667 0.999998333 3.33334E–06
0.00002 1.000003333 0.999996667 6.6667E–06
0.00003 1.000005 0.999995 1.00001E–05
0.00004 1.000006667 0.999993333 1.33335E–05
0.00005 1.000008333 0.999991666 1.66669E–05
0.00006 1.00001 0.99999 2.00003E–05
0.00007 1.000011667 0.999988333 2.33338E–05
0.00008 1.000013333 0.999986666 2.66673E–05
0.00009 1.000015 0.999984999 3.00007E–05
0.0001 1.000016667 0.999983332 3.33343E–05

Table 3 Numerical values of the solutions through the CBS method

Value of T Analytical Approximate Absolute error

0 1.027777436 1.027777436 0
0.00001 1.027777436 1.027777436 8.40172E–12
0.00002 1.027777436 1.027777436 1.49365E–11
0.00003 1.027777436 1.027777436 1.96039E–11
0.00004 1.027777436 1.027777437 2.24045E–11
0.00005 1.027777437 1.027777437 2.33382E–11
0.00006 1.027777437 1.027777437 2.24045E–11
0.00007 1.027777437 1.027777437 1.96039E–11
0.00008 1.027777437 1.027777437 1.49363E–11
0.00009 1.027777437 1.027777437 8.40172E–12
0.0001 1.027777437 1.027777437 0

Table 4 Numerical values of the solutions through the ECBS method

Value of T Analytical Approximate Absolute error

0 1.027777436 1.027777436 0
0.00001 1.027777436 1.027777438 1.308E–09
0.00002 1.027777436 1.027777439 2.62E–09
0.00003 1.027777436 1.02777744 3.935E–09
0.00004 1.027777436 1.027777442 5.254E–09
0.00005 1.027777437 1.027777443 6.577E–09
0.00006 1.027777437 1.027777444 7.904E–09
0.00007 1.027777437 1.027777446 9.234E–09
0.00008 1.027777437 1.027777447 1.057E–08
0.00009 1.027777437 1.027777448 1.191E–08
0.0001 1.027777437 1.02777745 1.325E–08

–
1483T7

14,285,134,080
+

T6

3,149,280
+

61T5

4,723,920
+

5T4

104,976

–
23T3

5832
–

5T2

54
–
T

6
+ 1 + · · · . (14)

Calculating the computational, semi-analytical, and absolute errors with different values
of T gives Table 2.

2.3 The B-spline methods
Implementing the B-spline family schemes for finding the numerical solutions of Eq. (2)
leads to the following shown values of exact, numerical, and absolute values of error for
the considered model. Tables 3, 4, and 5 show the results obtained by employing the CBS,
ECBS, and ExCBS schemes, respectively.
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Table 5 Numerical values of the solutions through the ExCBS method

Value of T Analytical Approximate Absolute error

0 1.027777436 1.027777436 0
0.00001 1.027777436 1.027777438 1.33319E–09
0.00002 1.027777436 1.027777439 2.6645E–09
0.00003 1.027777436 1.02777744 3.99395E–09
0.00004 1.027777436 1.027777442 5.32152E–09
0.00005 1.027777437 1.027777443 6.64723E–09
0.00006 1.027777437 1.027777444 7.97106E–09
0.00007 1.027777437 1.027777446 9.29302E–09
0.00008 1.027777437 1.027777447 1.06131E–08
0.00009 1.027777437 1.027777448 1.19313E–08

Figure 1 Two-dimensional sketches between the analytical and approximate solutions based on the AD
method for illustrating the matching between solutions

Figure 2 Two-dimensional sketches between the analytical and approximate solutions based on the EK
method for illustrating the matching between solutions

3 Results and discussion
This section shows our solutions and discusses the tables and figures in our paper.

• The numerical solutions of the fractional nonlinear telegraph equation are
investigated through five recent schemes based on the obtained analytical solutions in
[1]. The analytical results have been used to construct the requested conditions
required for applying these numerical schemes.

• The above-shown Tables 1–5 and Figs. 1–5 offer the matching between exact and
numerical solutions, which shows the accuracy of used analytical and numerical



Khater et al. Advances in Difference Equations        (2021) 2021:227 Page 7 of 9

Figure 3 Two-dimensional sketches between the analytical and approximate solutions based on the CBS
scheme for illustrating the matching between solutions

Figure 4 Two-dimensional sketches between the analytical and approximate solutions based on the ECBS
method for illustrating the matching between solutions

Figure 5 Two-dimensional sketches between the analytical and approximate solutions based on the ExCBS
method for illustrating the matching between solutions

techniques. Additionally, all these tables and figures demonstrate the superiority of
the ESE method over the other used analytical schemes in [1]. Moreover, they show
the CBS method’s power as it gives the most accurate solutions over the above-used
numerical schemes 6.
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Figure 6 Two-dimensional sketches for the above-used schemes

• Comparing our obtained numerical results with those obtained in [33], which used
the trigonometric quintic B-spline scheme to investigate the numerical solutions of
the same model, shows the accuracy of our solutions, which coincide with their
solutions, where both of us offer the accuracy of the ESE computational method over
other used computational schemes in [1].

4 Conclusion
This manuscript has investigated numerical solutions of the fractional nonlinear telegraph
equation by employing five numerical techniques. Abundant numerical results have been
obtained, while matching exact and numerical solutions has been explained by some dis-
tinct figures in two dimensions. The superiority of the ESE analytical and CBS numerical
schemes has been demonstrated. The originality of our paper has been explained by com-
paring our solutions with previously constructed solutions.
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17. Ahmad, H., Khan, T.A., Stanimirović, P.S., Chu, Y.-M., Ahmad, I.: Modified variational iteration algorithm-II: convergence

and applications to diffusion models. Complexity 2020 (2020)
18. Abouelregal, A.E., Yao, S.-W., Ahmad, H.: Analysis of a functionally graded thermopiezoelectric finite rod excited by a

moving heat source. Results Phys. 19, 103389 (2020)
19. Attia, R.A., Lu, D., Ak, T., Khater, M.M.: Optical wave solutions of the higher-order nonlinear Schrödinger equation with

the non-Kerr nonlinear term via modified Khater method. Mod. Phys. Lett. B 34(05), 2050044 (2020)
20. Ali, A.T., Khater, M.M., Attia, R.A., Abdel-Aty, A.-H., Lu, D.: Abundant numerical and analytical solutions of the

generalized formula of Hirota–Satsuma coupled KdV system. Chaos Solitons Fractals 131, 109473 (2020)
21. Khater, M.M., Attia, R.A., Abdel-Aty, A.-H., Abdou, M., Eleuch, H., Lu, D.: Analytical and semi-analytical ample solutions of

the higher-order nonlinear Schrödinger equation with the non-Kerr nonlinear term. Results Phys. 16, 103000 (2020)
22. Khater, M.M., Park, C., Abdel-Aty, A.-H., Attia, R.A., Lu, D.: On new computational and numerical solutions of the

modified Zakharov–Kuznetsov equation arising in electrical engineering. Alex. Eng. J. (2020)
23. Khater, M.M., Alzaidi, J., Attia, R.A., Lu, D., et al.: Analytical and numerical solutions for the current and voltage model

on an electrical transmission line with time and distance. Phys. Scr. 95(5), 055206 (2020)
24. Khater, M.M., Attia, R.A., Baleanu, D.: Abundant new solutions of the transmission of nerve impulses of an excitable

system. Eur. Phys. J. Plus 135(2), 1–12 (2020)
25. Li, J., Attia, R.A., Khater, M.M., Lu, D.: The new structure of analytical and semi-analytical solutions of the longitudinal

plasma wave equation in a magneto-electro-elastic circular rod. Mod. Phys. Lett. B 2020, 2050123 (2020)
26. Yue, C., Khater, M.M., Attia, R.A., Lu, D.: The plethora of explicit solutions of the fractional KS equation through

liquid–gas bubbles mix under the thermodynamic conditions via Atangana–Baleanu derivative operator. Adv. Differ.
Equ. 2020(1), 1 (2020)

27. Park, C., Khater, M.M., Attia, R.A., Alharbi, W., Alodhaibi, S.S.: An explicit plethora of solution for the fractional nonlinear
model of the low–pass electrical transmission lines via Atangana–Baleanu derivative operator. Alex. Eng. J. (2020)

28. Khater, M.M., Park, C., Lu, D., Attia, R.A.: Analytical, semi-analytical, and numerical solutions for the Cahn–Allen
equation. Adv. Differ. Equ. 2020(1), 1 (2020)

29. Goldstein, S.: On diffusion by discontinuous movements, and on the telegraph equation. Q. J. Mech. Appl. Math. 4(2),
129–156 (1951)

30. Chen, J., Liu, F., Anh, V.: Analytical solution for the time-fractional telegraph equation by the method of separating
variables. J. Math. Anal. Appl. 338(2), 1364–1377 (2008)

31. Kumar, S.: A new analytical modelling for fractional telegraph equation via Laplace transform. Appl. Math. Model.
38(13), 3154–3163 (2014)

32. Orsingher, E., Zhao, X.: The space-fractional telegraph equation and the related fractional telegraph process. Chin.
Ann. Math. 24(1) (2003)

33. Khater, M.M., Nisar, K.S., Mohamed, M.S.: Numerical investigation for the fractional nonlinear space-time telegraph
equation via the trigonometric quintic B-spline scheme. Math. Methods Appl. Sci. (2020)


	Five semi analytical and numerical simulations for the fractional nonlinear space-time telegraph equation
	Abstract
	Keywords

	Introduction
	Approximate analysis
	The AD method
	The EK method
	The B-spline methods

	Results and discussion
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


