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ABSTRACT: The extraordinary sensitivity of plasmonic sensors is well-known in the optics
and photonics community. These sensors exploit simultaneously the enhancement and the
localization of electromagnetic fields close to the interface between a metal and a dielectric.
This enables, for example, the design of integrated biochemical sensors at scales far below
the diffraction limit. Despite their practical realization and successful commercialization, the
sensitivity and associated precision of plasmonic sensors are starting to reach their
fundamental classical limit given by quantum fluctuations of lightknown as the shot-noise
limit. To improve the sensing performance of these sensors beyond the classical limit,
quantum resources are increasingly being employed. This area of research has become
known as “quantum plasmonic sensing”, and it has experienced substantial activity in recent
years for applications in chemical and biological sensing. This review aims to cover both plasmonic and quantum techniques for
sensing, and it shows how they have been merged to enhance the performance of plasmonic sensors beyond traditional methods. We
discuss the general framework developed for quantum plasmonic sensing in recent years, covering the basic theory behind the
advancements made, and describe the important works that made these advancements. We also describe several key works in detail,
highlighting their motivation, the working principles behind them, and their future impact. The intention of the review is to set a
foundation for a burgeoning field of research that is currently being explored out of intellectual curiosity and for a wide range of
practical applications in biochemistry, medicine, and pharmaceutical research.
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1. INTRODUCTION

Optical sensors are used in many areas of science and
technologynotable examples include gyroscopes for navi-
gation,1 accelerometers for monitoring structural deforma-
tions2 and seismic wave activity,3 electrochemical devices for
measuring renewable energy storage,4 and density sensors for
analyzing seawater in climate change research.5 Of particular
interest to the biological and chemical sciences are sensors that
measure the presence and behavior of bacteria, viruses, and
proteins.6−9 Here, highly sensitive optical sensors provide a
deeper understanding of the biochemical processes involved in
a given scenario in a noninvasive label-free manner, enabling,
for example, drug development for improved health care.10

Plasmonic systems based on metal nanostructures have long
been used as a basis for optical sensors in this context.11−15

The surface of a metal supports a quasiparticle known as a
surface plasmon (SP),16,17 which enables electromagnetic field
confinement below the diffraction limit18−20 and allows
enhanced sensing compared to conventional optical sen-
sors.21−28 Indeed, since the 1990s, surface plasmon resonance
(SPR) sensors have been commercialized by several
companies;24,29−32 they are now a vital tool for studying
biomolecular interactions for fundamental and applied
sciences.33,34

Despite their successful commercialization, the high
sensitivity and precision of plasmonic sensors are beginning
to reach a fundamental limit given by quantum fluctuations of
lightknown as the shot-noise limit (SNL).35,36 In the past few
years, improved sensitivity and precision beyond the SNL has
been shown to be achievable for practical optical sensors using
concepts from quantum metrology.37−46 Several impressive
experiments have demonstrated the basic working principles of
quantum metrology using various types of quantum techniques
in bulk optics,47−51 integrated optics,52 and biological
systems.42,53 It is natural to ask whether these techniques
can also be applied to plasmonic sensors to improve their
performance. This question has been further motivated by

recent advances in our understanding of the fundamental
theory underlying quantum plasmonic systems, which has
recently been extensively developed and experimentally
studied.54−67 Advances in quantum plasmonics have enabled
research groups to pursue the application of quantum
metrology principles to plasmonic sensors in just the past
few years. This area of research has become known as
“quantum plasmonic sensing”. As the community moves
further into this growing area, it is now an ideal time to look
back to review and consolidate the past research achievements,
as well as to look forward to identify future applications in the
biochemical sciences and potential technologies beyond.
The interested reader can find a multitude of review articles

on plasmonic sensors that have already been written from
va r i ou s pe r spec t i v e s ove r the l a s t f ew deca -
des.11−14,21,23−25,27,28,34,68 This review, on the other hand,
aims to comprehensively introduce for the first time the
general framework developed for quantum plasmonic sensors
in recent years and covers the basic theory behind the
framework. While the goal is to present a broad overview of the
research landscape, we also focus on several key works, where
we highlight the motivation, provide details of the working
principles, and discuss the future impact. We have endeavored
to include all relevant works in this exciting and growing
multidisciplinary area of research.
This review is aimed at researchers working in the broad

fields of plasmonics, biochemistry, photonics, quantum optics,
and quantum information science. In order for it to be
accessible and beneficial to readers from all these fields, the
philosophy has been to structure the review into three distinct
sections: In section 2, we introduce conventional plasmonic
sensing, where we describe the different types of plasmonic
sensors that exist in research and industry based on the
principles of classical physics, along with their sensing
performance. In section 3, we introduce quantum sensing,
where we describe the tools and concepts that have taken
conventional sensing from the classical to the quantum regime,
which offers a significantly improved sensing performance. In
section 4, we then bring the concepts of sections 2 and 3
together and review recent work that has focused on
integrating quantum sensing techniques with conventional
plasmonic sensors. We describe how this approach has opened
up a new route for improving the performance of plasmonic
sensors.

2. PLASMONIC SENSORS
The sensitivity of a sensor, including that of a plasmonic
sensor, is generally defined as

=
y
x

d
dy

(1)

where x represents an implicit parameter to be estimated from
a measurement of an explicit quantity y.23 The sensitivity can
thus be understood as the extent to which the explicit
parameter y changes for a given change of the implicit
parameter x. Such a relation between x and y strongly depends
on the physical system used to encode the parameter to be
estimated, but it also depends on the physical quantities that x
and y represent. As will be shown in the following sections, in a
chosen plasmonic setting, various physical parameters y can be
measured to estimate an individual parameter x at stake. An
appropriate sensor, therefore, needs to be considered in a way
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such that the sensitivity expressed in eq 1 takes rather large
values. Plasmonic sensors, which exploit the interaction of light
with the materials to be sensed at the interface between a metal
and a dielectric in the sensing process, cope with this
requirement very well. In addition to a high sensitivity,
another appealing feature of plasmonic systems is the capability
to confine the light to a spatial domain well below the
diffraction limit, which is not possible with conventional
photonic systems.18−20 Therefore, plasmonic sensors are
known to enable compact subdiffraction-limited sensing with
high sensitivity. This also allows the measurement of tiny
quantities of analytes, which is a feature that has been
prompting their development now for quite some time.
In this section, we explain the physical basis of plasmonic

sensing with typical basic structures. We describe how
plasmonic features can be designed to optimize the sensitivity.
We also introduce a few plasmonic sensors that have attracted
intensive interest from various scientific communities. The
plasmonic sensors in this section are considered to be operated
with classical light, but in the following sections we will
consider how quantum states of light and quantum measure-
ments can be combined with such plasmonic sensors to further
improve their performance.
2.1. Surface Plasmon Polaritons

According to established notation, a plasmon is a charge
density oscillation in a metal. A plasmon polariton is a hybrid
excitation where an electromagnetic field is coupled to a
plasmon. The additional term “surface” expresses that such an
excitation is confined to the interface between a metal and a
dielectric. To understand the appearance and the basic physical
properties of surface plasmon polaritons (SPPs), we start by
considering an interface between a bulk dielectric and a bulk
metal, as shown in Figure 1(a). Here, “bulk” simply implies

that the size of the material is much larger than the wavelength
of light in all directions. That is, we consider the dielectric and
metal as semi-infinite half spaces.
For a given material distribution in space, various electro-

magnetic modes can be found by solving Maxwell’s equations.
The “macroscopic” Maxwell equations in the time domain are
written as69

ρ∇· =D r rt t( , ) ( , )ext (2)

∇· =B r t( , ) 0 (3)

∇ × =− ∂
∂

E r
B r

t
t

t
( , )

( , )
(4)

∇ × = + ∂
∂

H r J r
D r

t t
t

t
( , ) ( , )

( , )
macr (5)

Note that the electric field E(r, t) and magnetic induction B(r,
t) are experimentally observable fields, while the electric
displacement field D(r, t) and magnetic field H(r, t) are
auxiliary fields introduced to capture the response of the
materials. Jmacr(r, t) is the macroscopic current density, and
ρext(r, t) is the external (free) charge density, respectively. The
latter, however, vanishes when considering optical problems,
and it is assumed to be zero from now on. The macroscopic
current density is separated into a conduction and a convection
current. The conduction current will depend on the electric
field while the convection current depends on the physical
motion of matter. The latter is assumed to be vanishing in the
systems we look at; there is only a conduction current.
To solve the Maxwell equations, the relationship between

the observable and auxiliary fields needs to be specified. This is
done by constitutive relations that are given for the electric and
magnetic fields in the time domain by D(r, t) = ϵ0E(r, t) + P(r,
t) and H(r, t) = B(r, t)/μ0 − M(r, t). The electric polarization
P(r, t) and the magnetization M(r, t) can depend, in general,
on both the electric and magnetic field. In the time domain and
while restricting ourselves to a linear system governed by
response theory, the dependency of the polarization (magnet-
ization) can usually be expressed by a convolution of the
electric (magnetic) field with some material specific response
function.
In the context of this review it is fully sufficient to consider

isotropic, homogeneous, nonmagnetic materials [M(r, t) = 0,
i.e., H(r, t) = B(r, t)/μ0] without electromagnetic coupling.
The latter property would lead to bianisotropic effects. This
boils down to considering a polarization that depends only on
the electric field.
While the expression of the material properties in the time

domain based on a convolution is cumbersome, the usual
approach in the linear regime is to Fourier-transform all the
fields into the frequency domain by making a time-harmonic
Ansatz according to E(r, t) = E(r, ω)e−iωt. The convolution in
the time domain will be a product in the frequency domain,
and the constitutive relations collapse to some algebraic
equations. As the Fourier-transformed polarization and the
Fourier-transformed conduction current density appear on an
equal footing, these two terms are usually combined. The
response of the individual bound charges (leading to a
polarization) and the induced conduction currents in the bulk
materials in response to an electromagnetic field are then
characterized by the relative electric permittivity in the
frequency domain, i.e., ϵd for the dielectric and ϵm(ω) for
the metal, and we write D(r, ω) = ϵ0ϵj(ω)E(r, ω) in the
respective material j. Note that the permittivity of any material
(except the vacuum) depends on the frequency, sometimes
very well pronounced. Only for dielectric materials in the
transparency window can the permittivity ϵd be assumed to be
nondispersive with a real positive value to a good
approximation. For the metal, the electric permittivity can be
described by the Drude model, written as17

ω
ω

ω γω
ϵ = −

+ i
( ) 1m

p
2

2 (6)

Figure 1. (a) Electric field profile of surface plasma waves, the quanta
of which are called SPPs, at the interface between a bulk dielectric and
a bulk metal. (b) Dispersion relation for a SPP at the interface
between the metal and dielectricsee eq 12and a freely
propagating field mode in the dielectric [ ω= ϵk c( / ),max d ]. The
frequency ωsp denotes the surface plasma frequencythe frequency
at which surface electrons collectively oscillate.
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where γ denotes a damping factor and ωp is the plasma
frequency. We thus have ω ω ωϵ = ϵ′ + ϵ″i( ) ( ) ( )m m m . One can

see that when γ ω ω< −p
2 2 , the real part of the permittivity

is negative, i.e., ωϵ′ ( )m < 0, which applies to typical metals (e.g.,
gold and silver) at optical frequencies. An extended Drude
model can also be found for the metal, for example in ref 70,
which fits the empirically measured data for the dispersion in
the case of gold in the range of wavelength between 500 nm
and 1 μm, as reported in ref 71.
In the structure considered above, various electromagnetic

modes can be found by considering the wave equation in the

frequency domain, ω ω ω∇ + ϵ =ωE r r E r( , ) ( , ) ( , ) 0
c

2 2

2 , that

can be derived directly from the Maxwell equations.17,69 For a
homogeneous space, i.e., ϵ(r, ω) = ϵ(ω), propagating modes
exist in the bulk dielectric and exhibit a dispersion relation
linking the wavenumber |k| = k of the spatial part

ω = ·E r r e( , ) ( ) k ri to the frequency ω of the temporal part
e−iωt, given by = ϵωk

c d [straight line in Figure 1(b) as the

permittivity of the dielectric is assumed to be nondispersive],

where c is the speed of light in a vacuum, = + +k k k kx y z
2 2 2

and the ki are the components of the wavevector k for the
mode. In Figure 1(b) we consider the particular case of the
modes propagating in a direction set by the plane of the
interface, i.e., the x−y plane, so that kz = 0 and

= + =k k k kx y
2 2 . In the metallic half space, evanescent

plane waves exist as elementary solutions of the wave equation
in free space.72

To find the solution in the more complicated situation of the
two semi-infinite half spaces, a usual approach would be to
expand the solution in each of the half spaces into the
elementary solutions in free space and to match the amplitudes
at the interfaces. This requires the specification of the
necessary interface conditions. They can be written in the
frequency domain as69

× − =n E E( ) 0m d (7)

· − =n B B( ) 0m d (8)

· − =n D D( ) 0m d (9)

× − =n H H( ) 0m d (10)

where n is the normal vector characterizing the interface. This
implies that the tangential components of the electric and
magnetic fields are continuous and the normal components of
the electric displacement and magnetic induction are
continuous.
From such a procedure, propagating modes bound to the

metal−dielectric interface as solutions to the wave equation
can be found as well.17 These are hybridized modes, in that
they correspond to a coupling between the electromagnetic
field and longitudinal plasma oscillations, i.e., density
oscillations of electrons in the conduction band of the metal.
The modes are called surface plasma waves [lower curve in
Figure 1(b)]. In the limit of large k∥, the modes have a
corresponding small wavelength and an electrostatic approach
can be used. The modes can thus be obtained for the electric
potential Φ as a solution to the Laplace equation ∇2Φ = 0 for
the single interface geometry, leading to the relation ϵm(ω) +

ϵd = 0. Substituting the Drude model of eq 6 into ϵm(ω) with γ
= 0 for simplicity, one finds the surface plasma frequency
ω ω= + ϵ/ 1sp p d . The quanta of these surface plasma waves
are called SPs17 and were first predicted by Ritchie.73 In the
limit of small k∥, the modes have a corresponding long
wavelength, where charge is transported over a considerable
distance during the plasma oscillation. The resulting current
sets up additional electromagnetic fields that interact back
again with the electrons during their oscillation, causing
retardation. In this regime, the wave equation needs to be used
to obtain solutions for the modes. The quanta of these surface
plasma waves are called SPPs and contain SPs in the limit k∥ →
∞. The word “polariton” emphasizes the joint interaction
between the matter part of the excitation (the electron plasma
oscillation or plasmon) and the light part of the excitation (the
electromagnetic field or photon).54 In this section, we will use
a classical description of SPPs, i.e., surface plasma waves, and
show how they enable classical plasmonic sensing, but we keep
the quantized name, SPP, as is regularly done in the literature.
This also has the benefit that it anticipates their use in the
quantum regime, which we cover in detail in section 4.
From the wave equation, the electric field of the confined

SPP mode at the interface can be written as17

= ω κ− − | |E r rt e e( , ) ( )j j
i k x t z( ) j

(11)

where r( )j represents a vectorial field profile for the mode,
the subscript j denotes either dielectric (d) or metal (m), and
we are considering propagation in the x direction, i.e., kx = k∥
and ky = 0. The vectorial field profile, r( )j , corresponds to a
field with directionality in the x and z direction, i.e., a
transverse magnetic field (in the y direction). This is due to the
imaginary part of the conductivity associated with the Drude
model being positive.74 The dispersion relation for the parallel-
to-interface wavenumber is written as17

ω ω ω
ω

=
ϵ ϵ

ϵ + ϵ
k

c
( )

( )
( )

SPP d m

d m (12)

This dispersion relation is valid for both real and complex
ϵm(ω), i.e., for metals with and without attenuation. When ω
approaches the surface plasma frequency ωsp, the denominator
ϵd + ϵm(ω) approaches zero, so the wavenumber k∥

SPP(ω)
diverges. This is another indication that SPs can be understood
as the limiting case of SPPs for large wavenumber.
In terms of field confinement, the electrons at the metal

surface strongly bind the electromagnetic field of the SPP to
the interface, resulting in a huge enhancement of the
electromagnetic field near the surface. The field given in eq
11 in the z direction is generally “subwavelength” confined, as

the field falls off as e−κj|z|, where κ = − ϵk k( )j j
SPP 2

0
2 and

= ωk
c0 . On the other hand, the confinement of the field in the

x−y plane is no longer limited as it would be in a bulk material,
i.e., limited by the usual three-dimensional diffraction
limit.18,19,54 The field given in eq 11 possesses a plane wave
component with respect to a single wavevector k∥ and in the
present discussion has an infinite spatial extent in the y
direction. While convenient for mathematical modeling, an
actual SPP field will be laterally confined in the y direction, and
for a fixed frequency ω it must be made from a sum of plane
waves via Fourier synthesis, each wave with different kx and ky
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components. The corresponding spatial extent of such a
confined field can be smaller than that allowed in the bulk
dielectric. This leads to a SPP to be described as
“subdiffraction” confined on the surface, with the field obeying
a more compact two-dimensional diffraction limit for the
geometry.19 Such a confinement in space on the surface
(subdiffraction) and perpendicular to the surface (subwave-
length) is the inherent feature that enables SPP modes to be
highly sensitive to the optical properties of the dielectric
medium.
When the metal−dielectric interface is illuminated with light

from the dielectric region, the dispersion curve of the radiation
mode, kin, does not cross the dispersion curve of the SPP, k∥

SPP,
for a given permittivity ϵd in the dielectric for any frequency ω
[see Figure 1(b) for the extreme case where = = ϵωk k

c d
in in

]. In other words, the parallel-to-interface wavenumber k∥
in(ω)

of the incident light can never be equal to k∥
SPP(ω) of eq 12 for

a fixed frequency. This means that any light directly incident
on the metal cannot excite SPPs. A novel scheme is therefore
required to satisfy the excitation condition k∥

in(ω) = k∥
SPP(ω).

To this end, various schemes have been demonstrated for the
excitation of SPPs at the interface between a bulk metal and a
bulk dielectric, e.g., a prism,75,76 a grating,16 a randomly rough
surface,77,78 or a scanning near-field probe with subwavelength
aperture.79 The most widely used scheme is the prism setup,
with two typical configurations: the Otto configuration75 and
the Kretschmann configuration.76 The former configuration
requires dedicated techniques in practice, while the latter
configuration has led to many successful applications in
plasmonic sensing,10 including commercialized versions.
Therefore, we will focus on the Kretschmann configuration
as a plasmonic sensing platform and elaborate on various
assessments of its sensing performance in the next section.

2.2. Surface Plasmon Resonance Sensing

SPPs at the metal−dielectric interface can only be excited
when the excitation condition is satisfied, i.e., the mode
matching condition k∥

in(ω) = k∥
SPP(ω). However, realizing the

excitation condition is practically not easy because the
dispersion relation of eq 12 is sensitive to the optical

properties of the interfaced medium, i.e., the permittivity of
the dielectric ϵd. Thus, when the aforementioned schemes are
used to excite SPPs for a given structure, the system
parameters need to be finely tuned and carefully stabilized in
a controlled manner to satisfy the resonance condition. This
might be undesirable and impractical from a general point of
view, but paradoxically it is the desired feature for sensing in
general. This is the basic principle of SPR sensing.
We consider the most paradigmatic setup for the excitation

of SPPs, the so-called Kretschmann configuration, that consists
of three layers: the first layer is a prism (ϵ1 = ϵp), the second
layer is a metal film [ϵ2 = ϵm(ω)], and the third layer is a
medium of an analyte (ϵ3 = ϵa), as shown in Figure 2(a).
Examples of the analyte medium are given in Figure 2(b).
Suppose that light is injected toward the metal interface from
the prism region below, with an incident angle θin. The parallel-
to-interface wavenumber of light impinging on the metal film is
given as ω ω θ= ϵk c( ) ( / ) sinp in and as mentioned, it is

always smaller than the wavenumber of a SPP at the interface
between the prism and the metal film for a fixed frequency ω;
that is, SPPs cannot be excited via direct illumination.
However, when the incident angle is greater than the critical
angle, this leads to total internal reflection, and subsequently it
causes the excitation of an evanescent field on the opposite
side of the prism. The parallel-to-interface wavenumber of the
evanescent field is still the same as the incident one, as it is a
conserved quantity because of the translation invariance of the
interface. When the thickness of the metal film is small, the
decaying tale of the evanescent field can reach the interface
between the metal film and the analyte region, where the
wavenumber of the SPP is given by k∥

SPP(ω) with ϵd = ϵa being
smaller than ϵp. Consequently, for a SPP at the metal−analyte
interface, the resonant condition k∥(ω) = k∥

SPP(ω) can be met
for a specific incidence angle called the resonance angle θres.
This is shown in Figure 2(c) as a crossing point (star) between
the dispersion curves. The SPP at the metal−analyte interface
is thus excited via so-called evanescent field coupling. For a full
resonant excitation of SPPs, the spatial mode of the evanescent
field should have a significant overlap with that of the SPP.
Furthermore, a finite beam width of the incoming light and the

Figure 2. Kretschmann configuration for plasmonic sensing. (a) The system is composed of three layers, where a thin metallic film is sandwiched
by a prism with permittivity ϵp and an analyte with permittivity ϵa. (b) Two examples of an analyte are shown. In (i) a ligand molecule binds to a
receptor on the metal surface modifying the local permittivity ϵa. In (ii) a biomolecule is present near the surface resulting in a change of ϵa. (c)
Dispersion relation for light and SPPs in the system. The labels “SPP(a)” and “SPP(p)” denote the SPP mode at the analyte−metal interface and
the prism−metal interface, respectively. The corresponding surface plasma frequencies are given as ωsp

(a) and ωsp
(p). The incident light in the prism

region (straight line) cannot cross the dispersion curve for “SPP(p)”, whereas the evanescent field on the opposite side of the prism (the same
straight line) can cross the dispersion curve for “SPP(a)”.
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radiative and damped nature of the SPP mode need to be
considered to include practical aspects involved in the
conversion process.80

When all the coupling conditions are fulfilled, the total
internal reflection is attenuated, an effect known as attenuated
total internal reflection (ATR). Observing that the reflectance
drops down from near-unity to zero, one can indirectly certify
that the incident light is converted into a SPP mode. To see
this in theory, one can solve Maxwell’s equations for the three-
layer system and obtain the reflection coefficient written as16

=
+

+
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e r r

e r r 1

i k d

i k dspp

2
23 12

2
23 12
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2 (13)
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f o r u , v ∈ {1 , 2 , 3 } ,

ω θ= ϵ [ − ϵ ϵ ]k c( / ) 1 ( / ) sinu u u1
2

in
1/2 denotes the normal-

to-surface component of the wave vector in the uth layer and
ϵu is the respective permittivity. The resonant excitation of
SPPs can be identified by a dip in the reflectance Rspp = |rspp|

2

measured in terms of the incident angle θin, the wavelength λ,
or the frequency ω [see inset of Figure 2(a)]. The reflectance
dip is highly sensitive to the permittivity ϵa of an analyte, so
analysis of the reflected light enables the estimation of various
kinds of implicit parameters that characterize the optical
properties of an analyte or its relevant effects. For example,
SPR sensors can be used to characterize kinetic parame-
ters,81−84 such as the equilibrium constant, dissociation
constant, and association constant. They can also be used for
sensing of structural or material parameters,23,85,86 such as the
thickness of adsorbed molecules and their refractive index.
Interestingly, these examples can be understood by a single
phenomenological and macroscopic parametera refractive
index ( = ϵna a ) that changes. Therefore, for the sake of
simplicity, but without loss of generality, we will focus on
refractive index sensing. Furthermore, specificity, i.e. the
response of the sensor to changes in a specific type of
environment, can be achieved in SPR sensors by coating the

metal surface with an appropriate receptor,24 as shown in
Figure 2(b)(i). This means that a specific ligand that is desired
to be sensed will bind to it and effectively change the refractive
index of the medium above the metal.

2.2.1. Angular Interrogation. When light is converted to
a SPP in a prism setup such as the Kretschmann configuration,
the reflectance is minimized, which ensures the resonant
excitation of a SPP. By varying the incidence angle θin for a
fixed frequency ω of light in the prism setup, one can find the
reflectance dip at the resonant incident angle θres, at which the
parallel-to-interface wavenumber of the exciting evanescent
field is equal to that of the SPP. Mathematically we have

θ
ω

ω
=

ϵ′
+ ϵ′

k n k
n

n
sin

( )
( )0 p res 0

a
2

m

a
2

m (14)

where = ϵna(p) a(p) denotes the refractive index of the analyte

(prism). It is clear to see that the resonance angle θres changes
with the refractive index na of the analyte; that is, the
reflectance curve shifts when the refractive index na changes.
The sensitivity of the resonance angle with respect to changes
in na can be obtained from eq 14 and is written as22

θ ω

ω ω
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(15)

The angular sensitivity θ is given in degrees per refractive
index unit (RIU) and monotonically increases with decreasing
wavelength [see Figure 3(a)]. On the other hand, it diverges in
the short wavelength regime because the sensitivity θ
becomes singular when ϵm′ (ω) = np

2na
2/[na

2−np2]. This indicates
that the sensitivity of the Kretschmann configuration using
gold is better than that using silver in the typical range of
wavelengths of interest in optics [see Figure 3(a)] because the
plasma frequency of gold is smaller than that of silver.
Furthermore, a smaller contrast between na and np is helpful for
increasing the angular sensitivity, so for example, using BK7-
glass is better than using SF14-glass for a given analyte with na

Figure 3. Angular sensitivity in (a) and the spectral sensitivity in (b) are investigated as a function of the wavelength injected into the prism
coupler. Example setups consider glass (SF14 or BK7), metal (gold and silver), and analyte (na = 1.32), for which the sensitivities of eqs 15 and 16
are evaluated (see solid, dashed, dot-dashed curves, whose details are provided in the legend) in (a) and (b), respectively, together with an
asymptotic sensitivity in the limit of long wavelengths (dotted line) and sensitivities calculated numerically via Fresnel equations (crosses) for a
structure with SF14-prism and 50 nm thick gold film. Reprinted with permission from ref 22. Copyright 1999 Elsevier.
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= 1.32. As can be seen from Figure 3(a), typical sensitivities of
a Kretschmann plasmonic sensor using the angular inter-
rogation method are in the range 10−103 degrees/RIU.
2.2.2. Spectral Interrogation. The reflectance curve can

also be measured as a function of wavelength (or frequency) of
the incident light that is injected into the prism setup with a
fixed incidence angle. In this scenario, the reflectance dip is
obtained at a resonance wavelength λres, which satisfies the
resonant condition of eq 14, and shifts with the change of the
refractive index na of an analyte. The spectral sensitivity can be
obtained in the same way as above and is written as22
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Like the angular sensitivity θ , the spectral sensitivity λ
exhibits a singularity but in the limit of long wavelengths; that
is, the spectral sensitivity λ monotonically increases with the
wavelength [see Figure 3(b)]. However, the spectral sensitivity

λ increases with |ϵm′(ω)|, so the Kretschmann configuration
using silver is more sensitive than one using gold, which is
contrary to the angular sensitivity θ . Here again, using BK7-
glass is better than using SF14-glass for a given analyte with na
= 1.32 since the smaller the contrast between np and na is, the
more sensitive the Kretschmann configuration setup is to the
change of na. As can be seen from Figure 3(b), typical
sensitivities of a Kretschmann plasmonic sensor using the
spectral interrogation method are in the range 103−105 nm/
RIU.
2.2.3. Limit of Detection. The higher the sensitivity y of

a sensor, the more sensitively an explicit observable parameter
y changes with respect to the change of an implicit parameter x
of an analyte. However, the noise inevitably involved in the
measurement limits the minimum detectable range Δymin of
the parameter y being measured, even though the sensor may
be highly sensitive. An overall figure of merit for sensing
quality needs to take into account both the sensitivity y and
the minimum detectable range Δymin or equivalently the value
of the noise level. This leads to the definition of a “limit of
detection” (LOD),23,27 also known as the resolution35 of the
sensor, written as

=
Δy

S
LOD

y

min

(17)

Current state-of-the-art classical plasmonic sensors can achieve
a minimum LOD of ∼10−6−10−7 RIU, which covers a wide
range of optical designs, interrogation methods, and operating
wavelengths.35 Examples include the detection of nucleic acids
identifying specific bacterial pathogens87 and the monitoring of
protein multilayer systems.88 Although we focus on the
refractive index change for the sensitivity, the LOD may be
given in other units better suited to the specific application,
depending on the quantity x being measured. Other commonly
used units for the LOD in biochemical plasmonic sensors are
ng/mL and nM, which correspond to measuring concen-
trations of substances. For consistency we will continue to use
RIU, as it covers these cases also up to a functional relation.
More generally, the above formula in eq 17 clearly shows that a
good sensor requires the LOD to be reduced via the
enhancement of the sensitivity y and a reduction of the

noise Δymin. As will be discussed in section 4, the LOD can be
significantly reduced when the quantum resources described in
section 3 are exploited together with plasmonic systems. In
general, the sensitivity and specificity of the plasmonic sensor
are not modified in the quantum scenario as they depend
mainly on the physical setup; it is the reduction of the noise
Δymin, for a given integration time and intensity that is the
crucial feature quantum sensing provides. In the literature,
LOD, resolution, and sensitivity have often been interchange-
ably used in the sense that a small LOD (or resolution) implies
a large sensitivity for a fixed Δymin and vice versa. For a classical
plasmonic sensor, the main and inevitable contribution to the
noise stems from “shot noise”, as will be discussed in detail in
section 3. On the other hand, for a quantum plasmonic sensor,
the noise can be reduced below that of the shot noise.
The noise reduction offered by the use of quantum resources

opens up a route to reducing the LOD below what is possible
classically, which enables the precision of a plasmonic sensor to
be improved so that it can detect smaller changes in the
implicit parameter x of an analyte. Such an improvement is
beneficial in many applications of plasmonic sensors, for
instance the detection of pathogens in small quantities in the
early stages of a disease,33 or the contamination of food and
water by minute amounts of a substance.6

2.3. Intensity vs Phase Sensing

When SPPs are excited at the resonance angle in the
Kretschmann configuration, the total internal reflection of
light is maximally attenuated. Around the resonance a steep
curve in the intensity of the reflected light is exhibited as the
incident angle is varied, as shown in the inset to Figure 2(a).
The change of the intensity is often analyzed to infer the
refractive index of an analyte medium or other relevant
properties. In angular interrogation, the shift in the resonance
angle corresponding to the minimum of the reflected intensity
is measured. Another intensity-based sensing approach, known
as “intensity modulation”, is to fix the incident angle at the
steepest point of the reflection curve (off-resonance), i.e., the
inflection point, and monitor the change in the reflected
intensity as the entire resonance curve shifts. Similar LODs to
angular interrogation can be achieved using this method.35 On
the other hand, the phase of the reflected light also changes
across the resonance curve and abruptly at the resonance angle,
which can be detected in an interferometric setup. This
indicates that detecting the phase or phase change of the
reflected light can be exploited as an alternative sensing
method to intensity sensing. Such behavior has motivated the
study of various phase-sensitive plasmonic or SPR sensors
linked with an interferometric system to measure a relative
phase shift,89−91 including multipass interferometers,92 imaging
interferometers,93,94 Mach−Zehnder interferometers
(MZIs),95−99 and heterodyne interferometers.100,101

Aside from the issue of noise in the measurement, a natural
question arises: Which one is more sensitive, intensity sensing
or phase sensing? There have been many studies comparing
these two canonical sensing schemes. A number of works have
shown that the sensitivity of phase sensing schemes is a few
orders of magnitude higher than schemes based on the
detection of the intensity change.96,101−114 Although contra-
dictory observations may be found in the literature, e.g., ref
115, their paradoxical conclusion has been rebutted by other
studies, for instance those mentioned in the dedicated
discussion by Kabashin et al.,116 who report a Kretschmann
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plasmonic sensor with a LOD of 10−8 using phase sensing with
measurement noise included, representing an improvement in
the LOD of 2 orders of magnitude compared to intensity
sensing.
Regardless of which one is more sensitive, intensity and

phase are the canonical conjugate variables for light. One can
almost always decompose plasmonic sensors or, even more
generally, photonic sensors into two types: phase sensors and
intensity sensors (often called amplitude sensors). Each type of
plasmonic sensor works differently and consequently offers
distinct functionalities and respective advantages.116 Such a
distinction is also used to categorize quantum optical sensors,
where useful quantum properties are different depending on
the type of sensing being performed, as will be discussed in
section 3. Thus, for quantum plasmonic sensors, intensity and
phase sensing will also be treated separately in section 4. One
may wish to have a combined version, but again they are
complementary variables, so both parameters cannot be
precisely estimated simultaneously due to the Heisenberg
principle. This is also discussed in section 3.

2.4. Localized Surface Plasmon Resonance Sensing

The SPPs discussed above are propagating surface waves and
exist at a planar interface between a dielectric and a metal. On
the other hand, nonpropagating SPs can also be found in
spatially localized metallic structures with a size comparable to
or smaller than the wavelength of light. In this case, the
conduction electrons oscillate coherently with a frequency that
depends on the size and the shape of the metallic structure, the
density and the effective mass of the electrons, and the
medium in which the structure is embedded.117 The oscillation
of the electron density is called a localized surface plasmon
(LSP).118,119 Typical examples include metallic nanoparticles
(MNPs),120,121 where the excited LSPs with discrete resonance
modes lead to sharp spectral absorption and scattering profiles
but also strong electromagnetic near-field enhancement in the
proximity of metallic structures. Since LSPs can be excited in
metallic structures with a size smaller than the diffraction limit,
they have often been used for super-resolution imaging.122−126

As the simplest example, consider a single spherical MNP
with a radius r0 that is embedded in a medium with a dielectric
constant ϵd, as shown in Figure 4(a). When the MNP is
illuminated by a single-mode electromagnetic field whose
wavelength is much longer than the size of the MNP, i.e., λ ≫
r0, the electrostatic (or nonretarded) approximation can be
applied. This approximation allows the problem to be solved
using Laplace’s equation ∇2Φ(r) = 0 for the spatial dependent
electric potential Φ(r). This is known as the quasi-static
approximation as the spatial dependency of the field is

governed by the same equation as in the electrostatic case
but the fields continue to oscillate in time at the high
frequencies corresponding to the visible part of the spectrum.
The solution of Laplace’s equation inside and outside the
MNP reads
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where θ (ϕ) represents the polar (azimuthal) angle in a
spherical coordinate system, Yl

m(θ,ϕ) is a spherical harmonic
function of degree l and order m, and alm and blm are
amplitudes. The interface conditions of eqs 7 and 9 impose the
continuities of ∂Φ/∂r for the tangential components and ϵi∂Φ/
∂r for the normal components across the MNP’s interface at r
= r0. They lead to the explicit expression for the resonance
frequencies of the LSPs, written as
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+ + =l
l

( ) 1
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where l denotes the mode index of the angular momentum of
the LSP.127 Neglecting damping for simplicity, i.e., using the
Drude permittivity of eq 6 with γ = 0, one can obtain the
resonance frequencies of LSPs, written as
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For small spheres, the dipolar excitation of LSPs is the most
dominant, i.e., l = 1, so that eq 20 gives the resonant condition
for the dipolar LSP excitation as ϵm′ (ω) = −2ϵd, leading to the
resonant frequency ω1 = ωp(1 + 2ϵd)

−1/2 using eq 21, known
as the Fröhlich condition. If the background permittivity ϵd is
modified, for instance by a ligand binding to a receptor, as
shown in Figure 4(b), then the resonance position shifts by
Δω (correspondingly by Δλ for wavelength). Thus, the
resonance position can be used to sense a change in the
environment of the MNP.
Such resonant features of the dipolar LSP excitation can also

be seen in the expression of the scattering and absorption cross
sections written as128
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Figure 4. MNP supporting a LSP excitation when illuminated with an external electric field. (a) The MNP supports a LSP which is damped by
internal ohmic loss and external radiation into the far-field. (b) An analyte, consisting of a ligand binding to a receptor, changes the background
permittivity of the MNP. This causes a change in the resonance position of the system with respect to the wavelength of the exciting field.
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where V is the particle volume. Note that LSPs can be
resonantly excited at the frequencies ωl regardless of the
wavevector; that is, the resonance is independent of the
illumination direction due to the full spherical symmetry of the
MNP.128 This is in contrast to the excitation of SPPs, which
are only excited when both the frequency and the wavenumber
of the incident light equal those of the SPP for a given
structure.
For larger spheres or in situations where the spheres are

excited by some emitter in close proximity, higher-order modes
with l ≥ 2 need to be taken into account in the description. If
the size of the spheres gets even larger, such that the quasi-
static approximation no longer holds, i.e., if the phase
retardation of the incident field across the MNP can no longer
be neglected, the cross sections caused by multipolar LSP
excitations can be calculated using Mie theory in an analytical
manner.121 LSP excitations at elliptical particles can also be
investigated using Gans theory,129 providing an analytical
solution where the aspect ratio of the ellipsoid plays a role. Of
particular interest are spheroids, since they lead to a double
resonance behavior, corresponding to electron oscillations
along the major and minor axes.128 Behaviors of LSP excitation
at nanorods with thickness comparable to the skin depth of the
metal can also be described and thus understood in an
analytical way.130 More complex structures, such as multi-
layered spheres or ellipsoids with different materials, or
nonspherical/nonellipsoidal MNPs, can be considered, but
one should use numerical electromagnetic methods such as
finite-difference time-domain and finite-element methods to
obtain approximate solutions, since an analytical solution for
arbitrary structures cannot be found.131−134 Complex
structures are known to exhibit intriguing features and the
potential for interesting optical applications in plasmonic
sensing.135−142 In section 4.1.2 we will discuss quantum
plasmonic sensing using LSPs at various types of nanostruc-
tures.
Interestingly, in the limit of a very large MNP, i.e., l → ∞,

with the electrostatic approximation (r0 ≪ λ) holding, the
dispersion relation of eq 20 and the resonant frequency of eq
21 lead to the relations ϵm′ (ω) = −ϵd and ωl→∞ = ωp(1 +
ϵd)

−1/2, respectively. These are equal to those for SPs at the
interface between a dielectric and a metal. Such a consideration
clearly identifies the inherently different nature of LSPs
compared to SPPs. SPPs are a hybrid mode comprised of an
electromagnetic field and electron oscillations, while LSPs are
the excitation of electron oscillations for a given illumination
by an electromagnetic field. In other words, SPP modes are
bound solutions to the wave equation, and once excited they
exist without needing reference to the field that caused them,
while LSP modes are responsive modes that are highly damped
and can couple back into the far-field; therefore, they are
inherently transient for a certain time scale when an external
driving field is illuminating the MNP.
2.4.1. Sensitivity and Figure of Merit. The features of

LSPs described above can be exploited for sensing. In
particular, the spectral sensitivity can be defined as

λ= | |λ nd /d a,LSP res for refractive index sensing. Sensitivities
of LSPs at single MNPs of various shapes are on the order of
102−103 nm/RIU.143 However, due to the sharp resonance

peaks of LSPs,144 most LSP sensors employ a particular figure
of merit, FOM, to quantify the ability of the sensor to resolve
small refractive index changes, defined as145

=
Γ
λ

λ
FOM ,LSP

(24)

where Γλ is the resonance line width (or full width at half-
maximum). The FOM is mainly used to compare the sensing
potential of various sensing schemes. From eq 24, it can be
seen that a good LSP sensor requires the FOM to be enhanced
by reducing the line width and increasing the sensitivity.
When the resonance spectrum cannot be modeled by a

simple Lorentzian shape, e.g., in complex plasmonic structures
such as metamaterials,146 the line width Γλ is ill defined and an
alternative figure of merit needs to be defined. In this case, one
can use the FOM* defined as147
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The FOM* accommodates the relative intensity change |dI/I|
= |(I(λ + Δλ) − I(λ))/I(λ)| with respect to the change of the
refractive index dna for the optimal wavelength λ that
maximizes the quantity |dI/dna|/I, as illustrated in Figure 5.

LSP sensors are an interesting approach for measuring
refractive index changes, as they provide an opportunity to
directly measure molecular binding events.11 However, the
FOM for LSP sensors using spherical MNPs is lower than that
of SPP sensors by about an order of magnitude,143 with a
corresponding difference in the LOD. For a comparable FOM
(or FOM*), LSPs at nonspherical MNPs or as unit cells of
metamaterials need to be considered.148

Figure 5. (Top) The scattered light, i.e., the intensity I, from metallic
nanostructures shifts with the refractive index change Δna,
consequently causing a shift of the resonance wavelength Δλres. A
minute change of the resonance wavelength can only be resolved by a
sensor offering a high sensitivity of Sλ,LSP. The FOM is defined as the
ratio of Sλ,LSP to the full width at half-maximum Γλ, when the latter
can be well-defined. When this is not the case, an alternative version
needs to be used, the FOM*, which is defined as the ratio of the
relative intensity change |dI/I| (bottom) to the refractive index change
dna of the analyte.
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2.4.2. Metamaterials. Plasmonic metamaterial sensors are
a recent advancement of LSP-based sensors that can lead to an
improvement in sensing performance. These sensors consist of
a periodic array of unit cells made from metallic nanostructures
supporting LSPs, where each unit cell is smaller than the
wavelength of the incident light that is used as the sensing
probe.149 The collective action of the unit cells gives rise to a
macroscopic response of the periodic array or “bulk” material.
These artificially constructed materials are usually in the form
of a 2d array, where they are called metasurfaces,150 or in a 3d
array as metamaterials.151 Metamaterials can be made to have
rather exotic properties that are not normally available in
nature, e.g., negative refraction,152,153 optical cloaking,154 and
giant nonlinearity.155−157 Recent work has started to exploit
such unusual properties of plasmonic metamaterials in order to
gain improvements in optical sensing functionality.148,158

Advantages compared to traditional SPP sensors are similar
to those of LSP sensors, in that they offer the potential for
improving operational ranges, as well as the integration of
sensing components and ultimately miniaturization.12,159

Metamaterial sensors differ from ensemble-based LSP
sensors in that for a given change in an analyte being sensed
they aim to modify the macroscopic optical properties of the
material. However, the distinction between the two is
sometimes not well-defined. Generally, metamaterial sensors
have more flexibility than ensemble LSP sensors in that they
allow for the possibility of coupled nanostructures within the
unit cells and even the coupling between unit cells in order to
influence the bulk response.160 This can give advantages in
sensing performance, as we briefly mention below.
In a study by Kabashin et al.,161 an array of gold nanorods

on a glass substrate was used to construct a plasmonic
metamaterial biosensor. Surprisingly, the individual nanorod
size deviations due to fabrication had little influence on the
optical properties of the material, which was modeled well by
effective medium theory. The robustness was due to the size of
the nanorods and their spacing with respect to the wavelength
of the incident probe field so that only average values of
parameters are important. The overall function of the
metamaterial sensor was essentially the same as a SPP sensor,
with a prism excitation method used. A sensitivity of 32,000
nm/RIU was observed in the experiment, exceeding the
sensitivity of LSP sensors by about 2 orders of magnitude. The
associated FOM was found to be 330, 1 order of magnitude
larger than that of SPP sensors and 2 orders larger than that of
LSP sensors, leading to corresponding improvements in the
LOD. The origin of the sensitivity improvement was found to
be due to the increased surface area provided by the nanorods
compared to a flat surface for SPP sensors, as well as plasmon−
plasmon interactions between the nanorods of the unit cells of
the metamaterial.
A different approach to plasmonic metamaterial sensors is

the so-called “thin film” approach, which does not require
prism coupling but analyzes the transmitted/reflected field.146

For example, in the work by Chang et al.162 the authors
reported a thin film plasmonic metamaterial sensor based on
unit cells made from split-ring resonators. They found that
different resonances in the reflectance spectra could be used
for the parallel sensing of biological interactions at different
length scales. This work shows that not only can plasmonic
metamaterials enhance the sensitivity, but they also provide
novel capabilities in terms of parallel sensing. This strategy has

recently been used for dual sensing of conformational and
binding parameters.163

The main challenges for further improving the sensitivity of
plasmonic metamaterial sensors are in finding the optimal way
to reduce the noise associated with the adsorption and
desorption of analytes, as well as improving the fabrication of
accurate small size features for the nanostructures of the unit
cells. More information on the current state of metamaterial
sensors can be found in the reviews by Chen et al.,148 Wang et
al.,164 Tseng et al.,165 and Hassan et al.,166 with details on the
use of core−shell coatings, nanotubes, and dielectric structures
for the unit cells, in addition to hyperbolic metamaterials.

2.4.3. Miniaturization. While metamaterials provide a
novel route for the miniaturization and integration of
plasmonic sensors, several other methods exist. In this respect,
it is important to note that the majority of current commercial
plasmonic biosensors are still based on a traditional SPP
sensing approach12,159 and their designs do not differ
significantly from the Kretschmann configuration. Current
research is focused on developing platforms that can provide a
more integrated, low-cost, reusable, and sensitive biosensor.
Fiber and wave-guide-based SPP sensors are one such
promising platform, for which an LOD of 10−6 RIU has
been achieved using a polarization maintaining fiber.167

However, integrating fiber sensors with other necessary
components, such as microfluidic channels, is challenging
due to the need for precise alignment and complex
assembly.168 Alternatives here include the use of a planar
optical waveguide,169 distributed Bragg reflector,170 MZI,171 or
even gold coating the capillary tube used for the fluidics in
order to enable it to operate as a waveguide itself.172

Despite the obvious compactness of fiber and wave-guide-
based plasmonic sensors, the sensitivity and LOD of these
integrated sensors realized so far is at best comparable to that
of traditional SPP sensors.12 This has motivated researchers to
also focus on the miniaturization of SPP sensing using low cost
LEDs and diffractive mirrors,173,174 microprisms167,175 and
metamaterials with fibers,176 D-shaped fiber optic SPR
sensors,159 and photonic crystal fiber plasmonic sensors.177

Progress in the miniaturization and integration of plasmonic
sensors will benefit greatly from advancements in optoelec-
tronics, integrated optics, surface functionalization, and
microfluidic and nanofabrication techniques. Many of the
sensors proposed in the literature have passed the proof-of-
principle stage and are now being developed into commercial
products. Further details of the current state-of-the-art and
LOD values for compact plasmonic sensors can be found in
the reviews by Hoa et al.12 and Caucheteur et al.159 and can be
compared with state-of-the-art compact photonic sen-
sors.178,179 All of these classical sensors have their LOD
limited by various types of noise, with the ultimate one being
the shot noise. As we will show in section 3, quantum
techniques can reduce this noise and therefore could
potentially improve the performance of more compact
plasmonic sensors if they are designed in such a way that
preserves the quantum effects being exploited.

2.4.4. Plasmon-Enhanced Fluorescence and Raman
Scattering. For LSPs, in addition to the conventional
colorimetric detection scheme, i.e., measuring the resonance
shift due to the change of the refractive index, other sensing
principles have widely been studied and used. Two
representatives are plasmon-enhanced fluorescence (PEF)
sensing/imaging180,181 and surface-enhanced Raman scattering
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(SERS).182 Here, the plasmon merely enhances the the Raman
or fluorescence signal but is itself not used for sensor
transduction. Despite this, the enhancement of the signal by
the plasmon can improve the signal-to-noise ratio (SNR)
which is basically proportional to the signal intensity and
inversely proportional to the LOD. Moreover, the subdif-
fraction scale of the supporting metal nanostructure provides
increased spatial resolution that can be used for imaging. A
variety of biochemical sensing applications based on PEF and
SERS can be found in relevant review papers.28,34,181,183 This
section explores the state-of-the-art for classical PEF and SERS
sensing modalities that are now being re-envisioned as
quantum plasmonic sensors, as will be discussed in more
detail in section 4.3.
Although fluorescence signals enable low-background

detection by filtering the excitation beam, the fluorescence of
nanometer sized fluorophores is inefficient due to the weak
light−matter interactions that originate from a large mismatch
between the physical size of the fluorophores and the
wavelength of visible light, as shown in Figure 6(a). This can
lead to photobleaching when a high excitation power is used to
extract a measurable signal. In practice, the fluorescence of
fluorophores can either be enhanced or quenched depending
on the absorption and scattering characteristics of a MNP. A
largely enhanced electric field can be formed at metallic
nanostructures when the incident wavelength of light matches
with their LSP resonance. This enhanced electric field can
excite fluorophores placed within the evanescent decay depth
of the LSP. This can be efficient when the absorption spectrum
of the fluorophore matches with the LSP resonance. The
enhancement in the excitation rate of a fluorophore with an
absorption dipole moment d is given by κ = |d·ELSP|

2/|d·Einc|
2,

where ELSP and Einc are the electric field at the fluorophore
position with and without the plasmonic structure, respec-
tively.184

In addition to the enhancement of the excitation of the
fluorophore, LSPs can also modify the fluorophore emission
dynamics. The typical fluorescence lifetime of an isolated and
excited fluorophore is on the order of a few nanoseconds up to
tens of nanoseconds. This has to be compared to the almost
instantaneous decay of an excited LSP mode in metal
nanostructures when the external driving field is switched
off.185,186 When a fluorophore is coupled to a metallic
nanostructure, the excited state of the fluorophore decays
faster while transferring the excited energy to the metallic

nanostructure. This effect happens if the emission wavelength
of the fluorophore is resonant with the LSP modes. When the
fluorophore is less than ∼5 nm away from the metallic
nanostructure, the transferred energy is mostly dissipated into
Ohmic losses due to the dominant presence of higher-order
modes that do not radiate into the far-field, causing quenching
instead of enhancing the fluorescence,187 as shown in Figure
6(b). For moderate distances of approximately 10 to 30 nm,
the dipolar LSP mode can have a stronger presence than the
higher-order modes, possibly enhancing the fluorescence, as
shown in Figure 6(c). The shortened fluorescence lifetime for
the the moderate-distance case can be understood by the
plasmonically enhanced local density of states, which is
proportional to |ELSP|

2. The dipolar mode of the LSP can
radiate into the far-field (γr,LSP), but it also suffers from
nonradiative Ohmic losses (γnr,LSP). In general, γr,LSP and γnr,LSP
are much larger than the radiative decay rate (γr) and the
nonradiative decay rate (γnr) of the bare fluorophore, without
the plasmonic structure. Therefore, when the excited state of
the fluorophore decays mostly into LSP modes, i.e., the
fluorescence decay lifetime reduction is significant, the
quantum efficiency (QE) of the fluorophore coupled to the
LSP can be obtained in a simplified form of ηcoupled ∼ γr,LSP/
(γr,LSP + γnr,LSP). If the intrinsic QE of the fluorophore [η0 = γr/
(γr + γnr)] is high, the LSP will reduce the QE of the hybrid
system. However, when the original fluorophore QE is very
low (∼a few percent), the QE can be highly enhanced by
coupling to LSPs. This enhancement in the emission process,
when combined with the excitation enhancement, leads to a
huge fluorescence enhancement, over a thousand times,
becoming possible.189 The fluorescence enhancement, well
below the saturation limit of the excited population of the
fluorophore, is given by κηcoupled/η0. It has been shown that the
fluorescence of a vertically aligned terrylene single molecule is
enhanced by 30 times when coupled to a spherical gold
nanoparticle with κ ∼ 80, ηcoupled ∼ 0.3, and η0 ∼ 0.8,124 as
shown in Figure 7. It should be noted that, in addition to the
excitation and the emission processes, the fluorescence
emission pattern also can be strongly modified by the antenna
modes of metallic structures.184,190,191

For a spherical MNP, the absorption of light is proportional
to the volume V ∼ r0

3 (see eq 23), while the scattering is
proportional to V ∼ r0

6 (see eq 22), where r0 is the diameter of
the MNP.192 As a result, for a smaller MNP, the radiating
power decreases faster than the absorption, thus reducing the

Figure 6. MNP enhancement of fluorescence. (a) Fluorophores are excited by an external field and emit into the far-field. (b) Fluorophores close
to the surface of a MNP have their emission quenched by coupling to LSPs whose higher-order modes are strongly damped. (c) Fluorophores at a
distance from the surface of a MNP couple their emission mainly into the dipolar LSP mode which is not as strongly damped and the fluorescence
is therefore enhanced.
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QE. Therefore, small nanostructures (<20 nm) are usually
used to quench fluorescence.193 Larger particles can act as
efficient scattering centers. In this case, the excited energy of
the fluorophore can be radiated into the far-field more
efficiently with the help of LSPs that act as an antenna at
optical frequencies.194,195 When the diameter of a spherical
MNP becomes too large (>100 nm), the dipolar field
approximation does not hold anymore, and higher-order
modes start to contribute significantly, reducing the QE and

the radiation efficiency.196−198 In addition, the LSP mode
volume becomes larger for a larger MNP, reducing the
excitation field enhancement. Thus, in PEF-based imaging, the
spatial resolution is better when a smaller nanostructure is
used.124 PEF can be more efficient for other shapes of metallic
nanostructures, including rods,199 stars,200 dimers,201 and
arrays.202 Sharp structures can allow a higher field enhance-
ment compared to single spheres, and nanogaps between
MNPs can support even higher field enhancement together
with a high QE.68,203 The enhanced detection sensitivity by
PEF has been demonstrated for detecting many different
biosamples.28,34,181,183 For example, silver-nanoparticle-assisted
PEF has been applied for the detection of streptavidin and
human IgE, reaching a LOD of 0.25 ng/mL.204 The hot-spots
formed in a gold nanorod array have been employed for
detecting single-strand DNA with a LOD of 10 pM.205

Although the modification of the fluorescence signal is
significant in the given scenarios in this section, they can still
be described in the weak-coupling regime. In the strong-
coupling regime between the emitter and plasmonic modes of
metallic systems, however, exotic functionalities of quantum
plasmonic sensing schemes can be utilized, as will be described
in section 4.3.
The LSP-induced local field enhancement can also

contribute to SERS. The overall enhancement in the SERS
signal is attributed to the combined effects of the enhanced
field intensity as in PEF and the chemical enhancement due to
the charge transfer between the metallic nanostructure and the
target molecule.206,207 Here, the local field enhancement is
frequently considered as the dominating factor for the
enhanced SERS. In a back-of-the-envelope estimation, the
enhancement of the SERS signal, thanks to the supporting
plasmonic structure, is proportional to the fourth power of the
electric field at the spatial location where the molecules are
placed. Therefore, a major aim is frequently to tune the
geometrical properties of the plasmonic structure such that a
plasmon resonance is supported at the frequency used in the
experiments. Also, the field enhancement has to occur in the
spatial region where the molecules are placed.
2.5. Surface Plasmon Resonance Imaging

Improving the sensitivity of plasmonic sensors can enable the
detection of smaller concentrations of materials of interest in
the same integration time, or it can enable the detection of the
same concentration of materials in a shorter integration time.

Figure 7. (a) Schematic of an experimental setup used to enhance the
fluorescence of a single terrylene molecule using a gold nanoparticle
(AuNP). Terrylene molecules are embedded in a thin crystalline p-
terphenyl film (20 nm) and are illuminated under total internal
reflection. The same objective collects the fluorescence of individual
molecules while a AuNP attached to a glass fiber tip is scanned across.
(b) Near-field fluorescence image using a AuNP (80 nm in diameter)
attached tip. (c) Cross-sectional profile of the white dashed line in
(b). The inset shows a SEM image of the AuNP attached to the
tapered-fiber tip. (d) Fluorescence decay lifetime of a terrylene
molecule with (black) and without (red) employing a AuNP (80 nm
in diameter). The inset shows a plasmon spectrum of a AuNP (black),
the fluorescence spectrum of a single terrylene molecule (red), and
the excitation laser line (green). Reproduced and adapted with
permission from refs 124 and 188. Copyright 2009 American
Chemical Society and Copyright 2015 The Optical Society.

Figure 8. (a) Seminal spatially resolved SPR imaging of a dimyristoylphosphatidic acid monolayer utilizing a Kretschmann readout scheme at a
fixed angle of incidence of 47.2°. (b) An early demonstration of spatially resolved biomolecular sensing with Kretschmann-based SPR imaging
schemes demonstrating that only appropriately functionalized gold pads give a response to single strand DNA. (c) Schematic representation of SPR
imaging with a smartphone camera. Reproduced with permission from refs 211, 215, and 216. Copyright 1989 Springer Nature, Copyright 2005
American Chemical Society, and Copyright 2015 Springer Nature.
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However, when a sensor needs to detect many different
molecules, most plasmonic sensors are operated in an iterative
fashion, resulting in slow measurements. SPR imaging attempts
to reduce measurement times by parallelizing SPR sensors on a
single chip. Whereas conventional LSP and SPP sensors utilize
angle-resolved or spectrally resolved measurements, SPR
imaging systems utilize intensity-resolved measurements: they
sit at the inflection point of a plasmonic resonance and
monitor spatially resolved changes in intensity for an array of
plasmonic sensors or for a continuous plasmonic sensor. This
concept was first introduced in 1988 as SP microscopy.208 In
general, the ability to spatially map variations in the index of
refraction with SPR imaging is a powerful tool for fundamental
materials science, chemistry, and biology. When arrays of
sensors are functionalized to detect different molecules, SPR
imaging can enable substantial scaling of SPR sensors for
applied sensing of enzyme−substrate interactions, DNA
hybridization, antibody−antigen binding, and protein inter-
action dynamics.209−214

Figure 8(a) illustrates early SPR imaging of monolayers of
dimyristoylphosphatidic acid with a spatially resolved Kretsch-
mann sensor.215 This work, along with other early research,208

illustrates the potential of SPR imaging for subdiffraction-
limited, high sensitivity imaging of low-contrast samples. Since
then, substantial technical development has gone into the
improvement of SPR imaging systems for parallelized detection
of different molecular systems. As shown in Figure 8(b), SPR
imaging of gold pads functionalized with appropriate probes
allows for the spatially selective detection of target DNA that is
complementary to the functionalization group.211 By function-
alizing each element of the plasmonic sensor array differently,
it is therefore possible to achieve highly beneficial scaling for
the detection of large numbers of different molecules. Figure
8(c) illustrates the degree to which SPR imaging platforms can
be deployed in the field through integration with ubiquitous
imaging technologies such as smartphone cameras.216 How-
ever, a common challenge in SPR imaging is that off-the-shelf
imaging systems introduce substantial noise compared with
single pixel detectors. While it is possible to reach the
fundamental classical limit given by the shot noise with
appropriate experimental designs, further improvements could
be made possible with quantum imaging schemes, as will be
discussed in section 4.

3. QUANTUM SENSORS
Photonic devices, such as the plasmonic sensors introduced in
the previous section, exploit light as a probe for their operation.
While plasmonic sensors offer an improved sensitivity
compared to other types of photonic devices, they share a
common problemrandom fluctuations in the measured
signal due to the statistical nature of light. The origin of
these fluctuations can be derived using a classical theory to
some extent by considering light to be made from discrete
particles.217 However, once the wave properties of light are

included, the fluctuations can only be understood from a more
fundamental quantum theory.218 When a coherent state of
lightthought of as the quantum state that most closely
describes the light from a laser219is employed in a sensor,
the noise in the signal arises from the fact that the coherent
state consists of photon number states with a weighting that
follows a Poisson distribution. This noise will obviously affect
the LOD for a given plasmonic sensor, as mentioned in section
2.2.3, limiting its resolution. However, if the noise can be
reduced, then the sensor can provide a better resolution,
enabling more precise measurements to be made.220 Reducing
this noise involves the use of quantum noise reduction or
squeezing. To understand how the noise, commonly known as
“shot noise”, is present in plasmonic sensors and to see how it
can be reduced by using specialized quantum techniques, we
kick off this section by offering a brief overview of parameter
estimation theory. This is a theory that has been widely
considered in the field of quantum metrology,221−223 and it is
vital for determining fundamental bounds on how well
parameters can be estimated in both the classical and quantum
regimes. After an introduction to parameter estimation theory,
we look at a few paradigmatic examples of classical optical
sensors and corresponding quantum sensors, while leaving
more extensive details to other review articles dedicated to
quantum metrology and imaging.37−40,43,44,46,224

3.1. Parameter Estimation Theory: Crameŕ−Rao Bound

3.1.1. Single Parameter Estimation. The complete
process for the estimation of a parameter in sensing can be
divided into four key steps: (i) input state preparation; (ii)
interaction for parameter encoding; (iii) measurement; and
(iv) estimation based on the measurement outcomes, as
depicted in Figure 9. In the final step, the estimation of a
parameter is made over multiple repetitions of a measurement
or time-integration. The number of repeated measurements
determines the finite size ν of a sample. Each sample with a size
ν is used by an estimator x̂ to yield an estimate xest of the
parameter, and the quality of the estimator x̂ can be assessed
by several statistical features. The expectation value of the
estimate, ⟨xest⟩, is compared with the parameter’s true value x
from the underlying population being sampled. Their differ-
ence indicates a bias of the estimator and can be interpreted as
an estimation accuracy. When the difference is zero, i.e., ⟨xest⟩
− x = 0, the estimator is said to be unbiased and equivalently
the accuracy is perfect. Here, ⟨...⟩ denotes the average over all
possible configurations of the sample, which strictly speaking
can only be theoretically considered, but it may be well
approximated by an actual repetition of sampling in an
experiment, i.e., collecting a large number of samples. Another
quantity of great importance is the mean-squared-error (MSE)
defined as MSE[x̂] = ⟨(xest − x)2⟩ = ⟨(xest − ⟨xest⟩)

2⟩ + (⟨xest⟩
− x)2, where the first term is the variance Δxest2 of the estimator
and the second term is the squared bias of the estimator. The
MSE and the variance are equivalent when an estimator is

Figure 9. Process for the estimation of a parameter in sensing divided into four key steps: preparation, interaction, measurement, and estimation.
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unbiased. The variance is often called an estimation
uncertainty or interpreted as an estimation precision. The
latter implies that the estimate xest would vary over the
repetition of an identical and independent sampling, or
equivalently, over different configurations of the sample with
a size ν. In this review, we take the square root of the variance,
Δxest, as the estimation uncertainty or estimation precision, as
is often done in experiments. In the literature, Δxest is
sometimes called sensitivity/resolution with the interpretation
that a large Δxest limits the capability of a sensor to sense/
resolve a minute change of an observable quantity. In a
qualitative sense, these terms can be used interchangeably
according to their close relation, but in a quantitative sense,
Δxest is the uncertainty of an estimator according to parameter
estimation theory, which we introduce in this section. The
LOD is then simply given by Δxest divided by the sensitivity.
Let us consider a simple example of the above definitions,

where one aims to estimate the parameter given by the
population mean, whose true value is μ, by using the sample
mean as an estimator, i.e., ν̂ = ̅ = ∑ν

=x x x /j j1 . The value

obtained by a sample with a size ν is then xest, and because the
sample mean is an unbiased estimator for any population,225

we have ⟨xest⟩ = μ. However, xest for each sample will vary and
the variance of the sample mean is given by Δxest2 = σx

2/ν,
where σx

2 is the population variance, which holds for any size ν
without requiring the approximation imposed by the central
limit theorem.223 It is clear that the standard deviation Δxest is
inversely proportional to ν when the sample mean is taken to
estimate the population mean; that is, the estimation becomes
more precise as the sample size ν increases. Besides the
statistical scaling with ν, the population variance, σx

2, also plays
an important role in reducing the standard deviation Δxest,
which is related to the role of the quantum resource in
quantum metrology, as we will see in this section.
Now consider a more general estimation scenario where an

unbiased estimator x̂ is used to estimate a true value x. In this
case, the MSE is simply equal to the variance Δxest2 , and it is
known that a lower bound to the standard deviation Δxest
exists and is given by

ν
Δ ≥x

F x
1

( )
est

(26)

which is called the Crameŕ−Rao (CR) inequality.221,225 Here
F(x) denotes the Fisher information (FI) defined as226
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with p(y|x) being an underlying conditional probability density
of obtaining the measurement outcome within the interval y
and y + dy when the true value is x (for a finite distribution we
have ∫ dy → ∑y). The FI represents a sort of measure of the
amount of information that a measurement outcome y carries
on average about the true value x. A higher value of the FI is
obviously more advantageous for obtaining a better estimation
precision. The lower bound of eq 26, called the CR bound, is
asymptotically saturable in the limit ν → ∞ when the
maximum-likelihood estimator is employed.225,226

Importantly, the FI of eq 27 depends on the physical
scenario, i.e., the probe state, the parameter encoding, and the
measurement for a fixed true value x. This implies that the FI
may be increased further by changing the physical scenario, for

instance, by going from a classical scenario to a quantum
scenario. Thus, a further lower bound to eq 26 can exist and be
achieved when a more optimal scenario is chosen. The CR
inequality can be developed to227,228

ν ν
Δ ≥ ≥x

F x H
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(28)

where H represents the quantum Fisher information (QFI),
defined as

=
{Π̂ }

H F xmax ( )
y (29)

The QFI is essentially the maximized FI over all possible
quantum measurements or, put more formally, over all
positive-operator valued measures (POVMs) {Π̂y}, such that
Π̂y ≥ 0 (positivity) and ∫ Π̂ =dy 1y (completeness). Here, the
y correspond to the possible outcomes from the quantum
measurement, similar to the outcomes y in the classical case in
eq 27, with p(y|x) = Tr(ρ̂xΠ̂y) and ρ̂x as the parameter encoded
state. When the parameter encoding is caused by a unitary
process, the QFI is independent of the value x (see examples
discussed in section 3.4), since the same type of unitary
process could be implicitly included as part of the optimal
measurement,229 such that the value x can be tuned to a
certain value for which F is fully maximized to be H. This is not
the case when the parameter is encoded through a nonunitary
process; that is, the QFI is given as a function of x (see
examples discussed in section 3.3). In either case, the QFI still
depends on the probe state and the encoding process of the
parameter, implying that the QFI can be maximized by using
an optimal probe state for a given encoding process. The
lowest bound given by the maximized QFI over all input states
is often called the ultimate quantum limit. In this sense, a
number of studies have investigated the optimal probe states in
various sensing or estimation scenarios.38,39,41,43

The lower bound of eq 28 is called the quantum Crameŕ−
Rao (QCR) bound, and it is regarded as the fundamental limit
in the estimation precision for a given input state and encoding
process. It can be shown that for a probe state with the
parameter x encoded, given by the state ρ̂x, the optimal
measurement with the POVM {Π̂y} that reaches the QCR
bound has to satisfy the following two conditions:38,227

ρ[ ̂ Π̂ ̂ ]=Im Tr( ) 0x y x (30)

ρ

ρ

ρ

ρ

Π̂ ̂

̂ Π̂
=

Π̂ ̂ ̂

̂ Π̂ ̂Tr( ) Tr( )
y x

x y

y x x

x y x

1/2 1/2 1/2 1/2

(31)

where ̂
x is the symplectic logarithmic derivative (SLD)

operator defined such that

ρ
ρ ρ

∂ ̂
∂

= ̂ ̂ + ̂ ̂
x

1
2

( )x
x x x x (32)

The above two conditions are rather cryptic; however, they can
be fulfilled if a measurement setup with {Π̂y} is constructed by
a set of projection operators over the eigenbasis of the SLD
operator ̂

x.
38,227 This is a necessary and sufficient condition

to reach the QCR bound for a full-rank state of ρ̂x, for which
the SLD operator is unique. On the other hand, for a rank-
deficient state the optimal measurement satisfying the above
two conditions is not unique.227
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The QFI, H, of eq 29 can be written in terms of the SLD
operator by

ρ= ̂ ̂H Tr( )x x
2

(33)

For a parameter-encoded state with a given spectral
decomposition, i.e., ρ ψ ψ̂ = ∑ | ⟩⟨ |px n n n n with ⟨ψn|ψm⟩ = δn,m,
the SLD operator can be written as38,227,230

∑ ψ ρ ψ
ψ ψ̂ =

⟨ |∂ ̂ | ⟩
+

| ⟩⟨ |
p p

2x
n m

m x x n

n m
m n

, (34)

where the summation is taken over n, m for which pn + pm ≠ 0.
When the state ρ̂x is pure, i.e., ρ̂x = |ψx⟩⟨ψx| for some |ψx⟩, the
SLD operator is given by ρ̂ = ∂ ̂2x x x, which simplifies eq 33 to

ψ ψ ψ ψ= [⟨∂ |∂ ⟩ + ⟨∂ | ⟩ ]H 4 x x x x x x x
2

(35)

where |∂xψx⟩ ≡ ∂x|ψx⟩. When the parameter is encoded through
a unitary process, i.e., ρ̂x = eixĜρ̂0e

−ixĜ, where ρ̂0 is the initial
probe state and Ĝ is a generator of the parameter x, one can
show that H = 4⟨(ΔĜ)2⟩, where ⟨(ΔĜ)2⟩ = ⟨Ĝ2⟩−⟨Ĝ⟩2 is the
variance of the generator with respect to the probe state that
undergoes parameter encoding.
The evaluation of the QFI determines the lowest estimation

uncertainty Δxest (or the highest precision) for a given
parameter encoding and probe state. As we shall show in
section 3.2, when a random feature obeying the Poisson
distribution with a mean of N dominates the estimation
uncertainty, the lower bound is called the SNL, where Δxest
scales with N−1/2.
In interferometric sensing, the minimum estimation

uncertainty achievable by a coherent probe state (the quantum
state that represents light from a laser) is called the standard
quantum limit (SQL), where N represents the mean photon
number of the state. We will show in section 3.2 that Δxest
scales with N−1/2.39,41,43 The term SQL was introduced by
Caves in his early papers in the sense that it is the limit of
standard interferometers made of standard devices without
quantum squeezing.220,231,232 In the literature, the terms SNL
and SQL have mostly been used in intensity sensing and phase
sensing, respectively. However, they can sometimes be
considered as synonymous because of the same fundamental
process that causes them.
On the other hand, when an optimal quantum probe state is

used that maximizes the QFI for a given parameter encoding,
we will show in section 3.4 that the estimation uncertainty is
reduced so that it scales with N−1.39,41,43 The associated
minimum is called the Heisenberg limit (HL) or ultimate
quantum limit, and scaling of N−1 is often called Heisenberg
scaling.
An important note is due about the above-mentioned

scalings and their comparison. The size of the sample is
assumed to be fixed in both the classical and quantum cases;
that is, ν corresponds to a constant number of repetitions, or
probes, and therefore the integration time of the measurement
is fixed. One could consider increasing ν for the classical case
in order to achieve a similar scaling in precision to the
quantum case. However, this may not be practical due to time
constraints of the system being sensed, which is especially
relevant for a dynamic biological or biochemical system.
Furthermore, the scaling of the precision for the SNL is

N−1/2 using a classical probe state, but for a quantum probe
state, for example in the interferometric setting, the precision is

the HL with scaling N−1. This means that one could obtain the
same precision of a quantum probe state with mean photon
number N using a classical probe state with the mean photon
number N increased to N2. However, this second approach to
leveling the classical and quantum scaling may also not be
feasible in a given sensor. First, the sensor may be at its
physical limit in terms of the power being used to achieve a
high precision, due to the type of materials the sensor is made
from and its construction. Any higher power may cause
structural changes and distort the response of the sensor,
introducing additional sources of noise proportional to the
intensity.35 Second, and perhaps more importantly from the
context of noninvasive sensing, is that the analyte itself may
have a damage threshold for the power it can tolerate. This is
particularly the case when monitoring small quantities of
biological systems,42 for which plasmonic sensors are regularly
used and a high precision is required with a limited optical
power.
The above considerations apply to any case where there is a

gap between the scaling of the precision for the classical SNL
and the quantum case, which may or may not have Heisenberg
scaling. Thus, there is a clear benefit to using a quantum
approach to improve the precision of a plasmonic sensor.

3.1.2. Multiparameter Estimation. The formulation
introduced above applies when a single parameter is estimated,
but estimation of multiple parameters is often of interest in
diverse areas of science and technology such as phase-contrast
imaging233 and gravitational wave astronomy.234 An extended
theory for multiparameter estimation is thus required.235,236

Consider the problem of estimating a set of multiple
parameters x = (x1, x2, ..., xM)

T from the measurement results
y that have been drawn from a conditional probability density
p(y|x). The M × M covariance matrix Cov(xest) = ⟨(xest −
⟨xest⟩)(xest − ⟨xest⟩)

T⟩ of any unbiased estimator x̂ is found to
be bounded by the so-called Fisher information matrix
(FIM),38,222 written as

ν
≥

−
x

F x
Cov( )

( )
est

1

(36)

where the FIM, F(x), is defined by

∫[ ] =
|

∂ |
∂

∂ |
∂

F
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y y
d

p
p

x
p

x
x y

x
x x

( )
1

( )
( ) ( )

jk
j k (37)

The multiparameter CR inequality of eq 36 is satisfied when
Cov(xest) − F−1(x)/ν is a positive semidefinite matrix.38,222,237

The CR bound can always be saturated by a maximum
likelihood method in the limit of large ν.238 As in single
parameter estimation, the CR inequality of eq 36 for
multiparameter estimation can be further reduced in the
quantum regime, leading to the multiparameter QCR inequal-
ity written as38,222

ν ν
≥ ≥

− −
x

F x H
Cov( )

( )
est

1 1

(38)

where the details of the quantum Fisher information matrix
(QFIM), H, are given in Appendix A. The inequality in eq 38
means that in the matrix sense

ν ν
≥ ≥

− −
n x n

n F x n n H n
Cov( )

( )T
est

T 1 T 1

(39)
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for arbitrary M-dimensional real vectors n.239 This can be
exploited in the case when a global parameter ̃ = ∑x n xj j j,

defined as a linear combination of multiple parameters, is of
interest. We then have x̃est = n·xest and (Δx̃est)2 = Var(x̃est) =
nTCov(xest)n, which is of interest in distributed sensing and
will be discussed further in section 3.4.4. Examples include
relative phase estimation in a two-mode interferometer, where
n = (1, − 1),240 or the average phase estimation in an M-mode
interferometer, where n = (1, ..., 1)/M.241,242

In the next sections, we use the introduced framework of the
CR and QCR bound for single and multiparameter estimations
to give some basic examples of the SNL and SQL in optical
probing schemes, distinguishing between intensity and phase
sensing. The individual types of quantum sensor we discuss
here will be connected to the corresponding types of plasmonic
sensor already discussed in section 2, eventually leading to the
advances that will be discussed in section 4.

3.2. Shot-Noise Limited Sensing

To understand where and how the shot noise appears, we
focus on the two most canonical types of photonic
sensing:243−245 intensity sensing and phase sensing, as
discussed for plasmonic sensors in section 2.3. They are
distinguished by the physical quantity that is being monitored
and analyzed to identify the optical properties of an analyte.
The goal of intensity sensing is to measure a change of the
intensity of light when it passes through an analyte, whose
properties under inspection are encoded in the change of
intensity. On the other hand, the goal of phase sensing is to
read out a change of the phase of the outgoing light from an
analyte. These two kinds of sensing schemes lead to different
sensitivities in plasmonic sensors, as described in section 2.3.
Here, we focus on how the estimation precision is determined
according to the sensing type.
3.2.1. Shot-Noise Limited Intensity Sensing. Intensity

sensing can be modeled as the estimation of the transmittance
T of a beam splitter (BS), as shown in Figure 10(a). A typical
scheme to estimate the transmittance of the BS is to inject light
with an intensity Ii and then to measure the intensity It of the
transmitted light. The ratio of the incident intensity to the

transmitted intensity can be used to estimate the trans-
mittance; for example, the estimated transmittance can be
obtained by Test = It̅/Ii, where ν̅ = ∑ν

=I I /j jt 1 t, for ν repetitions

of the measurement, with each measurement yielding It,j. To
take into account the effect of losses that further decrease the
measured value It,j on top of the transmission, one needs to
replace the divisor Ii by ηIi, with the transmission efficiency η ∈
[0, 1], i.e., Test = It̅ /ηIi. The estimation uncertainty is thus
given by

η ν η
Δ =

Δ ̅ =
Δ

T
I
I

I
Ii i

est
t t

(40)

where ΔIt denotes the standard deviation of the transmitted
intensity based on the underlying distribution,223 which
depends on the type of light being injected.
As mentioned, the classical source of light that has most

widely been considered and employed in standard photonic
sensing is modeled quantum mechanically by the coherent
state.218 It is also used for setting the classical benchmark or
SQL.37,39 The coherent state is formally given as the displaced
vacuum state |α⟩ = D̂(α)|0⟩, where D̂(α) = exp[αa†̂ − α*a]̂,
with a displacement parameter α ∈  and the operators a ̂ and
a†̂ representing the annihilation and creation operators for the
optical mode.218 The displaced vacuum state can be projected
into the Hilbert space spanned by the Fock states and is
written as a superposition of photon number states, |n⟩,
weighted by a Poisson distribution, p(n). When the coherent
state is used as an input state in Figure 10(a), i.e., |Ψ⟩in = |α⟩,
and it passes through the BS with transmittance T, whose value
is unknown and is to be estimated, the outgoing state remains
as a coherent state and is written as η α|Ψ ⟩ = | ⟩T T( ) out , with
η characterizing the effect of loss.218 An intensity measurement
is described quantum mechanically by the projectors onto the
photon number state, i.e., |n⟩⟨n|, where we omit any geometric
factors associated with photonic modes and detection for
simplicity. The underlying conditional probability of finding
the output state |Ψ(T)⟩out in the state |n⟩ is then p(n|T) =
out⟨Ψ|n⟩⟨n|Ψ⟩out = e−TηN(TηN)n/n!, where N is the average
photon number of the input probe state , i .e . ,

α α α= ⟨ ⟩̂ = = ⟨ | |̂ ⟩ = | | = ∑N n I n np n( )nin i
2 , w i t h

̂ = ̂ ̂ = ∑ | ⟩⟨ |†
=

∞n a a n n ni 0 . This leads to the standard deviation
o f t h e t r a n s m i t t e d i n t e n s i t y Δ I t =

η⟨ Δ ̂ ⟩ = ⟨ ̂ ⟩ − ⟨ ⟩̂ =n n n T N( ) ( )2
out
1/2 2

out out
2 1/2 , finally giving

the estimation uncertainty of eq 40 for the specific case of
the coherent state input as

νη
Δ =T

T
Nest

(41)

This equation is the result of using the sample mean (It̅) as an
estimator. One can also show that the CR bound, ΔTCR,
defined in eq 26 for the intensity measurement in the above
scenario is the same as eq 41.246 This implies that the sample
mean chosen above is an optimal estimator when the intensity
is measured. It is interesting to note that the QCR bound,
ΔTQCR, defined in eq 28 is also the same as eq 41, meaning
that the measurement of the intensity is the optimal
measurement in this scenario, even if quantum measurements
were allowed. One more relevant observation is that the

Figure 10. (a) Single-mode intensity sensing, where the transmittance
of a BS models a transmissive object and is estimated by the ratio of
the intensity of the transmitted light to that of the incident light. (b)
Two-mode phase sensing, where a relative phase between two arms is
estimated from a measurement analyzing the interference at the
output ports.
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uncertainty analyzed by a linear error propagation model,

Δ = ⟨ Δ ̂ ⟩∂⟨ ⟩̂
∂

−
T n( )n

Test

1
2

out
1/2out , turns out to be the same as eq 41.

From eq 41 it is clear that the estimation uncertainty scales
with the inverse square root of the intensity, i.e., N−1/2, where
N is the mean of the underlying Poisson photon number
distribution of the input coherent state. The right-hand side of
eq 41 is the SNL, and it can also be called the SQL in intensity
sensing. Therefore, the estimation uncertainty or precision for
intensity sensing using a coherent state of light is shot-noise
limited.
3.2.2. Shot-Noise Limited Phase Sensing. The para-

digmatic scenario for phase sensing is in the form of an MZI, as
shown in Figure 10(b). Here, the goal is the estimation of the
relative phase difference between the two paths. Consider that
a coherent state |α⟩ is fed into mode a of the first BS, and the
vacuum is assumed to be in mode b; that is, the input state is
|Ψ⟩in = |α⟩a|0⟩b. The BS operator can be written as B̂(τ,θ) =
exp[τeiθa†̂b̂ − τe−iθab̂̂†] and transforms the operators a ̂ and b̂
as247−249

̂ ̂ ̂ = ̂ − − ̂θ†BaB T a e T b1i (42)

̂ ̂ ̂ = − ̂ + ̂θ† −BbB e T a T b1i (43)

where T = cos2 τ represents the transmittance of the BS and θ
is an associated phase shift which we choose to be θ = π/2
without loss of generality, so that the BS becomes symmetric
between the two input ports. After the first BS with
transmission T, the outgoing state undergoes a relative phase
shi f t that is induced by the operator Û(ϕ) =

̂ ̂ − ̂ ̂ϕ † †
i a a b bexp ( )

2

Ä
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑ, which transforms the operators as ÛaÛ̂†

= e−iϕ/2a ̂ and Ûb̂Û† = eiϕ/2b̂. The state finally exits out of the
second BS with transmission T. For generality, we also include
optical loss occurring between the two BSs, with the amount of
loss characterized by channel transmission efficiencies ηa and
ηb for the two modes. The output state is then written by218

ϕ α ϕ β ϕ|Ψ ⟩ = | ⟩ | ⟩( ) ( ) ( )out out a out b (44)

whe r e α ϕ η α η α= − −ϕ ϕ−T e T e( ) (1 )i i
out a

/2
b

/2 and

β ϕ η α η α= − + −ϕ ϕ−i T T e i T T e( ) (1 ) (1 )i i
out a

/2
b

/2. Suppose
that we perform an intensity measurement at the two outputs
and analyze the measurement results to estimate the relative
phase ϕ. When the optimal estimator is chosen among many
kinds of unbiased estimators, the estimation uncertainty is
given by the CR bound, asymptotically saturable by the
maximum likelihood method in the limit of a large sample size.
It can be minimized by optimizing the transmittance T of the
BSs, which can be shown to be η η η= +T /( )opt b a b in

the vicinity of ϕ = 0, for which the CR bound reads

ϕ
ν

η η

η η
Δ ≈

+

N
1

2
1

CR
a b

a b (45)

where N = |α|2 and ΔϕCR is independent of the phase of the
coherent state input. This is known as the standard
interferometric limit (SIL) ΔϕSIL,

250,251 which applies when
an intensity measurement is used at the output of the second
BS. It is clear that ΔϕCR of eq 45 scales with N−1/2, also called
the SQL. When ϕ increases and approaches π/2, the above
optimal value of Topt deviates, but the scaling with N is still

kept. When ηa = ηb = η, Topt = 1/2; that is, a 50:50 BS is the
optimal choice in the above classical scenario, for which the
CR bound reads ΔϕCR = (νηN)−1/2, regardless of ϕ. The QCR
bound of eq 28 can also be calculated using eq 35 for the probe
state which we take as the state just before the parameter
encoding, i.e., the state present in between the first BS and the
phase shifter in the MZI, which is written as |Ψ⟩prob =

|αprob⟩|βprob⟩, with α η α= Tprob a and β η α= −i T(1 )prob b .

The QFI is given by H = |αprob|
2 + |βprob|

2 = [Tηa + (1 − T)ηb]
N, clearly showing that the QCR bound, ΔϕQCR ≥ (νH)1/2, is
shot-noise-limited regardless of the value of T and the type of
measurement.

3.3. Subshot-Noise Intensity Sensing

Probing an analyte with a coherent state leads to the SQL (or
SNL), where the estimation uncertainty scales with N−1/2. This
is because a coherent state consists of discretized quantum
particles (photons) that populate the energy levels of a spatial
mode with a certain distribution, resulting in Poissonian
photon number statistics on average over finite temporal
intervals. As discussed in section 3.1, the QCR bound on the
estimation uncertainty is dependent on the probe state that
becomes encoded with the information on a parameter to be
estimated. An important question naturally arises: Can we
further reduce the QCR bound below the SQL by optimizing
the probe state? If this is possible, then we can also ask: What
would be the optimal state to achieve the ultimate uncertainty
bound? To address these questions, we now briefly show how
intensity sensing and phase sensing can be further improved
with the help of quantum states of light within the framework
of the QCR bound. For more details, the latest review articles
devoted to quantum metrology can be consulted.41,43,44 The
techniques introduced here will then be used in section 4,
where we describe recent work on improving plasmonic
sensors using quantum resources.

3.3.1. Quantum-Enhanced Intensity Sensing. When a
sample mean is used in intensity sensing as described above,
the crucial quantity that affects the estimation uncertainty is
ΔIt. Is there a state that minimizes ΔIt? To answer this, we
need to look at photon number distributions. Individual
photons undergo a Bernoulli process when passing through a
BS; that is, each photon is either transmitted with a probability
T or reflected with a probability (1 − T). Given the incident
photon number distribution pin(m), the output photon
distribution pout(n|T) can be written as

∑ η η| = −
=

∞
−( )p n T

m
n T T p m( ) ( ) (1 ) ( )

m n

n m n
out in

(46)

This leads to the variance of the transmitted intensity given as
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(47)

where ⟨n̂⟩ and ⟨(Δn̂)2⟩ are the average and the variance of the
photon number of the incident state, respectively. For a fixed
average photon number ⟨n̂⟩ = N, and given η and T, we then
have that the smaller the photon number variance ⟨(Δn̂)2⟩ of
the probe state, the smaller the variance (ΔIt)2, thus reducing
the estimation uncertainty. The state with the smallest photon
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number variance is the Fock state |N⟩ = (N!)−1/2(a†̂)N|0⟩, for
which ⟨(Δn̂)2⟩ = 0 and thus

η
νη

Δ = −
T

T T
N

(1 )
est

(48)

This clearly shows a quantum enhancement by a factor of (1 −
ηT) in comparison with eq 41 obtained using a coherent state
as a probe, although it still scales with N−1/2. Substituting the
probability pout(n|T) of eq 46 with pin(m) = δm,N into the
discretized form for the FI of eq 27, one can show that the CR
bound is the same as eq 48. For the outgoing state written as
ρ ̂ = ∑ | | ⟩⟨ |p n T n n( )T n out , the QCR bound can also be
calculated, consequently showing that the QCR bound is the
same as the CR bound because ∂T |n⟩ = 0,38 as in the classical
case discussed in section 3.2.
The above quantum enhancement is achieved due to the fact

that the photon number state has the least uncertainty, indeed
no uncertainty, in photon number, whereas the coherent state
has an uncertainty associated with the Poisson distribution in
photon number. The probe states |α⟩ and |N⟩ lead to Poisson
and binomial photon number statistics in the transmitted light,
respectively, as shown in Figures 11(a) and (b). The variance
of the binomial distribution, σB

2 = ηT(1 − ηT)N, is smaller than
that of the Poisson distribution, σP

2 = ηTN, while their mean
values are equal, i.e., μB = μP = ηTN. As can be seen from the
above simple formulation, it is known that the photon number
state is the optimal state that minimizes the QCR bound, i.e.,
attaining the ultimate quantum limit in intensity sensing.252,253

Intensity, or equivalently loss parameter sensing, has been
considered with various probe states.45 The optimal strategies
of estimating a general one-parameter quantum process were
studied in terms of the Kraus representation,256 and later the
ultimate quantum bound on the estimation uncertainty in loss
parameter sensing was derived,253 which is eq 48. Gaussian
probe states (a special class of quantum states whose Wigner
function is a Gaussian function46) were considered in intensity
parameter sensing,253 and their sensing performances were
shown to be improved by the use of a Kerr nonlinearity.257 It
was shown that the ultimate bound is achievable only by the
Fock state probe among all single-mode quantum probe states,
including non-Gaussian probe states.252 The optimality of a
Fock state probe in intensity sensing has been exploited in
various types of sensing, such as in absorption spectroscopy to
analyze the organic dye molecule dibenzanthanthrene258 or
hemoglobin [see Figure 12(a)].254 Other relevant studies

include quantum polarimetry to measure the optical rotation
occurring in chiral media [see Figure 12(b)]246 and an
experiment to measure the absorbance of a lossy medium [see
Figure 12(c)].255 Of particular interest to this review is that the
Fock state probe has recently been used in plasmonic
sensing,259 whose details will be discussed in section 4.1.

3.3.2. Multiparameter or Multimode Intensity Sens-
ing. Single-mode intensity sensing can be improved by using

Figure 11. Intensity sensing using classical and quantum states. (a) A coherent state is used to measure the transmission T. The measured
population distribution is Poissonian. (b) The photon number state is used to measure the transmission T. The measured population distribution is
binomial, with a smaller standard deviation, σB, than the coherent state, σP.

Figure 12. (a) Precision ratio of an absorption spectroscopy
measurement using single photons (ΔTest,q) to the SNL (ΔTest,c)
for different types of hemoglobin: (left) oxyhemoglobin (HbO2) and
(right) carboxyhemoglobin (HbCO). The absorption parameter is
experimentally estimated at individual wavelengths ranging from 790
to 808 nm. Adapted from ref 254 (CC BY License). (b) Precision
ratio of a quantum polarimetry measurement using single photons to
the SNL for sucrose solution. The optical activity of a sucrose solution
with concentration C = 0.5 g/mL is experimentally estimated at input
polarization angles in a range from −100° to 100° in steps of 10°.
Reproduced with permission from ref 246. Copyright 2020 IOP
Publishing. (c) (inset) The absorbance a ∈ [0, ∞) of a medium is
experimentally measured in the presence of other losses, such as
surface losses γ and copropagation loss β. The FI is analyzed, as a
function of the length of a Pockels cell modulator, for an absorbance
measurement with a two-mode squeezed vacuum state input and a
coincidence counting scheme (upper). The latter is compared to the
case using a single-mode thermal state of light with and without dark
counts (lower). Adapted from ref 255 (CC BY 4.0 License).
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ancillary modes.260 It has been shown that entanglement can
further improve the estimation of an unknown damping
constant in an interferometric setup with specific probe states
and measurements considered.261 Entangled Gaussian probes
were shown to lead to a better strategy for discriminating lossy
bosonic channels in the presence of a thermal environment.262

The estimation of a loss parameter can also be made
simultaneously with the estimation of temperature263 or
phase.264 More generally, the estimation of multiple loss
parameters needs to be considered with regard to several
applications, such as in image sensing,265 where the precise
measurement of an image at individual pixels of an amplitude
mask corresponds to the problem of the precise estimation of
multiple loss parameters. Increasing the resolution of thermal
electromagnetic sources can also be formulated as loss
parameter estimation.266−270 Other examples of importance
are to probe the change of intensity parameters over different
frequencies254 or temporal modes.42

A recent study has derived the ultimate quantum bound to
the estimation uncertainty of multiple intensity parameters and
identified the optimal schemes reaching the ultimate quantum
bound.271 Consider the problem of the estimation of K
transmittivities {Tk}k=1

K of K transmissive channels using what is
called an “ancilla-assisted entangled parallel” strategy, as
illustrated in Figure 13(a). The probe states are sent through
signal modes (S) representing the K transmissive channels
modeled by K BSs, whereas ancillary modes (A) are used to
transmit states entangled with the probe states and are kept
lossless. To make the scenario more general, multimode
features at individual channels are taken into account, so that
Mk modes are assumed to be used for probing the kth
transmittance. The overall probe state can thus be written as a
joint pure state |Ψ⟩SA, with energy constraints on the individual
channels, i.e., ⟨Ψ|n̂k|Ψ⟩SA = Nk for k = 1, ..., K, where

̂ = ∑ ̂ ̂=
†n a ak m

M
k m k m1 , ,

k . It was shown that the maximum QFIM H
can be written as272

Figure 13. Multiple intensity parameter sensing. (a) General ancilla-assisted strategy: Each signal mode (red) is sent to a fictitious BS with
unknown transmittivity Tj in the jth mode, while an ancilla (yellow) is kept lossless. The composite output state of the signal modes and the ancilla
mode is measured to estimate the vector T consisting of all transmittivities. Virtual environment modes (green) are also considered and assumed to
be in the vacuum state before entering the BSs. Adapted with permission from ref 271. Copyright 2018 the American Physical Society. (b) Left:
Circular dichroism (CD) is experimentally observed by measuring the intensity-difference of the transmitted left-circularly polarized (LCP) light
and right-circularly polarized (RCP) light upon propagation through a chiral medium. Right: General ancilla-assisted CD sensing scheme, similar to
(a), but with additional losses ηL and ηR for the respective LCP and RCP modes. The transmittivities TL and TR represent the transmittivities of the
LCP and RCP modes through a chiral medium, respectively. Reproduced from ref 272.
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where ηk is an additional but unwanted loss rate for the kth
channel. Such an ultimate quantum bound exhibits a quantum
enhancement in comparison with the QFIM for a product
coherent (PC) state probe written as

η η
= ···H

N
T

N

T
diag , , K K

K

1 1

1

i
k
jjjjj

y
{
zzzzz (50)

It has been shown that the above maximum QFIM of eq 49
can be achieved by the product probe |Ψ⟩ = ⊗ | ⟩= NDSk

K
k1 ,271

where |NDS⟩k is the so-called number-diagonal-signal (NDS)
state with the energy constraint of Nk on the signal
mode,273,274 defined as

∑ ϕ| ⟩ = | ⟩ | ⟩
≥

n npNDS ( )
n

nk k k S A
0k

k
(51)

where | ⟩ = | ⟩ ···| ⟩n n nk k M kS 1 k
is an Mk-mode number state basis

at the kth signal channel, ϕ{| ⟩ }n Ak
is an orthonormal basis at the

kth ancillary channel, and p(nk) is the probability distribution
of nk. The signal energy constraint on the kth signal mode then

r e a d s a s = ∑ =
∞N m p m( )k m k k0k

w i t h p ( m k ) =

∑ +··· + = np( )n n m kMk k1
.

According to the formulation introduced in section 3.1, one
can find the optimal measurement setting that reaches the
ultimate multiparameter quantum bound. It has been shown
that the optimal setting is the joint measurement with the
Schmidt bases, i.e., the basis |ϕnk⟩ on the ancillary modes and

the number basis |nk⟩S on the signal modes.271 This leads the
FIM to be equal to the QFIM of eq 49 for any {Tk}. Note that
the multiparameter QCR bounds given by eq 49 can be
simultaneously achieved since the associated SLDs com-
mute.222

The above formulation has recently been applied to one
notable example, called circular dichrosim (CD) sensing,
which is shown in Figure 13(b). Typical CD sensing schemes
aim to estimate the difference of the transmittivities between
left- and right-circular polarization through a chiral medium
composed of either chiral molecules275,276 or chiral nano-
photonic structures.277−279 By modeling CD sensing quantum
mechanically [see Figure 13(b)] and using eq 39, Ioannou et
al. identified the ultimate quantum limit on the estimation
uncertainty of an estimate (TL − TR) and investigated the

Figure 14. (a) (Left) A twin beam (i.e., the TMSV state of eq 53) is generated via a SPDC process. One mode of the twin beam passes through a
weakly absorbing object and arrives at a CCD camera array, while the other mode is directly sent to another area of the CCD array. A subtraction is
performed between the two noisy images, realizing the intensity-difference measurement scheme, whereby an image of the object is constructed.
(Right) For two example sets (upper and lower row) of the objects, three kinds of schemes are used: (left) differential-intensity measurement using
a TMSV state, (middle) differential-intensity measurement using a PC state, and (right) direct-intensity measurement using single-mode coherent
state. Adapted with permission from ref 265. Copyright 2010 Springer Nature. (b) (Bottom) The parametric process in the double-lambda scheme
converts two pump (P) photons into one probe (Pr) photon and one conjugate (C) photon, generating a bright twin beam, i.e., the TMSD state of
eq 54. In the experiment, a bright pump beam couples with the probe and conjugate fields through a hot 85Rb vapor cell involving the double-
lambda scheme. The spatially correlated bright twin beams are generated with cylindrical symmetry over a range of angles Δθ around the axis of the
pump beam. When the spatial field profile of the probe seed is modified by an amplitude mask, an entangled image can be generated between the
probe and conjugate outgoing field. (Left) Image of the probe seed entering a hot 85Rb vapor cell. (Middle) Image of the outgoing probe beam.
(Right) Image of the outgoing conjugate beam, clearly showing antispatial correlation with the image of the probe beam. Reproduced with
permission from ref 312. Copyright 2008 AAAS.
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optimality in terms of various quantum state inputs and
quantum measurements.272

3.3.3. Quantum Noise Reduction in Intensity Meas-
urements. The most widely exploited scheme for measuring
intensity changes in both the classical and quantum regimes is
reference-assisted transmission or absorption spectroscopy.
Here, the signal mode encodes a single intensity parameter of
an object, and a reference mode is kept unchanged. Examples
include quantum imaging,280 quantum illumination,281,282 and
quantum sensing.283 In particular, an intensity-difference
measurement between the signal and reference output modes
has often been performed in order to remove common excess
noise between the two modes.284 This is a technique that has
recently been used in classical plasmonic sensing to reach the
SNL.35,36,96

The ultimate aim of using quantum probe states is to reduce
the noise below the SNL. The noise reduction of the intensity-
difference measurement of two modes a and b can be
quantified by the so-called noise reduction factor
(NRF),285−288 defined by the ratio of the variance of the
photon number difference between the signal and reference
mode to that of coherent states with matching average photon
number, written as

σ =
⟨[Δ ̂ − ̂ ] ⟩

⟨ ̂ ⟩ + ⟨ ̂ ⟩
n n

n n
( )b a

2

a b (52)

It can be shown that σ ≥ 1 for all classical light, and thus the
light is nonclassical when σ < 1 is measured. The NRF is
minimized by light whose uncertainty in the photon number
difference is minimal, i.e., the optimal probe state generally
written in the form of the photon-number-correlated state
|Ψ⟩ = ∑ | ⟩w n n,n nab with any weights {wn}, for which σ = 0. An
example is the twin Fock (TF) state |TF⟩ = |N,N⟩ with σ(TF) =
0. For a PC state |α,β⟩, on the other hand, σ(PC) = 1, which sets
the SNL.
Another useful photon-number-correlated state leading to σ

= 0 is the two-mode squeezed vacuum (TMSV) state, often
referred to as a twin beam. It has been widely used in
experiments over the last few decades.283 The TMSV state can
be generated from a spontaneous parametric down conversion
(SPDC) process.289−291 It is formally written as the outcome
of a two-mode squeezing operation applied to a two-mode
vacuum state and is written in the photon number basis as

∑ξ| ⟩ = ̂ | ⟩ = | ⟩
=

∞

S c n nTMSV ( ) 0, 0 ,
n

n2
0 (53)

where Ŝ2(ξ) = exp[ξ*ab̂̂ − ξa†̂b̂†] denotes the two-mode
squeezing operator with ξ ∈  and cn = (−eiθs tanh r)n/cosh r
for ξ = reiθs. It is clear from eq 53 that the TMSV state exhibits
a strong quantum correlation in the photon number between
the two modes, leading to σ(TMSV) = 0, whereas the individual
modes follow thermal statistics, i.e., ⟨(Δn̂)2⟩/⟨n̂⟩ = N + 1 with
N = sinh2 r. This strong photon number correlation has been
used in various applications such as quantum ellipsome-
try,292,293 absorption/transmission measurements,294−298

quantum sensing,299 quantum illumination,282 quantum radio-
metry,300,301 and quantum gravity tests.302 Figure 14(a)
presents an experimental demonstration of a quantum imaging
technique using the nonclassical spatial correlation of TMSV
states for a weakly absorbing object, in direct comparison with
the experimental images obtained using classical light.265 The

TMSV state is normally regarded as a weak-field probe since
the average photon number N is small, i.e., small r, due to the
weak nonlinearity of the material used for realizing the two-
mode squeezing operation.303

When sensors operating in the high-intensity regime are
more preferable or favorable, one can employ a brighter
entangled state at the expense of decreasing the quantum
correlation, e.g., the state produced by performing the two-
mode squeezing operation on a vacuum state in one mode and
a coherent state in another (whose intensity can be high). This
state is formally called a two-mode squeezed displaced
(TMSD) state and has been investigated from various
perspectives.304−306 The TMSD state can be written as

ξ α| ⟩ = ̂ | ⟩| ⟩STMSD ( ) 02 (54)

for which ⟨n̂a⟩ = sinh2 r + |α|2 cosh2 r and ⟨n̂b⟩ = sinh2 r + |α|2

sinh2 r and

σ α
α α

= | |
| | + + | | r2(1 )sinh

(TMSD)
2

2 2 2 (55)

It is clear that for a given small r, the intensity of the individual
modes can be increased by cranking up the pump laser power
(i.e., |α|2) incident to the nonlinear medium that produces the
TMSD state. A large |α|2 increases the NRF, but the NRF is
always less than unity, implying that the quantum correlation
of the TMSD state is always stronger than that of the classical
case and can thus be exploited in quantum imaging or sensing.
In an experiment, the TMSD state can be generated via a four-
wave mixing (FWM) process in a double-lambda configuration
provided by a 85Rb vapor cell,307−309 where a NRF ≈ 87%, i.e.,
about −9 dB [≈10 log10(1−0.87)], has been measured. Such
an intense quantum correlation with tens of μW of optical
power has been exploited in quantum sensing,310,311

imaging,312,313 and quantum plasmonics.55 The application to
quantum plasmonic sensing, in particular, will be described in
more detail in section 4.1.2. Figure 14(b) presents a
demonstration of entangling spatial information on the probe
beam with the conjugate beam by a FWM scheme that
generates a TMSD state.312

An interesting comparison can be made among the
aforementioned quantum states of light in quantum imaging
or intensity parameter sensing scenarios. Consider a setup
where the object with transmittance T is placed in the signal
mode a, and the signal and reference modes undergo
inefficient transmission channels with factors ηa and ηb,
respectively, which include the detection efficiencies of the
two detectors.314 The intensity-difference measurement
operator n̂− = b̂out

† b̂out − aôut
† aôut can be written in terms of

input operators using the Heisenberg picture.218 Here, states
are static and operators contain the relevant dynamics. In this
case, we can model the change of the transmittance and losses
in the modes as fictitious BSs. This enables the output NRF to
be calculated for the respective probe states.218 For example,
the input−output relation given by

η η η̂ = ̂ + − ̂ + − ̂

+ − ̂

†
a G T a G T b T a

T a

( 1) (1 )

(1 )

out a in a in a bath

obj (56)

η η η̂ = ̂ + − ̂ + − ̂†b G b G a b( 1) (1 )out b in b in b bath (57)

can be applied to n̂− and the expectation value taken with
respect to the initial vacuum state |0⟩|0⟩ for the TMSV state
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probe or the initial displaced state |α⟩|0⟩ for the TMSD state
probe. Here, ab̂ath (b̂bath) is the input operator of a fictitious BS
describing a lossy channel of the signal (reference) mode,218

aôbj denotes the virtual input operator of the object, and G =
cosh2r with r being the squeezing parameter and θs = π
assumed. The bath and object modes are taken to be in the
vacuum initially.
The NRFs of the respective output states can thus be written

as

σ
η η
η η

= −
+
+

T

T
1out

(TF)
2

a
2

b
2

a b (58)

σ
α η η η η

η η
= +

| | − − +
+

G T T

T
1

( ) ( )
out
(TMSV)

2
a b

2 2
a
2

b
2

a b (59)

σ
η η η

η η
≈ +

− [ − − ]
+ −

G G T

GT G
1

2( 1) ( )

( 1)out
(TMSD) a b

2
b
2

a b (60)

where the limit |α|2 ≫ 1 has been taken into account for the
TMSD state probe.315 An example of them is shown in Figure
15.
The quantum enhancement in noise reduction, i.e., a

subshot-noise measurement, can be identified by the condition
σout < 1. The latter holds for σout

(TF) at any value of T, implying
that the use of the TF state always achieves the subshot-noise
measurement. The other two states, on the other hand, reach
the noise level below the SNL when G(Tηa − ηb)

2 is less than
T2ηa

2 + ηb
2 and ηb

2, respectively. These conditions can be simply
satisfied when Tηa is close to ηb, motivating a consideration of
the ideal case that Tηa = ηb = η, for which the NRFs of eqs 58
to 60 become

σ η= −1out
(TF)

(61)

σ η= −1out
(TMSV)

(62)

σ η≈ − −
−

G
G

1
2 ( 1)

2 1out
(TMSD)

(63)

These NRFs are shown in Figure 15 as the starred versions. As
expected, a subshot-noise measurement can be achieved with
all the considered states at any value of T. This has been
experimentally demonstrated in various studies,308,316,317

including the imaging of a weakly absorbing object, for
which ηb = ηa and T ≈ 1 are of interest.265,318 The behaviors of
the TF and TMSV state exhibit the maximal noise reduction in
intensity sensing, as predicted from the previous discussion
where the NSD state has been shown to lead to the optimal
results.271,319

Another useful and practical figure of merit that has often
been used in the two-mode scheme is the SNR with respect to
an intensity-difference measurement,265 defined by

=
|⟨ ̂ ⟩ − ⟨ ̂ ⟩|

⟨[Δ ̂ − ̂ ] ⟩
n n
n n

SNR
( )

b a

b a
2 1/2

(64)

When symmetric probes are used (such as the TF and TMSV
states), i.e., ⟨n̂a⟩in = ⟨n̂b⟩in = N and ⟨(Δn̂a)2⟩in = ⟨(Δn̂b)2⟩in, the
SNR can be rewritten as

η η

η η η η σ η η

=
−

[ − + − + + ]

T N

N T Q T T

SNR
( )

( ) 2 ( 1) ( )
b a

a b
2

M a b in a b

(65)

where QM = ⟨(Δn̂)2⟩in/⟨n̂⟩in − 1 is the Mandel Q-parameter320

and σin is the NRF for the input state.285−288 The Mandel Q-
parameter is equal to or greater than zero for all classical light,
so nonclassical light can be identified by QM < 0. As mentioned
previously, the NRF σin ≥ 1 for all classical light, and thus light
is nonclassical when σin < 1 is observed. It is clear to see that
the SNR of eq 65 increases with decreasing QM and σin. One
finds that the minimum values of QM and σin are −1 and 0,

Figure 15. Comparison of the noise reduction for different quantum states: TF, TMSV, and TMSD. The parameters chosen are G = 4.5, |α|2 = 10,
and ηa = ηb = 0.8. The starred versions (TF*, TMSV*, and TMSD*) correspond to the case when Tηa = ηb. Inset: General two-mode scheme using
an input state that consists of the signal and reference mode to estimate the intensity parameter T in the presence of losses ηa,b for each mode. Here,
the transmissive object with T and linear losses are described by fictitious BSs.
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respectively, which are obtained for the TF state |Ψ⟩in = |N⟩a|
N⟩b.
The quantum enhancement in the SNR can be quantified by

the ratio of the SNR for the particular quantum state probe to
that for the balanced PC probe state, written by

η η
η η η η σ η η

=

=
+

− + − + +

R

T

T Q T T

SNR

SNR

( ) 2 ( 1) ( )

SNR
q

c

a b

a b
2

M a b in a b

(66)

Note that quantum enhancement with RSNR > 1 is observed
when (Tηa − ηb)

2QM + 2Tηaηb(σin −1) < 0, so a quantum
probe with −1 ≤ QM < 0 or 0 ≤ σin < 1 can be shown to be
advantageous. The optimal state that maximizes the quantum
enhancement is the TF state, for which QM = −1 and σin = 0,
which are the minimum bounds for the respective parameters.
In this optimal case, RSNR > 1 regardless of T and ηa,b.
The use of the TMSV state of eq 53, for which QM = N and

σin = 0, provides a quantum enhancement only when (Tηa −
ηb)

2N < 2Tηaηb with respect to the balanced PC state with QM

= 0 and σin = 1. This indicates that probing with a TMSV state
is more advantageous as N decreases. When ηa ≈ ηb and T ≈ 1,
or ηaT ≈ ηb, the use of a TMSV state becomes more useful
even with high N. Such an enhancement has been observed in
quantum imaging experiments.265,283 One can also find other
useful states with σin = 0 and QM < 0, for example, pair
coherent states321 or finite-dimensional photon-number
entangled states.322 These states have all been considered in
quantum plasmonic sensing, as we will discuss in detail in
section 4.1.

3.4. Subshot-Noise Phase Sensing

3.4.1. Phase Sensing in Mach−Zehnder Interferom-
eters. The shot-noise limited interferometric phase sensor
described in section 3.2 can be improved by making use of
quantum resources. The original idea proposed by Caves, who
largely contributed to the advent of the field of quantum
metrology, is to inject a squeezed vacuum state |ξ⟩ into the
input mode b of the first BS in the MZI shown in Figure 10(b),
where previously the input state in mode b was assumed to be
the vacuum in the shot-noise limited classical sensor.220 The
squeezed vacuum state is defined as |ξ⟩ = Ŝ1(ξ)|0⟩, where the
single-mode squeezing operator is represented by

ξ ξ ξ̂ = * ̂ − †̂( )S a a( ) exp1
1
2

2 1
2

2 and ξ = reiθs, with r ≥ 0

manifesting a squeezing magnitude in the variance of the
corresponding quadrature variable, xθs/2 = ⟨x̂θs/2⟩, with

̂ = ̂ + ̂θ
θ θ− †x e a e a( )/ 2i i

/2
/2 /2

s
s s . Here, θs/2 represents the

angle of the axis along which squeezing takes place.323 The
total input state is then |Ψ⟩in = |α⟩a|ξ⟩b, with the total average
photon number of the two modes being N = |α|2 + sinh2 r. In
the absence of loss (ηa = ηb = 1), this input state is transformed
by the first BS into a nonseparable state |Ψ⟩prob = B̂(π/4, π/
2)|Ψ⟩in that probes the phase information, resulting in
|Ψ(ϕ)⟩=Û(ϕ)|Ψ⟩prob before the measurement. For such a
lossless case, Pezze ́ and Smerzi showed that the QCR bound to
the estimation uncertainty of the relative phase ϕ is written
by324

ϕ
ν α

Δ =
| | +e r

1

sinhrQCR 2 2 2 (67)

where the optimal phase condition between the displacement
and squeezing parameters is set, i.e., cos(2θc − θs) = 1. Note
that the QCR bound ΔϕQCR is the same for any true value of
ϕ, and it can reach Heisenberg scaling ΔϕQCR ∝ N−1 for N ≫
1, when |α|2 ≃ sinh2r ≃ N/2. It can be shown that

ϕ νΔ ≈ −e N/r
QCR wh e n |α | 2 ≫ s i n h 2 r 2 2 0 a n d

ϕ ν αΔ ≈ | | +−e N/ (4 1)r
QCR

2 when |α|2 ≪ sinh2r.324 These

cases show that too small or too large amounts of squeezing
cannot achieve Heisenberg scaling, but they do provide
subshot-noise sensing due to the additional factor that
multiplies N−1/2.
Interestingly, the squeezed vacuum state considered above

has been shown to be the optimal state that can be inserted
into mode b of the lossless MZI when the coherent state is
inserted into mode a, as it minimizes the estimation
uncertainty of the relative phase ϕ.325 This indicates that the
initial idea proposed by Caves turns out to be a good choice as
a modification for better phase sensing in an MZI setup. The
original goal here was to improve classical gravitational wave
detectors, where a strong classical field is used in one mode of
the interferometric setup.326 This has now led to the latest
improvements to the LIGO detector327 and the Virgo
detector.328 Furthermore, the QCR bound of eq 67 is not
only theoretical but practically attainable by photon-number-
counting detectors at the two output ports of the MZI324 or a
parity detection scheme at the output port a of the MZI.329

When a coherent state does not need to be used in mode a
of the MZI, the optimal input state for phase estimation using
the MZI setup is two single-mode squeezed vacuum states with
antiphases, i.e., |Ψ⟩opt = Ŝa(−r)Ŝb(r)|0,0⟩ with r ∈ ,330 for

which the QCR bound reads ϕ νΔ = +N N1/ ( 1)QCR with

N = 2 sinh2 r being the total average photon number.
The MZI phase sensing setup has sometimes been

considered with a single phase shift in mode a, i.e., Û(ϕ) =

eiϕa ̂
†a.̂331,332 However, in this setting particular care must be

made in quantifying the extent to which the estimation
uncertainty is reduced, since an optical phase can only be
defined in a relative sense with respect to a reference phase.333

Hence, a sensing analysis with a single phase shift is valid only
when a reference beam with a certain phase is assumed, whose
resource also needs to be counted when determining the
dependence of the uncertainty on N.
In the case of loss in both arms of the MZI, the calculation

of the QCR bound becomes complicated due to the
probabilistic nature of photon loss that needs to be taken
into account. In this case, it is more convenient to use the
relation between the QFIM H and the Bures distance B

2 for
the infinitesimally close states ρ̂ϕ and ρ̂ϕ+dϕ.

227,334,335 Using the
relevant formulation introduced in Appendix B, one can thus
derive the QCR bound for the case ηa = ηb = η, written as336,337

ϕ
ν α η

Δ =
| | +η

η η− + − r

1

sinh
e

QCR 2
(1 )

2
r2 (68)

It is clear that ΔϕQCR increases with loss, i.e., as η decreases,
whereas the lossless QCR bound of eq 67 is recovered when η
= 1. It can also be shown that the Heisenberg scaling ΔϕQCR ∝

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.0c01028
Chem. Rev. 2021, 121, 4743−4804

4765

pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.0c01028?rel=cite-as&ref=PDF&jav=VoR


N−1 promised for the lossless cases starts to deteriorate as η
decreases.
The QCR bound ΔϕQCR of eq 68 has been shown to be

achievable by a linear optical setup using a weak local oscillator
field and photon counting.337 Other types of measurement
schemes have been investigated, for example, homodyne
detection with a measurement operator M̂ = x̂ϕHD

, a single-
mode intensity measurement with M̂ = a†̂a,̂ an intensity-
difference measurement with M̂ = b̂†b̂ − a†̂a,̂ and a parity

measurement with M̂ = (−1)a ̂
†a.̂336,338 In the case of homodyne

detection (see Appendix C), it was shown that this offers a
nearly optimal measurement scheme and approaches the QCR
bound of eq 68 in the large power regime. Alternatively, the
robustness of the TMSV state against photon loss enables one
to achieve subshot-noise limited phase sensing for a wide range
of the phase parameter space without pre- or postselection.339

3.4.2. Phase Sensing with NOON States. In addition to
exploiting continuous variable states such as the squeezed
vacuum state in phase sensing, discrete variable states or
definite-photon-number states have also been considered as
probe states for phase sensing.340 The most famous state is the
s o - c a l l e d N O O N s t a t e , d e fi n e d a s
| ⟩ = | ⟩ + | ⟩N NNOON ( , 0 0, )1

2
, where N photons are

found in either mode a or b,341−343 exhibiting N-particle
maximal entanglement.344 The generation of NOON states is
very difficult with current technology, and they have been

limited to N = 5 in photonic systems.345,346 The NOON state
possesses a very useful feature that the variance ⟨(Δn̂−)2⟩ of
the photon number difference between the two modes is
maximal among the states with N photons in total,
consequently maximizing the QFI written by H = 4⟨(ΔĜ)2⟩,
where Ĝ = n̂−/2 is the generator of the relative phase shift.
When the NOON state is employed as a probe state, the QCR
bound is found to be ϕ νΔ = N1/QCR , clearly manifesting a

Heisenberg scaling enabled by the maximal variance of the
photon number difference of the probe state. It is interesting to
note that injecting a coherent state and a squeezed vacuum
state into the two input ports of the first BS in a MZI generates
an effective NOON state, as the output state has a large
overlap with the NOON state, i.e., B̂(π/4,π/2)|α,ξ⟩ ≈ |
NOON⟩ for sinh2 r = |α|2 = N/2 and N ≫ 1.324,345 In the MZI
setup, the coherent state and squeezed vacuum state thus
exploit a large variance ⟨(Δn̂−)2⟩, similar to the NOON state
probe, in order to achieve subshot-noise sensing.
The QCR bound for the NOON state has been shown to be

achievable by the measurement of the observable ÂN = |
0,N⟩⟨N,0| + |N,0⟩⟨0,N|50 or parity detection.341 One major
obstacle in using the NOON state for phase sensing from a
practical perspective is that it is extremely sensitive to photon
loss, since the loss of a single or a few photons drastically
changes the state’s photon number distribution and its variance
⟨(Δn̂−)2⟩ quickly decreases. The estimation uncertainty
associated with the NOON state thus becomes large even

Figure 16. (a) (left) Linear optical network to demonstrate optimal phase estimation in the presence of loss. Initial BSs prepare the optimal probe
state depending on the amount of loss measured via a loss monitor in a proof-of-principle demonstration. (right) Phase estimation uncertainties
measured using two-photon optimal states (blue circles), NOON (red squares) states, and weak-coherent states to set the SIL regime (gray
diamonds), for five phase values ϕ = 0, ±0.2, and ±0.4 rad under several lossy conditions, given by different transmittivities η. Horizontal lines
represent the theoretical CR bounds for individual input states in the presence of loss. Reproduced with permission from ref 353. Copyright 2010
Springer Nature. (b) (left) The two-photon NOON state undergoes a phase rotation in a collinear interferometer. The signal and idler photons are
separated via a PBS and measured by superconducting nanowire detectors. The high efficiency and visibility in the experiment meant that
postselection was not needed, leading to the demonstration of unconditional quantum enhancement. (right) Experimentally measured standard
deviation of the estimated phases with error bars determined via the standard bootstrapping technique. The theoretical SNL (purple line) and CR
bound for phase sensing with NOON states (orange line) are shown with 95% confidence regions. Reproduced with permission from ref 354.
Copyright 2017 Springer Nature.
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with a moderate amount of photon loss.347−350 Such an
extreme sensitivity to photon loss can be alleviated by
exploiting partial entanglement at the expense of a degraded
performance, while still achieving subshot-noise limited
behavior.351 Hence, adding other photon-number components
(e.g., |k, N − k⟩ for k < N) into the NOON state helps phase
sensing with NOON states become more robust to loss and
provide subshot-noise sensing even in the presence of loss. In
particular, in phase sensing with the definite-photon-number
state |Ψ⟩ = ∑ | − ⟩= c k N k,k

N
kprob 0 with N particles distributed

over the two modes, one can find the optimal distribution {ck}
that maximizes the QFI and consequently enables one to beat
the SQL or SNL at any loss level.250,352 The latter has been
experimentally demonstrated with optimally engineered
definite-photon-number states353 [see Figure 16(a)] and has
been considered theoretically for quantum plasmonic sensing,
as will be discussed in more detail in section 4.2.1. The
unconditional quantum enhancement in phase estimation
precision with the NOON state has also been experimentally
demonstrated in a nearly lossless scenario with significantly
increased efficiency and visibility354 [see Figure 16(b)].
The most commonly used detection scheme for phase

sensing with NOON states is the N-fold coincidence detection
scheme that counts the number of events when N photons are
detected simultaneously.355 This allows one to investigate the
N-fold detection modulation with the phase ϕ, leading to the
probability of a coincidence detection given by

ϕ
ϕ

=
[ + ]

p
f N

( )
1 cos( )

2
N N

coin (69)

where f N is the proportion of the input state that causes an N-
fold coincidence detection event, and N is the N-photon
visibility. The CR bound for this scheme can be calculated with
the underlying probabilities pcoin(ϕ) for the detection event
and 1 − pcoin(ϕ) for the no detection event and is written as

ϕ
ϕ ϕ

ϕ ϕ
Δ =

[ − ]

| |
≤

| |

p p

f N N f N N

2 ( ) 1 ( )

sin( )
1
sin( )N N N N

coin
coin coin

(70)

where the upper bound takes into account the worst case of
the probability pcoin(ϕ) = 1/2. For comparison with the
classical benchmark, the CR bound Δϕcoin in eq 70 can be

compared with ΔϕSIL of eq 45, leading to an inequality Δϕcoin
< ΔϕSIL for a sensor to be so-called supersensitive.356,357 The
inequality can be specified, when |sin(Nϕ)| = 1, as

η
<

̃
f N

1 N N
2 2

(71)

where η η η η η̃ = [ + ]2 /( )a b a b
2. For the threshold

visibility defined as η= ̃ f N/N N
(th) 2 , the above inequality

can be written as >N N
(th); that is, only a measured

visibility higher than the threshold visibility demonstrates
“supersensitivity”.356 The latter can be considered as a genuine
criterion for the quantum enhancement of the precision in
sensing experiments with NOON states instead of “super-
resolution”, which has sometimes been misinterpreted, since it
can also be produced by only classical light and projective
measurements.356 The above theory will be used in section 4.2
when describing quantum plasmonic sensors that have
considered the use of NOON states.
A simple example of NOON state phase sensing uses the

two-photon NOON state | ⟩ + | ⟩( 2, 0 0, 2 )1
2

. It can be readily

created by exploiting Hong−Ou−Mandel (HOM) interfer-
ence.358 The HOM interference occurs when two single
photons are injected into a lossless 50/50 BS; that is, the
outpu t s t a t e i s wr i t t en a s B̂(π/4 ,π/2) |1 ,1⟩ =
| ⟩ + | ⟩( 2, 0 0, 2 )/ 2 up to a global phase, where the
component |1,1⟩ is absent due to destructive interference
caused by the indistinguishable paths leading to the same
output state |1,1⟩. When the two-photon NOON state
undergoes a relative phase shift described by the operator
Û(ϕ), the outgoing state can be written up to a global phase as
| ⟩ + | ⟩ϕ−e( 2, 0 0, 2 )/ 2i2 before the measurement. The super-
resolution with ϕ-modulation is observed due to the multiplied
constant factor of N = 2 in the exponential factor.355 For two-
photon NOON states, one way to realize the required 2-fold
modulation measurement is by sending the two modes of the
NOON state (now with the phase encoded) into a lossless 50/
50 BS and detecting the coincidence of single photons at the
output using single-photon detectors. The visibility of the two-
photon measurement signal (as ϕ is modulated) is then

η η η η= +2 /( )2 a b a
2

b
2 , which enables the supersensitivity

Figure 17. Single-mode phase sensing. (a) A coherent state or a squeezed vacuum state are used to measure the phase ϕ. (b) The phase space
representation for the states. The coherent state has an estimation precision of Δϕcoh for the phase ϕ, whereas the squeezed vacuum state has a
smaller estimation precision of Δϕsq. The initial phase of the squeezed state, |ξ⟩, is θs = π and the phase affected squeezed state |ξe2iϕ⟩ rotates in
phase space counterclockwise by the angle ϕ.
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inequality to be reduced to approximately (ηa + ηb)/2 > 0.8;
that is, supersensitive phase sensing with the two-photon
NOON state can be achieved when the total loss is less than
20% on average.359 This is an important point when using a
plasmonic sensor with NOON states, as will be discussed in
more detail in section 4.2.
Interferometric phase sensing has been studied with various

quantum states and measurements that beat the SQL and
achieve the HL, including the twin-Fock state |N⟩|N⟩ incident
into a MZI,360 the photon-number correlated state,350,361−366

the TMSV state with parity detection,367 Schrödinger’s cat
states,368 and multiheaded coherent states.369,370 More details
of these states and their performance can be found in ref 340.
3.4.3. Single-Mode Phase Sensing. Instead of two-mode

phase sensing, single-mode phase sensing has also been
investigated for the sake of simplicity. Here, the implicit
assumption is that the phase of a reference mode is set. The
latter is enabled by employing phase-sensitive detection
schemes, e.g., homodyne detection,371,372 or general-dyne
measurement.373 Thus, the phase information in single-mode
phase sensing cannot be extracted from a probe state by phase-
insensitive detection schemes, such as photon-number
counting, i.e., ∂ϕp(n|ϕ) = 0.
Consider that a single-mode state of light |Ψ⟩in undergoes a

phase shift described by the operator Û(ϕ) = eiϕa ̂
†a,̂ as shown in

Figure 17(a). As in the intensity sensing case, one may
consider states having a small uncertainty in their phase for
single-mode phase sensing. One typical quantum state whose
phase uncertainty can be reduced below the SNL is the
squeezed vacuum state, |ξ⟩. The phase shift operator Û(ϕ)
rotates a state in phase space about the origin, and the output
state is |Ψ⟩out = Û(ϕ)|ξ⟩ = |ξe2iϕ⟩, for which the QCR bound is
obtained as374,375

ϕ
ν

Δ =
+N N

1

8( )
QCR 2

(72)

where N = sinh2 r represents the average photon number of the
initial squeezed vacuum state. It is clear that the QCR bound
of eq 72 scales with N−1, not only reaching Heisenberg
scaling374,375 but also beating the SQL of ϕ νΔ = N1/ 4 that
is obtained for a single-mode coherent state input. Such a
quantum enhancement in phase sensing is enabled by the
smaller phase uncertainty of the squeezed vacuum state as
compared to the coherent state with the same energy, as shown
in Figure 17(b). One also finds that the photon number state
that is the optimal state for single-mode intensity sensing
cannot encode any phase information since the photon
number state exhibits a full phase uncertainty.218

Generally speaking, to measure the change of a particular
physical quantity being induced by a parameter x with better
precision (or lower estimation uncertainty), the probe state
showing the least uncertainty in that particular parameter is the
most useful. A more analytical understanding can be made
through the relation between the QFI and the fidelity
between two infinitesimally close states ρ̂(x) and ρ̂(x + dx) for
a g i v en p a r ame t e r x , i . e . , H (x ) = l im d x→ 0 8

ρ ρ{ − [ ̂ ̂ + ]}x x x x1 ( ), ( d ) /(d )2 376,377 (see also Appendix
B). That is, the estimation capability is related to the ability to
distinguish two infinitesimally close states ρ̂(x) and ρ̂(x + dx),
and a better distinction can be made with the least uncertainty
in x of the probe state.

One can show that the QCR bound of eq 72 is reached by
homodyne detection, which measures the quadrature variable
of ̂ = ̂ + ̂θ

θ θ− †x e a e a( )/ 2i i
HD

HD HD 374,378,379 by setting the
optimal homodyne angle θHD depending on the values of r,
θs, and ϕ.379 The optimality of homodyne detection holds in
the absence of loss, i.e., probing with a pure squeezed vacuum
state, whereas a realistic squeezed state of light involves an
inevitable thermal photon contribution,380 for which the QCR
bound can only be obtained by performing an exotic
measurement with projectors over the eigenstates of the SLD
operator.376,379

3.4.4. Multiple-Phase Sensing. Single-phase estimation
can be extended to estimating multiple phases, θ = (θ1, θ2, ...,
θd)

T. This is relevant to applications such as phase imaging,233

which measure phase contrast, and interference or gravitational
wave detectors,234 which measure multiple parameters. It is
also relevant to quantum plasmonic imaging, which will be
discussed in more detail in section 4.1.2. The estimation
uncertainty of the total of all phases is governed by the
covariance matrix Cov(θ) and lower bounded by the QCR
bound, as given in eq 38. The uncertainty of the total of all
phases estimated can be quantified by the sum of the individual
uncertainties: θ θθ|Δ | = ∑ Δ = [ ]( ) Tr Cov( )j j

2 2 . This quantity

is often compared using three typical cases: (i) a scheme using
optimal classical state inputs, setting the classical benchmark or
SQL, (ii) a scheme that estimates the phases individually by
using optimal separable quantum state inputs, which is called
“individual estimation” or a “local strategy”, and (iii) a scheme
that estimates all the phases simultaneously by using optimal
entangled state inputs and a collective measurement (when
necessary), which is called “simultaneous estimation” or a
“global strategy”. The comparison of these three cases aims to
address the following questions: Can schemes using quantum
resources beat the SQL in multiparameter estimation? Is a
simultaneous estimation approach beneficial as compared to an
optimal (maybe quantum) individual estimation approach?
Relevant studies attempting to answer these questions have
recently been started from various points of view, arising from
the fact that multiparameter estimation is nontrivial and
depends on the kind of parameters estimated, as well as the
type of sensing scenario.236

In one of the earliest works on this topic, Humphreys et al.
showed that the quantum enhancement in the precision of
simultaneous estimation of multiple phases can be obtained by
a coherent superposition of N photons among d modes, in
which individual phases θj=1,...,d are encoded.381 It has been
shown that the considered entangled state is optimal among
the class of definite-photon-number states, with N being the
total number of photons, and the advantage over individual
estimation scaling with d( ). The particular optimal measure-
ments identified in ref 381 have recently been generalized in
ref 239, which derived the necessary and sufficient conditions
for projective measurements to saturate the multiparameter
QCR bound in the case of pure probe states.
Among N-particle photonic states, Holland−Burnett

states360 and NOON states have been shown to be the
optimal states for simultaneous multiple-phase estimation
when d = 2 in the absence of loss and decoherence.382 Such
non-Gaussian states achieve a factor of d improvement over
individual estimation, as shown in ref 381, but the use of
Gaussian states offers no more than a factor of 2 improve-
ment.383 Furthermore, when both definite-photon-number
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states and indefinite-photon-number states are all considered
together, the precision given by the QCR bound for
simultaneous estimation can be obtained or even further
enhanced through an individual estimation strategy using
proper mode-separable input states.240 It was found that a large
particle-number variance within each mode plays a crucial role
in improving the QCR bound of multiple-phase estimation.
This comparable or even better sensing performance provided
by individual schemes suggests experimentally more favorable
settings for multiple-phase estimation. Moreover, the ultimate
quantum limit for simultaneous multiple-phase estimation is
only achievable by an optimal state that manipulates
entanglement among both particles and modes.384 A more
conclusive mathematical proof has been provided by Proctor et
al., showing that entanglement in simultaneous estimation
leads to no fundamental precision enhancement over
individual estimation when the generators of the multiple
parameters commute and yields no more than a factor of 2
enhancement even when the generators do not commute.385

Another interesting but more challenging scenario is to
estimate multiple phases that are governed by noncommuting
generators, e.g., the three components of a magnetic field in
terms of the spatial coordinates.386 For this scenario, a 3-fold
improvement over individual estimation strategies has been
shown to be achievable by simultaneous estimation schemes
using permutationally invariant quantum states,387 including

the superposition of three Greenberger−Horne−Zeilinger-type
states, each of which is known to attain the QCR bound of
estimating a magnetic field aligned along one of the specific
axes.388 The work in ref 387 also showed that too much
entanglement is detrimental for achieving a Heisenberg scaling
in terms of the total number of particles N. In general, for
noncommuting generators, there exits a trade-off for the
precisions among the individual estimators; that is, more
precise estimation of one parameter leads to less precise
estimation of the others.264,389,390 Hou et al. have recently
derived the minimal trade-off for the precision of simultaneous
estimation of a three-dimensional magnetic field, finally leading
to the identification of the ultimate quantum limit.391

Entanglement appears to lie at the heart of multiparameter
estimation and has been studied from several perspectives, but
here again, in the estimation of multiple phases, entanglement
does not always guarantee a quantum enhancement.240,384

However, entanglement becomes a more significant factor in
estimating a global parameter that is composed of multiple
parameters to be encoded across multiple modes or locations,
e.g., distributed sensing or networked sensing. The global
phase parameter that is often considered is a linear
combination of multiple phases, written as θ θ̃ = ∑ nj j j, with

positive nj and normalization ∑jnj = 1. For this, eq 39 needs to
be used. The effect of quantum entanglement in the

Figure 18. (a) (left) An experimental setup for distributed phase sensing with M = 4. A displaced squeezed state input is split into four identical
and entangled probes through a BS network (BSN). The multiple-phase-encoded probe state is measured with homodyne detection (HD) set-ups,
from which the average phase of multiple phases is estimated. (right) The precision of the estimated average phase for different average numbers N
of photons per sample is compared between the entangled scheme (σe) and the separable scheme (σs). Their theoretical precision (solid lines) as
well as the SQL (dashed line) are also presented. Reproduced with permission from 241. Copyright 2020 Springer Nature. (b) (left) A phase-
squeezed state injected into two variable BSs configures the continuous-variable multipartite entangled probe to estimate the average displacement.
An individual displacement on the squeezed phase quadrature variable is induced by an electro-optic modulator (EOM) driven by radiofrequency
(RF) fields. The output state is measured by homodyne detection, leading to the estimate of the average displacement. (right) The variance of the
estimated values as a function of the transmittivity of the second BS (VBS2) is compared among different cases: entangled sensors (circles and
black curves for experiment and theory), classical separable sensors (triangles and green curves for experiment and theory), and the SQL (black
orizontal dotted line). Reproduced and adapted with permission from ref 392. Copyright 2020 the American Physical Society.
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uncertainty Δθ̃ of distributed sensing has sparked some
interest. Recent work suggests useful schemes using quantum
entanglement to gain an enhancement over schemes that
measure the {θj} individually and then compute a global
parameter θ̃ via classical communication.
Along the lines mentioned above, Proctor et al. have shown

that entanglement can significantly enhance the precision only
when global parameters are of interest in estimation.385 Ge et
al. considered a linear optical network and separable quantum
inputs to show that injecting separable quantum states into
only a few modes out of all the modes achieves a quantum
enhancement,393 resulting in the Heisenberg scaling 1/Nd in
terms of both the constrained photon number N and the
number of parameters d. Particularly, TF states have been
shown to be useful quantum states achieving the Heisenberg
scaling ∝1/Nd, showing a quantum improvement over an
individual estimation approach with the precision scaled as

N d1/ . Zhuang et al. have proposed theoretical schemes that
use a squeezed vacuum input being injected into a BS array to
estimate a linear combination of displacement parameters or
that of multiple phases.394 The proposed schemes were shown
to achieve Heisenberg scaling in the absence of loss and have
recently been experimentally demonstrated for phase param-
eters241 [see Figure 18(a)] and for displacement parameters392

[see Figure 18(b)]. These proposed schemes can be enhanced
by continuous-variable error correction to reinstate the

Heisenberg scaling, at least up to moderate values of d, even
in the presence of loss or decoherence.395 The schemes have
all used homodyne detectors, but single-photon detectors can
also be used with an antisqueezing operation that transforms
the initial squeezed vacuum state into the vacuum, which
achieves Heisenberg scaling in distributed phase sensing.396

In the special case that Gaussian states are employed as an
input into an array of BSs to estimate the average of
independent phase shifts, Oh et al. have identified the optimal
scheme that exploits partially entangled Gaussian probe states,
as maximally entangled probe states are rather detrimental.242

As is evident from the above-mentioned recent work, many
studies appear to show that entanglement may not be the only
quantity that determines the characteristic behavior of the
multiple-phase quantum sensors under investigation. In such a
sense, a new operational concept called multiparameter
squeezing has recently been suggested to identify metrologi-
cally useful states and optimal estimation strategies.397 This
can be seen as a counterpart to the NRF that characterizes
quantum enhancement in quantum noise reduction in intensity
measurements. This is highly relevant to quantum plasmonic
imaging.

3.4.5. Quantum Sensing with SU(1,1) Interferome-
ters. Conventional MZIs like those illustrated in Figure 10(b)
consist of two inputs and two outputs, and they can be
described in a group-theoretical framework as SU(2),362 the

Figure 19. (a−c) SU(1,1) nonlinear interferometers with direct intensity readout, with dual homodyne readout, and with a truncated layout
including dual homodyne readout after a single nonlinear amplifier. A pump laser is illustrated in green, probe and conjugate fields are represented
in red and blue, and BSs are illustrated to represent loss in the interferometer, with transmission η. A transducer is shown inside the interferometer
that imparts the sensors phase ϕ onto the probe. Reproduced with permission from ref 404. Copyright 2017 the American Physical Society. (d)
Precision (normalized here by the mean photon number |α|2 and presented as the variance rather than the standard deviation of ϕ) as a function of
the gain of the second nonlinear amplifier in a nonlinear interferometer with direct intensity readout. The gain of the first nonlinear amplifier is set
to G = 2, and the internal transmissions are set to ηai = ηbi = ηi = 1. The blue, yellow, green, and orange lines represent ηae = ηbe = ηe = 0.5, 0.75, 0.9,
and 0.99, respectively. Reproduced and adapted with permission from ref 404. Copyright 2017 the American Physical Society. (e) Optimal phase
precision normalized to the SNL as a function of ηe for a nonlinear interferometer with asymmetric gain between the two nonlinear amplifiers.
Increased gain r2 in the second nonlinear amplifier reduces the sensitivity to external losses 1 − ηe. Reproduced with permission from ref 405.
Copyright 2017 the American Physical Society. (f) Example of a sensor based on a truncated nonlinear interferometer. The Rb vapor cell serves as a
nonlinear amplifier, and the transducer imparts the sensor’s phase onto the probe or the probe’s local oscillator. Reproduced with permission from
ref 400. Copyright 2020 the American Physical Society.
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special unitary group of degree 2. The SU(2) group, which is a
simple Lie group, is equivalent to the rotation group in three
dimensions, which has the nice feature that it allows one to
visualize the operations of BSs and phase shifters as rotations
in three-dimensional space. This is true for both classical and
quantum optical readout fields. When the BSs in linear MZIs,
or other interferometers such as Fabry−Perot interferometers,
are replaced by nonlinear amplifiers such as four-wave mixers
or optical parametric amplifiers, as shown in Figures 19(a) and
(b), the resulting nonlinear interferometer can be described by
the SU(1,1) group,362 another type of simple Lie group where
the operations can be visualized as rotations and Lorentz
boosts. Similarly, truncated nonlinear interferometers com-
posed of one nonlinear amplifier followed by dual homodyne
detectors, as shown in Figures 19(c) and (f), can also be
described by the SU(1,1) group.398−400 Describing interfero-
metric sensors with such a group-theoretical approach allows
for a straightforward analysis of the quantum states that
optimize an interferometric estimation precision. Both SU(2)
and SU(1,1) interferometers can achieve a phase precision
with a scaling approaching 1/N for N photons, but SU(2)
interferometers require a squeezed vacuum state to be injected
into the second channel of the first BS in order to achieve the
HL when the first channel is fed by a coherent state of light, as
discussed in section 3.4.1. In contrast, SU(1,1) interferometers
can be operated with a vacuum, coherent state, or combined
coherent state and squeezed vacuum state inputs, and they
offer an enhancement in precision that scales with the gain of
the nonlinear amplifier.362,401,402 However, because at least one
of the nonlinear amplifiers in a conventional SU(1,1) nonlinear
interferometer relies on phase-sensitive amplification, it is
essential to maintain a near-zero phase difference within the
interferometer to maintain the precision advantages.403

As discussed in section 3.4.1, the main obstacle to practical
quantum phase sensing with squeezed states of light is
protecting the vulnerable quantum advantage against losses,
as described in eq 68. Indeed, in the presence of losses, SU(2)
interferometers with a squeezed vacuum input asymptotically
approach the sensitivity of classical SU(2) interferometers with
the same mean photon number.406 As a result, the develop-
ment of detectors with near-unity detection efficiency has been
a critical research topic for years. While some progress has
been made with Bayesian parameter estimation as a tool for
mitigating the effect of losses on squeezed SU(2) interfer-
ometers,324 SU(1,1) interferometers offer an alternative
approach that is more robust against losses in some cases.
Their dependence on loss can be broken down into
dependencies on internal and external losses, represented
here by (1 − ηi) and (1 − ηe), respectively. Here, ηi and ηe are
assumed to be balanced for both arms of the interferometer,
i.e., ηai = ηbi = ηi and ηae = ηbe = ηe, as shown in Figures 19(a)−
(c). For a SU(1,1) interferometer with direct intensity readout,
as illustrated in Figure 19(a), external losses, or losses after the
second nonlinear amplifier, largely represent losses due to
filtering before detection and losses due to imperfect detector
efficiency. Internal losses include losses within the nonlinear
amplifiers as well as losses from optical interactions with a
sensor in the interferometer. In the limit of ηi = 1 and when the
interferometer is operated in a balanced mode where the two
nonlinear amplifiers have identical gains and losses, with a
coherent state used in each input port, the external loss
modifies the precision Δϕ of the SU(1,1) interferometer as403

ϕ η ϕΔ = Δ−
e e

1/2
(73)

In other words, unlike SU(2) interferometers, external loss in a
balanced SU(1,1) interferometer does not change the
functional description of the precision except for the addition
of a prefactor because of the second nonlinear amplifier.407 In
fact, because the second nonlinear amplifier is a phase-sensitive
amplifier that can exhibit noiseless amplification, increasing its
gain can compensate for external loss. The effect of external
loss in an unbalanced SU(1,1) interferometer is shown in
Figure 19(d).404 Here, the gain of the first nonlinear amplifier
is set to 2, internal losses are neglected, and the gain of the
second nonlinear amplifier is varied. In the case of no external
loss, the precision is almost independent of gain. On the other
hand, in the limit of arbitrarily large gain, the interferometeric
precision becomes insensitive to external loss.404 Figure 19(e)
expresses this insensitivity to external loss more directly by
plotting the interferometeric precision, normalized by the SNL,
as a function of ηe for three different gain ratios, r2/r1. As the
gain of the second amplifier, r2, is increased relative to that of
the first, r1, the precision becomes increasingly insensitive to
external loss.
However, for the purposes of plasmonic sensing, internal

losses that occur on a plasmonic sensing element within one
arm of the interferometer must be considered. When ηe is set
equal to unity and the internal transmission ηi is varied (setting
ηbi = ηai = ηi such that any additional loss from the sensor is
matched), for bright coherent inputs |α⟩ and |β⟩ seeding the
first nonlinear amplifier and Ni photons inside the balanced
interferometer, the precision Δϕ of the SU(1,1) interferometer
becomes403
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This suggests that balanced SU(1,1) interferometers are robust
against small levels of loss, but as with conventional squeezed
interferometers, increasing loss will push the precision to the
SNL.
Truncated nonlinear interferometers that include only a

single nonlinear amplifier followed by dual homodyne
detection, as illustrated in Figures 19(c) and (f), provide the
same phase precision as conventional nonlinear interferom-
eters, but they offer some substantial advantages. First, they
offer a simpler experimental design by removing the phase-
sensitive nonlinear amplifier from the nonlinear interferometer.
Second, they typically exhibit reduced loss (and thus a greater
quantum enhancement) because the nonlinear amplifier itself
exhibits a trade-off between gain and loss that always
introduces some loss into the measurement. Finally, truncated
nonlinear interferometers can use arbitrarily high power local
oscillators. This is critical because the SNL for such a
measurement is defined by the sum of the powers of the two-
mode squeezed state outputs from the interferometer and the
local oscillators. Thus, it is possible to arbitrarily increase the
power of the local oscillators, thereby increasing the SNR of
the measurement, without introducing excess power to the
sensor and while taking advantage of the quantum noise
reduction in a two-mode squeezed state. No truncated
nonlinear interferometric plasmonic sensor has been demon-
strated in the literature to date, but a growing amount of
literature has described the precision of this approach for
photosensitive sensing applications.398−400
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3.5. Quantum Sensing beyond the Crameŕ−Rao Bound

For phase estimation using a pure probe state in a single-mode

setup with Û(ϕ) = eiϕa ̂
†a ̂ or in a two-mode setup with

ϕ̂ = ̂ ̂− ̂ ̂ϕ † †

U e( ) i a a b b( )2 , the QFIs of eq 35 are given as H =
4⟨(Δa†̂a)̂2⟩ and H = ⟨[Δ(a†̂a ̂ − b̂†b̂)]2⟩, respectively, where
⟨...⟩ denotes the average over the probe state. This indicates
that phase estimation becomes more precise by increasing the
photon number variance of the probe state in a single-mode
setup and the variance of the photon number difference of the
two-mode probe state in a two-mode setup, respectively. A
natural question is then, how much can these variances be
increased?
Rivas and Luis408 have suggested an estimation strategy in a

single-mode setup using a superposition of a vacuum and a
squeezed vacuum state. The considered probe state has been
shown to achieve an arbitrary scaling in precision, i.e., Δϕ ∝
N−k, where N is the mean photon number and k is an arbitrary
value with k > 1. Such an alluring analysis sparked an intensive
debate in the literature because it seemed to beat the
Heisenberg scaling (Δϕ ∝ N−1) that is regarded as the
fundamental ultimate limit that can never be beaten by any
other physical strategy.409 The state studied by Rivas and Luis
is not the only example, and states with various photon
number distributions have been considered as candidates for
increasing the QFI, for example, the SSW state,410 the SS
state,411 Dowling’s model,412 and the small-peak model.413

When the maximal photon number of a probe state is upper
bounded, the so-called ON statea superposition of vacuum
and a Fock stateis known to lead to the maximal photon
number variance.414 One can show that the use of the ON
state in single-mode phase estimation can indefinitely increase
the QFI, while keeping the average photon number fixed. The
ON state is also known to be useful in quantum
computation,415 and a version with 18 excitations has been
realized in the harmonic motion of a single trapped ion.416

On the other hand, when the maximal photon number of a
probe state is unbounded,417 more bizarre photon number
statistics can be found, as discussed in ref 414. For example,
phase estimation using a probe state with a Borel photon
number distribution418,419 can lead to sub-Heisenberg scaling
Δϕ ∝ N−3/2, calculated by the QCR bound.414 Some heavy-
tailed and subexponential distributions exhibit a diverging or
even an infinite variance.420 Particular interest has been paid to
the Riemann-Zeta distribution as an example showing an
infinite QFI, leading to completely precise phase estimation
without uncertainty in a two-mode scheme.421 This last
example is rather mysterious. Together with the other sub-
Heisenberg strategies mentioned above, these examples need
to be justified in order to certify if their precisions are
achievable in practice, putting aside the question of how one
might generate those photon number distributions in the first
place.
Apart from exploiting exotic photon number statistics, sub-

Heisenberg-limited precision can also be achieved by using
nonlinear effects in many-body systems.422−428 The nonlinear
effects in atomic ensemble systems have experimentally
demonstrated sub-Heisenberg-scaling.429 However, a careful
examination of the total resources is needed, as this determines
how the precision scales.
Over the past decade, the debate has been devoted to

address one simple question: Can the HL or scaling be
beaten?341,362,367,430−432 Fortunately, a conclusive answer has

finally been proved409,430,433−439 and shows that the overall
scaling should properly include the amount of resources
required to obtain an a priori probability distribution of the
unknown parameter and the number of measurements
repeated to achieve the asymptotic QCR bound. With such
an accounting of the total resources, one can show that the
aforementioned scenarios all turn out to be Heisenberg scaling-
limited.
In particular, when the likelihood function being used for the

QCR bounds is highly non-Gaussian and the sample size is
small, Ziv−Zakai (ZZ) bounds are known to be more
appropriate.440−444 The quantum version of the ZZ bound
has been derived, showing that the MSE would be higher and
thus tighter than a corresponding QCR bound.433 Using ZZ
bounds, Giovannetti and Maccone have proven that sub-
Heisenberg strategies are ineffective.434 When a small amount
of prior information is given, no sub-Heisenberg scaling is
achievable; that is, sub-Heisenberg scaling requires a large
amount of prior information. When a large amount of prior
information is given, however, one can just guess a random
value based on the prior distribution without performing any
measurement. A random guess with a large amount of prior
information has been proven to achieve a comparable precision
to the corresponding ZZ bound. Considering a finite amount
of prior information, Goŕecki et al. have recently showed that
the HL needs to be corrected by an additional constant factor
of π.445

To investigate the practical achievable precision with a finite
amount of prior information and a limited number of
measurements, which often nullifies QCR bounds in practice,
Bayesian approaches have been considered in various
situations.439,446−449 In this respect, it has been shown that
quantum sensors can be enhanced by machine learning450 or
calibrated by neural networks.451 One can also find a review
article that discusses quantum multiparameter estimation in
terms of the Holevo CR bound, the quantum local asymptotic
normality approach, and Bayesian methods.452

4. QUANTUM-ENHANCED PLASMONIC SENSORS
As seen in section 2, plasmonic structures provide subdif-
fraction sensing with high sensitivity,21−28 whereas from
section 3 it is clear that quantum resources provide the ability
to reduce the noise and estimation uncertainty below the SNL
or SQL.37−46 Individual sensing techniques have been
developed for plasmonic sensing and quantum sensing
independently from each other over the last few decades,
which has led to the establishment of separate scientific fields
in academia and industry. Research is now being devoted to
combining the techniques of plasmonic sensing and quantum
sensing with the aim of providing a new breed of plasmonic
sensors with high sensitivity and high precision at scales below
the diffraction limit. These new types of sensors are called
“quantum plasmonic sensors”, and they provide a sensing
performance that cannot be obtained solely by either classical
plasmonic sensors or conventional quantum optical sensors. In
this section, we review recent studies that have exploited
quantum resources to improve the sensing performance of
plasmonic sensors.
The decomposition of a general sensing procedure discussed

in section 3.1 (see also Figure 9) allows us to classify four
different kinds of sensor:453 First, a sensor is called a “classical
sensor” if a classical state input, an ordinary optical transducer,
and a classical measurement scheme are used. Second, when
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the classical input and measurement are replaced by a quantum
state input and a quantum measurement, this introduces
quantum observables, and the sensor is called a “quantum
sensor”, enabling the potential for subshot-noise sensing.
Third, when the ordinary optical transducer in a classical
sensor is replaced by a plasmonic transducer, but the state and
measurement remain classical, the sensor is called a “plasmonic
sensor”, enabling subdiffraction sensing with high sensitivity
but ultimately shot-noise limited. Finally, a “quantum
plasmonic sensor” is formed when a plasmonic structure is
employed for the transducer and a quantum state input and a
quantum measurement are used. In this case, the plasmonic
structure provides a high sensitivity via the subdiffraction
confinement of light,18−20 while the quantum input state and
measurement provide the potential for subshot-noise sensing.
The four kinds of sensors are illustrated in Figure 20, with the
hope that quantum plasmonic sensors are expected to achieve
combined benefits that have only been obtained individually by
plasmonic sensors or quantum sensors.

More generally, the quantum properties of a plasmonic
system can also play a role in sensing, e.g., electron
tunneling,454,455 quantum size effects,456−458 or quantum
surface response.459 In this case, the quantum plasmonic
sensors do not necessarily use external quantum resources,
such as input states or measurements, but exploit inherent
quantum effects stemming from the plasmonic systems
themselves. A careful analysis of whether the quantum effects
give rise to subshot-noise sensing or simply improve the
sensitivity must be performed. While the methods presented in
this review are invaluable for such analyses, in the following
sections we first focus on recent studies that fit into the above
introduced classification of quantum plasmonic sensors, where
the plasmonic structure provides a high sensitivity and
quantum input states and measurements provide the capability

for subshot-noise sensing, thus improving the LOD. We then
briefly review other approaches to quantum plasmonic sensors
at the end of the section that do not fit into this classification.

4.1. Quantum Plasmonic Intensity Sensing

The first method we describe is the use of a plasmonic
transducer that encodes parameter information into light
where the intensity of the light is dependent on the parameter
to be estimated. Below, we review “intensity-sensitive”
plasmonic sensors that use quantum states of light and
quantum measurements.

4.1.1. Intensity Sensing with Discrete Variable States.
As introduced in section 2.2, the ATR prism setup can be used
in such a way that the intensity of the reflected light from the
prism is modulated depending on the refractive index of an
optical sample under characterization. To use the theory of
intensity parameter sensing discussed in section 3.2.1, we
describe the reflection from the prism as the transmission
through the prism setup, i.e., |rspp|

2= T, where rspp is given by eq
13.
A practical and useful intensity-parameter SPR sensing

scheme is the two-mode scheme shown in the inset of Figure
15, but where the BS with transmittance T is replaced by a
prism setup. A relevant quantum theory of the ATR prism
setup460,461 can be used. Within the ATR prism setup, the two-
mode scheme can be considered in terms of a signal mode that
passes through the prism setup (a) and an idler mode that is
kept as a reference (b). In this regard, Lee et al. theoretically
studied the two-mode scheme with a particular type of two-
mode sta te462 ca l led a twin-mode (TM) state
|Ψ⟩ = ∑ | ⟩ | ⟩c n mn m a btwin , with |cn,m| = |cm,n|. Such a state has
the following symmetric properties: ⟨a†̂a ̂⟩ = ⟨b̂†b̂⟩ and
⟨(Δa†̂a)̂2⟩ = ⟨(Δb̂†b̂)2⟩, which covers path-symmetric states
with cn,m = cm,n* e−2iγ.329,463 In this two-mode plasmonic sensing
scheme, an intensity-difference measurement of the observable
n̂− = b̂out

† b̂out − aôut
† aôut is considered; that is, the intensity of the

transmitted light of the signal mode (reflected from the prism)
is compared with the intensity of the reference mode. The
measured intensity-difference can be inserted into an
appropriate estimator together with eq 13 in order to estimate
the refractive index of an analyte.
As a classical benchmark, the balanced PC state input

|α⟩a|α⟩b can be considered. When the average photon number
of the individual modes is restricted by N for both the TM
state input and the PC state input, i.e., ⟨aîn

† aîn⟩ = ⟨b̂in
† b̂in⟩ = N,

the intensity-difference signal for both states is the same, i.e.,
⟨n̂−⟩ = N(ηb − ηaT) with nonideal channel transmittance ηa, b,
which includes the detection efficiency, as modeled in Figure
15. However, the associated measurement noise ⟨(Δn̂−)2⟩ is
different, leading to different SNRs. By comparing the SNR of
the TM state with that of the PC state, one finds that their
SNR ratio RSNR = SNRTM/SNRPC can be written as eq 66,
where the Mandel-Q parameter QM and the NRF σ of eq 52
play important roles in intensity-sensitive SPR sensing. As
discussed in section 3.3.3, a quantum probe with −1 ≤ QM < 0
or 0 ≤ σin < 1 leads to a quantum enhancement with RSNR > 1.
The optimal state that maximizes the ratio RSNR is the TF state,
which exhibits an unconditional quantum enhancement
regardless of the values of N, T, and ηa, b. The TMSV state
of eq 53, on the other hand, provides a conditional quantum
enhancement that depends on the values of N, T, and ηa, b. In
particular, when ηa ≈ ηb and T ≈ 1, or ηaT ≈ ηb, the ratio RSNR

Figure 20. Four different types of photonic sensors, classified
depending on the type of physical system used for the probe state,
measurement scheme, and transducer encoding the parameter to be
sensed. The default type is the classical sensor (bottom left), which
can be upgraded by moving in either the horizontal or vertical
direction to become a plasmonic sensor (bottom right) or a quantum
sensor (top left). Such an upgrade involves the individual benefits of
either type; however, the benefits of both types can be achieved by an
ultimate type of photonic sensor, called a quantum plasmonic sensor
(top right).
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for the TMSV state case becomes almost the same as the case
of using a TF state input.
As mentioned in section 3, the Fock state input is known to

be the optimal state reaching the ultimate quantum limit in the
estimation uncertainty in both single parameter (section 3.3.1)
and multiparameter (sections 3.3.2 and 3.3.3) estimation
scenarios that monitor the change of the intensity of the
transmitted light through an optical sample.252,271,272 However,
Fock states with high photon number N ≫ 1 cannot be readily
realized in experiments with current technology.464−467 A few
novel schemes have been suggested for the generation of large
Fock states, but the fidelity is limited.468−478 Alternatively, one
can use N single photons to achieve the same limit that would
be obtained by the Fock state with |N⟩. This can be seen by the
fact that the individual single photons in the Fock state |N⟩
undergo an independent Bernoulli sampling. Such an
equivalence allows the use of single photons for various
quantum sensors,246,254,255,258 including a plasmonic sensor259

which we now introduce.
The experimental quantum plasmonic sensing setup

considered in ref 259 is shown in Figure 21. Single-photon
pairs are generated via SPDC in a nonlinear periodically poled
potassium-titanyl-phosphate (PPKTP) crystal, where the
detection of the idler photon heralds that the signal photon
has been injected into the prism setup. The detection of N
idler photons thus corresponds to the use of N signal photons
in the signal channel, i.e., equivalent to the use of the Fock
state |N⟩ in the sense of estimation uncertainty. The
experimental estimation uncertainty is measured by the
repetition of an identical experimental observation a thousand
times, which yields a distribution of the estimated total

transmittance through the whole setup, Ttotal = Nt/N, where Nt
is the number of transmitted and detected signal photons out
of N injected heralded single photons for each repetition. The
effective transmittance through the prism setup can be
obtained by normalizing the total transmittance by a
normalization factor , i.e., =T T /prism total . In the experi-
ment, the normalization factor is defined as the average
transmittance measured with an air analyte at an individual
incident angle θin, i.e., θ θ= ⟨ ⟩T( ) ( )in air in which leads to
Tprism(θin) = Ttotal(θin)/⟨Tair(θin)⟩. The use of air is because the
light entering the prism is off-resonant from the plasmonic
excitation across the entire range of incident angles considered.
This approach enables the elimination of the effect of an
incident angle-dependent misalignment when scanning
through a wide range of incident angles.
The above quantum plasmonic sensor aims to estimate the

refractive index of the blood protein of bovine serum albumin
(BSA) in aqueous solution whose concentration C is
controlled in this proof-of-principle demonstration. From the
measurement of the average transmittance ⟨Tprism⟩, the
refractive index of the analyte is estimated according to the
theory model of the reflectance (see eq 13) by setting ⟨Tprism⟩
= Rspp. The analyte is placed on the opposite side of the gold
film (see the inset in Figure 21), and its refractive index affects
the resonant condition of SPPs, changing the resonance angle
satisfying eq 12 or equivalently the intensity of the transmitted
light for a fixed incident angle, i.e., ⟨Tprism⟩.
The overall behavior of the measurements is presented in

Figures 22(a) and (b). The average transmittance ⟨Tprism(θin)⟩
measured in the experiment when varying the incident angle

Figure 21. Schematic of the prism setup probing the concentration of BSA with heralded single photons. The photons of a photon pair generated
by a PPKTP nonlinear crystal are sent to the ATR prism setup and to a detector of the idler channel, respectively. The detection of the idler photon
heralds that the signal photon has been injected into the ATR prism setup. The number of transmitted signal photons are then counted for a given
analyte and an incident angle that can vary. Reproduced with permission from ref 259. Copyright 2018 The Optical Society.
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θin is shown in Figure 22(a) for deionized water, i.e., C = 0%,
and BSA with C = 2%. At each incident angle, the
measurement is repeated a number of times, which yields a
histogram [see the inset of Figure 22(a)] whose standard
deviation quantifies the error bar in Figure 22(a). The
measured errors depend on the incident angle, which
modulates the transmittance of the setup and thereby the
output photon number statistics. Note that the size of the error
bars represents the estimation uncertainty of the effective
transmittance for N single-photon inputs. The corresponding
classical benchmark is defined by the case of using a coherent
state with the same input power as N single photons. The
experimentally measured quantum noise is thus compared with
the classical benchmark, as shown in Figure 22(b). Here, the
measured uncertainty is interpreted in terms of the total
transmittance ⟨Ttotal⟩ that consists of the effective trans-
mittance through the prism setup and loss including the
detection efficiency. Such a comparison clearly exhibits a
quantum enhancement in the experiment and is in good
agreement with the ultimate quantum limit introduced in
section 3.3.1.
For a specific estimation of the refractive index, the

incidence angle is set to θin = 67.5° as an example and the
measurement is repeated for each concentration in a range
from 0% to 2% in 0.25% steps. From the repeated
measurements, the refractive indices are estimated using eq
13 (i.e., the reflectance Rspp). The relation between the

refractive index and the concentration of BSA solution can be
determined by the slope of the linear fitting function, yielding
d⟨nBSA⟩/dC = (1.933 ± 0.107) × 10−3 [see Figure 22(c)],
which is in good agreement with the previously measured value
of 1.82 × 10−3.479 The quantum property of light plays no role
in this relation of the mean values, which can be thought of as
more of a calibration, but it plays an important role in reducing
the estimation uncertainty of the refractive index. The latter is
demonstrated in the experiment by repeating the estimation,
which produces a distribution of the estimated refractive
indices. The estimation uncertainties with varying nBSA are
shown in Figure 22(d), which evidently demonstrates a 10−
20% quantum enhancement in comparison with the classical
benchmark. As described in section 2.2.3, this enhancement
directly affects the LOD of the sensor and improves its sensing
performance.
As discussed in section 3.3.1 and shown in Figure 22(b), the

quantum enhancement in the intensity-sensitive sensor
depends on the total transmittance of the whole sensing
setup. Therefore, the quantum enhancement can be further
increased by improving the total transmittivity of the setup by
minimizing channel loss and maximizing the detection
efficiency.
A tapered-fiber-based quantum SPR sensing scheme has also

been demonstrated recently for measuring BSA concentra-
tion480 and salinity.481 In these works, a tapered heterocore
structure was fabricated, which is composed of two multimode

Figure 22. (a) Effective transmittance through the ATR prism setup, measured as the incidence angle θin is varied and normalized by the data
measured with air. Two samples are used: deionized water and BSA with C = 2%. (b) Standard deviation of the total transmittance histograms [the
same data as in (a)] presented as a function of the total transmittance, in comparison with the theoretical expectation of classical sensing (upper
solid curve) and quantum sensing (lower solid curve). (c) At a particular incident angle θin = 67.5°, where the change of intensity is expected to be
maximal (the inflection point), the refractive index of the BSA solution is estimated for samples with concentration varying from 0% to 2% in 0.25%
steps. (d) Estimation uncertainty of the refractive index, given as the error bar at each point in (c), corresponding to the theoretical expectation for
the classical and quantum scenarios, demonstrating a 10−20% quantum enhancement. Reproduced with permission from ref 259. Copyright 2018
The Optical Society.
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fibers and a single-mode fiber, coated with a 50 nm thick gold
film [see Figure 23(a)]. Heralded single photons were used as
inputs, prepared by SPDC using a 2 mm thick type-II
metaborate crystal (β-BaB2O4, BBO) and by applying a
coincident detection scheme. Based on the long evanescent
field decay of the single-mode fiber and by reducing the
diameter of the fiber, the authors showed that it was possible to
reach the theoretically predicted estimation uncertainty below
the SNL, as shown in Figure 23(b).
In the given examples and in many other quantum sensing

scenarios, heralded single photons have been used to
successfully beat the classical limit in the estimation
uncertainty. Here, it is important to point out a couple of
limitations of heralded single photons for sensing purposes.
First, heralded single photons require a high total detection
efficiency to truly achieve a quantum enhancement. One main

goal of quantum sensing is to achieve a high detection
resolution with limited photon intensity at the sample position
to avoid any possible damage. Therefore, all the photons
impinging on the sample should be considered, not just the
postselected ones, for a fair comparison with the classical
counterpart.354 Second, heralded photons are not true single-
photon states. While the statistics of photon pairs produced by
SPDC follows a thermal distribution, the postselected photons
can reveal a highly antibunched nature at a low flux regime;
however, this degrades further at a higher flux.482,483

In another approach, many researchers have been pursuing
the development of a true, or so-called “on-demand” single-
photon source, which is an essential ingredient in many
quantum optical applications, including quantum plasmonic
sensing. These “deterministic” single photons are known to be
one of the optimal states for low-noise intensity measure-

Figure 23. (a) Schematic of the tapered heterocore fiber quantum sensor. (b) Experimentally obtained variance in the total transmittance of the
system shown together with the theoretical values for classical (red) and quantum (blue) cases. Reproduced with permission from ref 481.
Copyright 2020 Elsevier.

Figure 24. (a) The experimental setup utilized by Huck et al. generated squeezed light in an optical parametric oscillator (OPO), excited plasmon
polaritons in a gold waveguide, and characterized the squeezing in the photons emitted from the end of the gold waveguide. PPKTP, periodically
poled potassium titanyl phosphate crystal; SV, squeezed vacuum; λ/2, half-wave plate; Φ, piezo actuated mirror for phase variation; 50:50,
symmetric beam splitter; and HD, homodyne detection scheme. The measured squeezed vacuum state generated prior to injection into the gold
waveguide (b) and the measured quantum state after excitation of SPPs in the gold waveguide (c) demonstrate that long-range SPPs are capable of
maintaining squeezing. Reproduced with permission from ref 499. Copyright 2009 the American Physical Society.
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ments.462 An ideal single-photon source requires several
important conditions: a high purity (strong antibunching), a
high level of indistinguishability depending on the purpose, a
high flux, and a high fidelity.484,485 Current state-of-art
nanophotonic methodologies utilizing many different types of
single emitters have demonstrated improved quality of single-
photon sources;486−489 however, no single one has yet satisfied
all of the requirements at the same time. In particular, the
demonstrated photon fluxes are still too low (<108 cps) for
practical use.
4.1.2. Intensity Sensing with Continuous Variable

States. Sensors that exploit quantum noise reduction, or
squeezed light,220 have seen renewed interest in recent years
with applications ranging from gravitational wave detection to
ultratrace plasmonic sensing at the nanoscale. The implemen-
tations of these sensors are increasingly limited by their
ultimate limits of detection as defined by the Heisenberg
uncertainty principle. At this limit, the noise is dominated by
back action and the quantum statistics of light, leading to the
HL or the SNL when a coherent state of light is used.
Simultaneously, many devices, including plasmonic sensors,
have reached tolerance thresholds at which power in the
readout field can no longer be increased without increasing the
noise due to back action or thermal effects. Beyond these
limits, squeezed light can be used to further improve the
precision in these platforms. In recent years a growing number
of sensors based on quantum noise reduction have been
demonstrated.55,265,310,313,316,490−498

As discussed in section 3.3.3, intensity-difference noise
reduction allows one to replace shot-noise limited sensors that
operate in a differential configuration in order to reject
common-mode noise and go below the SNL by exploiting
quantum correlations present in two-mode squeezed states.
The first observation of squeezing in plasmonic media
characterized the generation, propagation, and subsequent re-
emission of squeezed long-range SPPs in a gold waveguide,499

as shown in Figure 24. This effort generated a squeezed
vacuum state in an optical parametric oscillator, excited long-
range SPPs in a gold strip waveguide with that squeezed

vacuum state, and then characterized the quantum state of the
photons emitted from the end of the waveguide. The authors
concluded that squeezing can be efficiently and coherently
transduced from an optical field to a SPP, and back to an
optical field with no loss of quantum information except for
that due to the introduction of vacuum noise. This result led to
a flurry of subsequent demonstrations that (a) squeezing is
maintained in localized surface plasmons also,55,500 and (b)
this coherent interface between squeezed states of light and
plasmonic media can be used to enable ultratrace plasmonic
sensors with noise floors below the SNL.316,498,501 The results
of work on this type of quantum plasmonic sensor are outlined
here.
This new type of quantum plasmonic sensor generates

intensity-difference squeezing via FWM,307−309 which is based
on a third-order optical nonlinearity. An example setup is
shown in Figure 25. The noise in this amplifier can be derived
in the interaction frame of the Heisenberg picture. In this
frame, the interaction Hamiltonian for the case with
degenerate pumping fields is

χ= ℏ ̂ ̂ ̂ ̂ +† †i a a a a H.C.(3)
pr c p p (75)

where χ(3) is the nonlinear coefficient, ap̂ is the pump field
operator, ap̂r is the input probe field’s operator, and aĉ is a third
“conjugate” field which is parametrically amplified from the
vacuum. The energy level diagram describing this system is
shown in Figure 25.
In many experiments the pump field is powerful relative to

the probe and is undepleted. In this simplified scenario the
field operators take the form of eqs 56 and 57 in section 3.3.3.
This leads to a TMSD state and intensity-difference noise
reduction as given in eq 63. The important point about eq 63
is that the noise is less than one shot-noise unit for η > 0 and G
> 1. Thus, using two-mode squeezing in lieu of a traditional
reference subtraction on a balanced detector will yield a SNR
increased by 2η(G − 1)/(2G − 1) over the shot-noise limited
measurement.307,312,317 The NRF, or total “noise power”
contained within a power spectral measurement, as a function
of transmission on both the probe mode (a) and conjugate

Figure 25. FWM in rubidium vapor, simplified schematic for quantum noise reduction. A pump laser (P) is used to derive a probe (Pr) field by
frequency-shifting the pump in an acousto-optic modulator (AOM). The double-pass configuration ensures the probe is not displaced relative to
the pump as the AOM frequency is selected. The probe is offset from the pump by 3 GHz, or approximately equal to the hyperfine ground state
splitting at the D1 line (795 nm). The pump and probe are jointly detuned from resonance by approximately 0.8 GHz. They overlap at a small
angle (0.3°) inside the Rb vapor cell. The resulting probe and conjugate fields are separated from the pump by a polarizing beam splitter (PBS) and
produce a TMSD state. When incident on a balanced detector, the intensity-difference between the probe and conjugate (C) shows quantum noise
reduction, visible on a spectrum analyzer (SA). The inset shows the energy levels in Rb associated with a double Λ system. The excited state
hyperfine splittings are much smaller than the ground state and are blurred with respect to each other in the Doppler-broadened vapor due to
heating to approximately 120 °C. As two pump photons are absorbed, coherence between the hyperfine levels ensures that when the probe field
stimulates emission, a third field must be emitted from the virtual level illustrated by the upper dashed line in order to maintain energy
conservation.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.0c01028
Chem. Rev. 2021, 121, 4743−4804

4777

https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01028?fig=fig25&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01028?fig=fig25&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01028?fig=fig25&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01028?fig=fig25&ref=pdf
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.0c01028?rel=cite-as&ref=PDF&jav=VoR


mode (b), with ηa = ηb = η and G = 4 is shown in Figure 26.
While squeezing is typically known for its fragility in the

presence of loss, and for decades this has limited its usage in
sensors, Figure 26 shows that if one starts with a pure TMSD
state and if losses are symmetric and moderate, the noise
reduction over classical detection still remains substantial.
Plasmonic sensors can be configured to fulfill precisely these
conditions. Despite losses, they can operate with large
enhancements to their precision over their classical counter-
parts, and they represent the state-of-the-art of quantum
sensing with two-mode squeezed states. Here we outline
several sensors that exploit quantum noise reduction and
enable practical quantum sensing below the SNL and that beat
state-of-the-art classical sensors in some cases.
The first transmission of multimode squeezed states through

an extraordinary optical transmission (EOT) medium was
demonstrated in ref 55. Using FWM to provide the squeezed
light, the transmission of multiple optical modes through the
plasmonic medium in the form of quantum images was also
demonstrated by exploiting properties of LSPs.
Several works have shown transmission of classical light by

LSPs using triangles502 and crosses,503 among others. The inset
of Figure 27(a) shows an SEM image of isosceles triangular
hole nanostructures. The transmission spectrum of this
plasmonic medium has a broad resonance centered at
approximately 900 nm, with ample transmission at the
wavelength of common squeezed light sources, 795 nm.
The experimental setup for EOT of squeezed light is shown

in Figure 27(a). A digital micromirror device is used as a
spatial light modulator in order to imprint an image onto the
probe field. The image is amplified in the FWM medium due
to its multispatial-mode nature,312 resulting in two twin images
in the probe and conjugate fields that exhibit quantum noise
reduction. The plasmonic medium transmits the probe image
while the conjugate image is attenuated by a neutral density
filter. The LSPs confined to the edges of the triangular holes
transmit all of the spatial information contained in the image,
unlike the case for SPPs. Figure 27(b) shows the incident
probe image imprinted by the DMD (top) and the transmitted
probe image after the EOT (bottom).
The transmission is strongly dependent on polarization due

to the shape of the nanostructures, such that when the
polarization overlaps with an edge of the triangles, a LSP is

excited, resulting in transmission of multiple spatial modes.
Figures 28(a) and (b) show the transmission and noise power
as a function of polarization, respectively. As the polarization
becomes incident with the base edge of the triangles, the noise
power is well below the SNL, resulting in a quantum noise
reduction. Figure 28(c) shows the quantum noise reduction
(squeezing) as a function of transmission. The effects of losses
in SPP waveguides461 and scattering in metal nanoparticle
arrays322 have been previously treated as effective BSs. A BS
model also matches the experimental data, as the theoretical
noise reduction as a function of BS transmission in Figure
28(c) shows. This experimentally demonstrates the capability
for LSP-mediated EOT to transmit quantum images while
conserving macroscopic quantum information, such as
quantum noise reduction.
Exploiting the plasmons’ propensity to conserve quantum

information means that they can serve not only as good
nanoscale quantum information platforms but also as quantum
sensors which make use of squeezing. SPPs have been used
extensively to detect trace biochemical compounds in the
Kretschmann configuration.76 State-of-the-art classical SPR
sensors utilize differential detection with a reference field that
does not interact with the SPP in order to eliminate noise
present in the probe laser.36,96,504 Many of these sensors are
now only limited by the SNL,35,36,96 and quantum sensors are
required for further improvements in precision.
A plasmonic SPP sensor in the Kretschmann configuration

can use quantum noise reduction to supersede the precision of
the state-of-the-art classical device. Figure 29 shows an
experimental setup using FWM to produce a TMSD state
and a Kretschmann sensor to obtain a precision below the
SNL.
In the experiment, a 43.5 nm thick gold film was deposited

on a prism, and index matching oils were deposited on the film
in order to measure a shift in the plasmonic resonance as a
function of the refractive index. The intensity-difference is
measured at the two output channels A and B, with a ND filter
placed on the conjugate mode (A) to equal the transmittivity
of mode B and reduce the noise in the measurement signal to a
minimum, as discussed in section 3.3.3. An acousto-optic

Figure 26. Quantum noise reduction as a function of transmission η
on both the probe and conjugate fields (ηa = ηb = η) for nonlinear
gain G = 4. This accounts for imperfect detection efficiency of the two
fields on identical detectors. Here, the noise reduction, or “noise
power” is given by 10 log10(1 − P/P0) dB, where P0 is the shot-noise,
P is the noise from the TMSD state, and P/P0 is the NRF σ.

Figure 27. (a) Optical setup showing the FWM experiment with the
following abbreviations: DMD, digital micromirror device; PBS,
polarizing beam splitter; BD, beam dump; SA, spectrum analyzer; Rb,
rubidium; λ/2, half wave plate; and ND, neutral density. One beam
passes through the EOT medium while the other is attenuated with
the neutral density filter in order to balance losses and maximize the
noise reduction or squeezing. Inset: an SEM image of a zoomed in
subarray of the nanostructures. (b) Upper right: the image of the
probe beam imprinted by the DMD before the plasmonic medium.
Lower right: the transmitted image after EOT. Only the intensity has
been attenuated while the number of spatial modes present remains
the same. Part b reproduced with permission from ref 55. Copyright
2013 the American Physical Society.
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modulator (AOM) was used to place a modulation on the
probe mode (B). This leads to a peak in the measurement
signal at the driving frequency 1.5 MHz when viewed on a
spectrum analyzer, as shown in Figures 30(c) and (d) for two
example cases. The height of the peak is proportional to the
magnitude of the amplitude modulation on the probe field, and
due to the conjugate field being unmodulated the peak is also
proportional to the magnitude of the intensity-difference
signal. On the other hand, the side bands of the signal (either
side of the peak) correspond to the noise floor (the variance)
of the measurement signal, as there is minimal amplitude
modulation of the probe (and thus of the intensity-difference
measurement signal) at frequencies away from the AOM
resonance. Using a spectrum analyzer to give a power spectrum
of the measurement signal in this way allows the intensity-
difference (proportional to the peak at resonance) and the
intensity-difference noise (the side-bands) to be obtained from
the same plot. Thus, both the signal amplitude and noise can
be read off simultaneously, allowing an immediate character-
ization of the SNR of the system. An additional feature is that
technical noise at low frequencies (such as laser or vibration
fluctuations) can effectively be eliminated in a manner similar

to lock-in detection, allowing the sensor’s precision to be
brought close to the theoretical limit.
Figure 30(a) shows the resulting resonance curve of the

signal as a function of the angle of incidence and the refractive
index. Every data point corresponds to a quantum noise
reduction, as shown in Figure 30(b). These points are obtained
by comparing the side bands of the signal on the spectrum
analyzer, as shown in Figure 30(c) and (d) for two example
cases, where the peak occurs at 1.5 MHz due to the frequency
set by the AOM. A maximum noise reduction of 4.6 dB is
obtained on the left-hand shoulder of Figure 30(b). It is
notable that a large amount of squeezing (noise reduction) is
observed near the inflection points in Figure 30(b), meaning
that one can choose to operate this SPR sensor at a single
position,36 where a large quantum effect is still observed. At all
points on a transmission vs index curve, a higher SNR would
be achieved than is possible with the classical version of this
sensor. Comparing the quantum sensor with a classical sensor
in which the incident power may be turned up indefinitely, the
quantum sensor still compares favorably. The quantum light
source used here can be operated at equivalent optical powers,
and theoretically the amount of quantum noise reduction does
not depend on the incident optical power (see eq 63 in section
3.3.3). On the other hand, the classical sensor cannot be used
at powers beyond the point of thermal modulation505 of the
plasmon or the damage threshold of photosensitive
ligands.506,507 These thresholds are easily within the power
capabilities of the squeezed light source used here and many
others. Notably, it is also possible to use this configuration
without amplitude modulation to obtain a quantum-modulated
signal at DC.498

Similar sensing configurations have been used to detect
ultrasonic pressure waves501 and establish long-range quantum
plasmonic networks.500 In the case of ultrasonic measurements,
the index of refraction shift is caused by local variations in air
pressure above the plasmonic nanosurface at a frequency of
199 kHz. Using LSPs and EOT, a change in transmission
serves as a transduction of index of refraction shifts onto
optical intensity modulation. The magnitude of the intensity
modulation (representing the magnitude of the refractive index
modulation Δn) can then be detected with noise below the
SNL using a TMSD probe state. Figure 31 shows the
experimental setup. A chamber with an ultrasonic transducer
is used to provide pressure waves at the surface of a plasmonic
thin film, which consists of triangular hole arrays. One of the
two twin beams passes through the EOT sensor while the

Figure 28. Extraordinary optical transmission of squeezed light. (a) Single color transmission for the hole array for a polarization of 0−175°. (b)
Relative noise intensity and SNL for the rebalanced probe and conjugate after the probe has passed through the EOT medium. (c) Measured
squeezing as a function of transmission through the hole array and through a variable neutral density filter. The noise based on the model in eq 63
is shown in black. The error bars in (a) and some error bars in (b) are smaller than the symbols. Reproduced with permission from ref 55.
Copyright 2013 the American Physical Society.

Figure 29. Experimental setup for plasmonic sensing in the
Kretschmann configuration using FWM to provide the signal probe
and reference beams, with the following abbreviations: SA, spectrum
analyzer; PBS, polarizing beam splitter; ND, neutral density filter; P,
pump beam; Pr, probe beam; C, conjugate beam; AOM, acousto-
optic modulator. The probe passes through a prism coated with a
plasmonic thin film on the hypotenuse, while the conjugate beam
serves as a reference after balancing its intensity with that of the
transmitted probe. Differential detection (A−B) reveals a signal with
transmission-dependent NRF. Reproduced with permission from ref
316. Copyright 2016 American Chemical Society.
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other continues in free space and acts as a reference. The
resulting difference measurement contains the modulation
signal, provided by the function generator to the ultrasonic
transducer, on top of a reduced noise background.
Figure 32 shows the measured signal (and noise floor) as the

magnitude of the change in refractive index Δn increases. The
classical signal (coherent state probing) is shown in blue (i),
and the TMSD state signal is shown in red (ii). The signals are
normalized by the average shot-noise of the classical case,
shown as a light blue line. Clearly the TMSD state has reduced
noise compared to the classical case: the minimum noise levels
show a difference of 4 dB. The SNR for the TMSD state is
higher than the classical case as Δn decreases. For very small
index shifts, the TMSD version of the sensor is therefore able
to discern index shifts that are smaller than the classical sensor,
enabling a detectable shift Δn of O(10−9) RIU. The minimum
resolution of the refractive index modulation can be
determined at a 99% confidence level in the SNR. In the
quantum case this gives Δnmin = 5.5 × 10−9 RIU with the
TMSD state and Δnmin = 9.6 × 10−9 RIU with classical
coherent states. This demonstrates a quantum enhancement of
56% in the precision of the sensor.

Figure 30. Resonance curves and noise reduction for plasmonic sensing in the Kretschmann configuration with squeezed light. (a) Plasmonic
resonance as a function of relative angle of incidence (0° corresponds to on-resonance for n = 1.3) and index of refraction (green: n = 1.305; blue: n
= 1.301; red: n = 1.300). The numerical curve fits are intended as a guide to the eye. (b) Quantum noise reduction (squeezing) as a function of
angle of incidence and index of refraction (green: n = 1.305; blue: n = 1.301; red: n = 1.300). (c) and (d) The raw data for two points along the
curve. The red line indicates the SNL, while the peak is associated with the transmitted probe power. The side bands that indicate the minimum
noise (or noise floor) associated with each data point fall below the SNL; squeezing (noise reduction) is equal to the difference between the black
and red side bands. Squeezing decreases as transmission decreases, but virtually all data points are squeezed. A maximum of 4.6 dB below the SNL
is observed in the left shoulder of the peaks in (a). A minimum of 0.3 dB is observed in the n = 1.300 and n = 1.301 data sets, while the n = 1.305
data set minimum is at the SNL. Reproduced with permission from ref 316. Copyright 2016 American Chemical Society.

Figure 31. Ultrasonic pressure wave sensing. A FWM configuration is
used to generate entangled probe and conjugate beams in a TMSD
state. The probe beam serves as a probe for the plasmonic sensor
while the conjugate beam serves as a quantum-correlated reference.
SA, spectrum analyzer; BD, beam dump; FG, function generator.
Adapted with permission from ref 501. Copyright 2018 The Optical
Society.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.0c01028
Chem. Rev. 2021, 121, 4743−4804

4780

https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01028?fig=fig30&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01028?fig=fig30&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01028?fig=fig30&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01028?fig=fig30&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01028?fig=fig31&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01028?fig=fig31&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01028?fig=fig31&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01028?fig=fig31&ref=pdf
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.0c01028?rel=cite-as&ref=PDF&jav=VoR


As described in section 2.5, SPR imaging enables highly
parallelized, label-free, real-time, high precision biochemical
sensing.208−214 However, all of the quantum plasmonic sensors
described in this review thus far are single pixel sensors.
Quantum plasmonic sensors that utilize multispatial-mode
quantum correlations in entangled optical readout fields are
increasingly a plausible idea. Early research that focused on the
transduction of quantum images by EOT showed that SPP-
mediated EOT processes do not maintain spatial information,

thus limiting the potential for EOT-based spatially resolved
quantum sensors.508 However, LSP-mediated EOT processes
do maintain spatial information, as already discussed in this
section and shown in Figure 27.55 Kretschmann-style SPR
sensors also maintain spatial information, as discussed in
section 2.5.
Furthermore, as discussed in section 3.3.2 and highlighted in

recent reviews,280,509,510 substantial work has gone into the
development of quantum imaging platforms for other
applications. For SPR imaging sensors that are robust to
higher power optical excitation, discrete variable entanglement
is less beneficial, but higher power multispatial mode squeezing
could be leveraged to enable quantum-enhanced SPR imaging.
As mentioned above, and as shown in Figure 27, plasmonic
images exhibiting intensity-difference squeezing can be
efficiently transduced by LSP-mediated EOT processes. The
same effect has been shown more recently for a combination of
phase-sum and intensity-difference entanglement.500 Despite
the demonstration of the plasmonic transduction of multi-
spatial-mode quantum states of light, there have been no
reports of quantum-enhanced SPR imaging. A key ingredient
for such an advance is the multipixel readout of an array of
plasmonic sensors that can benefit from quantum correlations
in the readout field. A growing number of research efforts
address exactly this need. For instance, researchers are now
utilizing electron-multiplying CCD cameras for spatiotempor-
ally resolved readout of multispatial-mode squeezed states of
light,511−513 and preliminary research has shown that
compressive imaging techniques can be used for squeezed
light imaging with single pixel detectors.313 Together, multi-
spatial-mode quantum light sources, multipixel plasmonic

Figure 32. Measured signal while linearly ramping the driving voltage
of the ultrasonic transducer, thus increasing the change of refractive
index of air (Δn), when probing with coherent states, trace (i), and
with twin beams (as a TMSD state), trace (ii). The lighter-weight
lines represent the shot-noise (i) and squeezed noise floors (ii).
Adapted with permission from ref 501. Copyright 2018 The Optical
Society.

Figure 33. (a) Schematic of quantum spectroscopy with a twin beam (i.e., the TMSV state of eq 53) generated from a SPDC source (BBO
crystals), where coincidence photon counting is carried out by two APDs (avalanche photodiodes). A monochromator placed in the signal channel
consists of a mirror (M), a diffraction grating (GR), a pinhole (PH), and an APD and selects a particular single mode of interest under
investigation, realizing spectroscopy. (b) Schematic of conventional spectroscopy with classical light generated from a halogen lamp, where a single
APD is used together with the same monochromator from the quantum spectroscopy scheme. (c) MNP array under investigation: Dark-field
microscope image (top) and scanning electron microscope image (bottom). Adapted from ref 514 (CC BY 3.0 License).
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sensors, and readout schemes for characterizing multispatial-
mode quantum signals provide the necessary building blocks
for quantum-enhanced SPR imaging.
4.1.3. Intensity Sensing Robust to Thermal Noise. The

strong photon number correlation possessed by the TMSV
state of eq 53, with a NRF of σ = 0, has also been used to
probe an array of gold nanoparticles and measure the refractive
index change of a glycerin−water solution.514 The two-mode
scheme shown in Figure 15 was used to carry out quantum
spectroscopy with the input state |Ψ⟩in = |TMSV⟩, where the
measurement is a coincidence detection [see Figure 33(a)].
The glycerin−water solution surrounds a plasmonic transducer
that consists of a hexagonal array of spherical MNPs with a
diameter of 130 nm and lattice period of 1.1 μm, as shown in
Figure 33(c). The idler mode of the TMSV state is sent
through the sample, while the signal mode is sent to a
diffraction grating to investigate the spectral response using the
coincidence counting that follows. The sensing performance of
such a quantum scheme is compared with conventional
spectroscopy that uses a classical probe state generated from
a lamp, as shown in Figure 33(b).
The authors directly compared quantum and classical

spectroscopy methods in terms of their robustness to thermal

noise influencing the detection. The thermal noise is artificially
realized by a lamp inside the monochromator part [see Figures
33(a) and (b)], which induces additional photon counts Ns in
the measurement of the signal photons Ss. The noise level is
controlled by changing the brightness of the lamp; that is, Ns =
102, 2 × 104, and 7 × 104 c/s are considered in the experiment.
The effect of thermal noise is examined with respect to the
distinguishability of the two resonance spectra measured for
two concentrations C of glycerin−water solution on top of the
array of MNPs.
The results obtained by quantum and classical spectroscopy

for the two concentrations under the three noise conditions are
presented in Figure 34. The red dots represent the spectra for
C = 40% and black dots for C = 50%. Generally, the resonance
curves in both cases become blurred due to thermal
fluctuations that increase with the thermal noise. However,
the extent to which the curves become blurred is different for
the quantum and classical spectroscopy schemes; the curves for
the quantum case are more distinguishable than those for the
classical case. This is clearly seen for the case when the noise
photocount Ns is 70 times larger than the signal photocount Ss
[Figures 34(e) for classical and (f) for quantum]. Such
robustness against the thermal noise can be attributed to the

Figure 34. Transmission spectra measured by conventional classical (left) and quantum (right) spectroscopy under different noise conditions [Ns =
102 (top), 2 × 104 (middle), and 7 × 104 c/s (bottom)]. The measurement is performed for water−glycerin solutions deposited on an array of
MNPs with different concentrations [40% (red dots) and 50% (black dots)]. The photon flux of 103 c/s is kept in the monochromator for all the
experiments, and the error bars denote the standard deviations of the measured signals. Adapted from ref 514 (CC BY 3.0 License).
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strong photon number correlation of the TMSV state, which is
absent in the classical scheme.

4.2. Quantum Plasmonic Phase Sensing

In addition to measuring changes in the refractive index of an
optical sample using intensity sensing, it is also possible to use
phase sensing, as outlined in section 2.3. In the quantum
regime this provides a complementary setting for quantum
plasmonic sensing. In order to carry out quantum phase
sensing using plasmonics, the physical geometry of the system
needs to be modified so that changes in the refractive index are
picked up in the phase of the optical signal, rather than the
transmission amplitude. In this case, a metal nanowire is one
example that can be considered and it provides a compact
setting in which to perform sensing below the diffraction limit
due to the highly confined field.18,19 A nanowire also has the
potential to be modified into more advanced nanophotonic
circuitry for complex functionality20,515 and has already been
considered for classical phase sensing.21

4.2.1. Phase Sensing with Discrete Variable States.
The theoretical work by Lee et al.453 first studied the use of a
nanowire in quantum phase sensing, and the model considered
is shown in Figure 35(a). Here, a source produces a two-mode
quantum state of light, |Ψin⟩, and a silver nanowire is placed in
one of the modes as a probe (p), while the other mode is used
as a reference (r). A biological medium is considered to
surround the nanowire, and for a given change in a dynamical
quantity, such as concentration, a change in the refractive
index, n, occurs which changes the relative phase between the
probe and reference modes by ϕ(n) = β(n), where is the
length of the nanowire and β is the propagation constant in the
nanowire, which is a function of n. A measurement of the
quantum state is then performed in order to obtain an estimate
of the phase and therefore an estimate of the refractive index.
The dynamical quantity in the biological medium, such as
concentration, can then be estimated from the refractive index.

In the ideal case when there is no loss, a NOON state is
well-known to be an optimal state for quantum phase
sensing,51,53,345 as discussed in section 3.4.2, allowing one to
reach the HL for the precision. It can be used as the two-mode
quantum state produced by the source in Figure 35(a); that is,

|Ψ ⟩ = | ⟩ + | ⟩N N( , 0 0, )in
1
2 p,r p,r , where N denotes the

number of photons in a given mode. The relative phase in
the nanowire is picked up by the first term in the state, |N,0⟩
→ eiNϕ(n)|N,0⟩. The resulting state is measured using the
optimal quantum observable Â = |0,N⟩⟨N,0| + |N,0⟩⟨0,N| (see
section 3.4.2). This leads to a measurement signal ⟨Â⟩ = A0

cos[Nϕ(n)] and a corresponding precision in the estimation of

the refractive index of Δ = ϕ −
n

N n
1 d

d

1
, which is the HL for a

single-shot measurement, i.e., ν = 1, as discussed in section
3.4.2. In contrast, the best classical strategy uses the two-mode
classical coherent state α α|Ψ ⟩ = | ⟩ | ⟩/ 2 / 2p rin produced by

the source, with |α|2 = N, which picks up the relative phase in

the first term: α α| ⟩ → | ⟩ϕe/ 2 / 2p
i n

p
( ) . The optimal

measurement consists of a BS and measurement of the
observable M̂ = Ip̂− Ir̂, which is the intensity-difference, as
exploited in section 3.3.3. This leads to a measurement signal
⟨M̂⟩ = M0cos[ϕ(n)] and a corresponding precision

Δ = ϕ −
n

N n
1 d

d

1
, which is the SNL or SQL. The NOON

state therefore provides a N improvement in the precision
compared to the classical case for a given ν. The signals ⟨Â⟩
and ⟨M̂⟩ and their associated precisions are shown in Figures
35(b) and (c) for N = 4, where they are compared with the
case in which a conventional dielectic nanowire is used. The
results clearly show the benefit of using a plasmonic nanowire
with a quantum source and measurement for phase sensing.
The improvement in the phase sensing precision comes

from two distinct factors that are revealed by writing the

Figure 35. Quantum plasmonic phase sensing using a nanowire. (a) Two-mode scheme with a quantum source, plasmonic nanowire, and
measurement. (b) Measured signal for the optimal observable used (Ô = M̂ for classical (C) or Â for quantum (Q)) for a dielectric and plasmonic
nanowire. (c) The precision of the refractive index Δn for classical (C) and quantum (Q) states with dielectric and plasmonic nanowires. The
photon number on average is N = 4, the nanowire radius is 50 nm, the propagation length of the nanowire is 4 μm, and the free-space wavelength is
λ0 = 810 nm. Reproduced with permission from ref 453. Copyright 2016 American Chemical Society.
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precision (in this case the LOD) as ϕΔ = Δ ϕ −
n

n
d
d

1
, where

ϕΔ = Δ
ϕ

⟨ ̂⟩
−

O Od
d

1
is the precision of the phase estimation and

Ô is the observable in the measurement (Ô = Â or M̂). Δϕ
obviously depends on the observable Ô and state |Ψin⟩, but
interestingly not on the nanowire properties, and is therefore

quantum in origin. On the other hand, ϕ
n

d
d

represents the

sensitivity, Sϕ, which depends on the length and propagation
constant [ϕ(n) = β(n)], i.e., the nanowire properties, and is
therefore classical in origin. Both classical and quantum factors
are needed to obtain a good precision; however, it is the
quantum factor that improves the precision beyond the SQL,
as discussed in section 2.2.3.
In a more realistic scenario, losses in the nanowire must be

considered. In this case, even for moderate losses, the NOON
state is no longer the optimal quantum state. A more general
analysis using the QFI, H, must then be undertaken in order to
find the optimal state to use. In this case, a more general state

|Ψ ⟩ = ∑ | − ⟩= c n N n,n
N

n p rin 0 , can be considered,352 with the

coefficients cn optimized in order to maximize H and thus
minimize the QCR bound Δϕmin = (max{cn}H)

−1/2, which in
turn minimizes the estimation uncertainty Δn. In ref 453 it was
found that plasmonic sensors using these optimized states
provide a precision beyond the SIL, which is the SNL of
standard interferometers when loss is present,352 and this is
discussed in section 3.2.2, even for a moderate amount of loss
in a nanowire. Results were obtained for arbitrary N, where the

precision of the optimized states was shown to always be an
improvement over the SIL precision.
While the use of the QFI enables an optimization of the

quantum state used by the source, it is not clear what the
optimal measurement is that allows one to reach the lower
bound in the estimation uncertainty of Δϕmin, i.e., the QCR
bound introduced in section 3.1. Further work in this direction
will be needed to uncover practical measurement schemes for
discrete variable quantum phase sensing in plasmonics.
Furthermore, the use of different types of plasmonic
material516 for the nanowire could be considered in order to
reduce loss while maintaining the high field confinement,
including the use of metamaterials,148−151 graphene,517 and
hybrid material systems.518−520

The use of a plasmonic nanowire for phase sensing has
recently been experimentally investigated for the simple case of
a two-photon NOON state (N = 2) generated by parametric
down-conversion,359 as shown in Figure 36(a). The two-mode

state used takes the form |Ψ ⟩ = | ⟩ + | ⟩( 2 , 0 0, 2 )H Vin
1
2 1,2 1,2 ,

where |2H⟩ (|2V⟩) corresponds to two horizontal (vertical)
polarized photons in a given spatial mode. The polarization
dependence of the photons enables the two spatial modes to
be combined into a single spatial mode in an optical fiber,
while maintaining an effective “two-mode” settingboth
polarization “modes” copropagate in the same spatial mode.
The vertical (horizontal) polarization represents the probe
(reference) mode. The optical fiber is then tapered and a silver
nanowire attached to the end, which enables the efficient
excitation of SPPs and is shown in Figure 36(b) and (c). The

Figure 36. Experimental investigation of quantum plasmonic phase sensing using a silver nanowire. (a) Generation of polarization encoded NOON
state (N = 2) via parametric down-conversion. The two spatial modes of the state (1 and 2) are combined into a single mode (4), while
maintaining the two-mode scenario in the polarization degree of freedom. The entangled photons in the single spatial mode are injected into an
optical fiber. (b) The fiber is tapered with a silver nanowire fixed to the end. The out-coupled light is collected and sent to a measurement stage. (c)
Scanning electron microscopy image of the tapered fiber and nanowire. (d) Measurement signal for the two-photon NOON state (red) and
classical case (blue). The y-axes on the left (right) is for the NOON state (classical case). Adapted with permission from ref 359. Copyright 2018
The Optical Society.
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output of the signal is collected by a microscope objective and
sent to a measurement stage with optical elements and single-
photon detectors for the measurement of the phase.
In the experiment, the phase was modified using a liquid

crystal phase retarder outside the nanowire in order to gain an
understanding of the performance of the nanowire for phase
sensing in a controlled manner. While not a direct
demonstration, the approach is equivalent to the case that
the phase is picked up directly in the nanowire, as phase shift
operations commute with the loss accumulated in the
nanowire.41 A more direct demonstration is yet to be
performed; however, this is more challenging due to the
requirement of a ligand coating along one of the axes of the
nanowire in order for only one polarization mode to interact
with the biochemical substance being sensed. Fortunately, this
can be achieved in a number of ways, for example using
nanografting.521,522 By modifying the phase of the probe mode,
then converting the probe and reference modes back into
spatial modes and measuring the coincidences, a measurement
equivalent to that of the observable Â can be performed. The
signal of this measurement is shown in Figure 36(d) as the red
curve, along with the corresponding classical signal as the blue
curve, equivalent to the observable M̂. The NOON state signal
clearly shows an oscillation that occurs over a phase twice as
small as the classical case, as expecteda phenomenon known
as “super resolution”.356

The coincidence counts in Figure 36(d) can be normalized
to give a probability of a coincidence,53 according to eq 69 in
section 3.4.2, i.e., ϕ ϕ= +p f( ) (1 cos 2 )/2coin 2 2 , where f 2
represents the total proportion of photons that lead to a two-
photon coincidence and 2 is the two-photon visibility. This
coincidence probability can then be used to infer the
uncertainty in the measurement of the phase, Δϕcoin. In this
realistic and lossy setting, the SIL for the precision in
estimation of the phase is given by250,357 ϕ ηΔ = N1/SIL ,
which is simply the SNL of standard interferometers in the
case of no loss multiplied by the factor η1/ , where η is the
total loss factor. In order to show an improvement, the
uncertainty in the experiment must satisfy Δϕcoin < ΔϕSIL, after
which it can be called “super sensitive”.357 Using the
normalized probability function pcoin(ϕ), the bound can be
reformulated as359 η< f1 2 /2

2
2
2 , which can be inverted to

give a threshold visibility of η= f/22
(th)

2
2 . A visibility

above this value shows an improvement in the precision
beyond the SIL. In the absence of loss, f 2 = 1 and η = 1,

leading to = ≈−2 0.7072
(th) 1/2 . In the experiment, the

visibility from the data shown in Figure 36(d) was calculated
to be ≈ 0.8802 , clearly above the threshold. However, once

loss is included, 2
(th) rises. It was concluded that even if

= 12 in the experiment, the threshold could not be
surpassed without a reduction in loss in the setup. Fortunately,
it was shown that in principle the loss could be reduced by
improving collection efficiencies at the various components in
the setup, while still accommodating for loss in the plasmonic
nanowire. Thus, the precision could be improved beyond the
SIL with further experimental improvements.
It is clear from the above discussion that various technical

challenges must be overcome for a complete experimental
demonstration of quantum phase sensing using a plasmonic
system and discrete variable quantum states. Reducing losses in

the components of the setup, implementing the phase change
at the nanowire itself and the potential use of more robust-to-
loss states other than the NOON state are all avenues for
further study to address the challenges. These would enable
the realization of practical nanoscale quantum plasmonic
interferometric sensors.
In light of these challenges, it is interesting to note that the

generation of plasmonic NOON states has also been achieved
in several other recent experiments. By building on previous
demonstrations of two-plasmon quantum interference,523−527

Fakonas et al.528 generated NOON states with N = 1 and N =
2 and studied the impact of decoherence on these states in
low-loss dielectrically loaded SPP waveguides. They found that
for the type of waveguide studied, decoherence in the form of
phase damping had only a minimal impact on the visibility of
the interference fringes. Taken together with the low-loss
nature of the waveguides, this demonstrates the ability for
plasmonic waveguides to generate and maintain coherence
well, highlighting their potential use for practical quantum
phase sensing. Other types of plasmonic waveguides have also
been used to generate NOON states with N = 2, including
planar529 and stripe530 waveguides.
By considering larger photon number NOON states (N >

2), it may then be possible to demonstrate a Heisenberg
scaling in the precision and obtain close to a N improvement
compared to the classical case. Several photonics experiments
have already shown how to generate NOON states with N = 3
photons,50 N = 4 photons,51,531 and N = 5 photons.345,346

Most recently, the generation of NOON-like states up to N = 8
photons has been demonstrated.532 Many theoretical schemes
have also been proposed for going beyond these experiments
to generate NOON states with a higher photon num-
ber342,343,345,533 and other related states.350,352,366 In addition
to the source of quantum states, e.g., NOON states, and the
plasmonic system being used, e.g., plasmonic nanowire, the
experimental resources required include single-photon and/or
photon number resolving detectors, a coincidence counting
interface, and quantum statistical measurement acquisition
software.359

4.2.2. Phase Sensing with Continuous Variable
States. Despite the substantial developments in classical
interferometric plasmonic sensing and the progress in
interferometric quantum plasmonic sensing with the discrete
variable quantum states described above, very little progress
has been made in the development of squeezed interferometric
plasmonic sensors. One reason for this is the increased loss in
interferometric sensors. Intensity-based plasmonic sensors are
most sensitive at the inflection point of the plasmon absorption
spectrum, so the detrimental effect of the plasmon absorption
can be mitigated somewhat. Phase-based plasmonic sensors are
most sensitive at the maximum of the plasmon absorption
spectrum,116 so as described in section 2.3, little squeezing
would remain in a squeezed interferometric plasmonic sensor
after accounting for plasmonic absorption. Nevertheless, some
progress has been made in the characterization of plasmons
exhibiting squeezing in the phase-sum quadrature, notably in a
report that characterized the two-mode squeezing in intensity-
difference and phase-sum quadratures for LSPs supported in
triangular nanoapertures.500 Further, substantial progress has
been made in the development of squeezed interferometric
sensors for other applications.534 Moreover, as described in
section 3.4.5, nonlinear interferometers offer favorable scaling
with loss compared with conventional squeezed light readouts
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and could plausibly be integrated with plasmonic sensors in
order to obtain a quantum advantage. Truncated nonlinear
interferometers in particular offer favorable loss scaling and the
ability to use a high power local oscillator in order to improve
shot-noise limited precision without concern for photo-
chemical or photothermal effects.398−400 Many opportunities
still exist to develop loss-resilient squeezed interferometric
plasmonic sensors based on lower loss plasmonic sensor
designs and new approaches to SU(2) and SU(1,1)
interferometry.

4.3. Quantum Plasmonic Sensing Based on
Emitter−Plasmon Coupling

Outside the field of plasmonic sensing, much attention has
been paid to the plasmonic control of emitters,59,535−539

including semiconductor quantum dots540 and color centers541

in the weak and strong coupling regimes.54,535 It is increasingly
evident that these effects can be leveraged for alternative
approaches to quantum plasmonic sensing, building on the
PEF and SERS sensors described in section 2.4.4. The optical
field at metallic nanostructures can be significantly enhanced
via the excitation of LSPs, enabling strong coupling with matter
in the vicinity of metallic structures.54 The effects that originate
from strong coupling are inherently nonclassical,535 and
therefore the quantitative analysis and understanding of the
various phenomena measured in experiments requires a full-
quantum mechanical description, whereby the plasmonic
nanostructures supporting LSP excitations can be treated as
a lossy and small-mode-volume resonator in cavity quantum
electrodynamics.57,535 A result of this is that strong coupling is
very sensitive to various structural and material parameters of
an analyte being placed in the proximity of a metallic structure,
which has led to several types of quantum plasmonic sensors.
In one of the first examples of a quantum sensor based on

emitter-plasmon coupling, a coupled system of a quantum dot
and metallic nanorod was studied as a means to sense a small

change in the local refractive index around the system in the
near-infrared regime,542 as shown in Figure 37(a). The
quantum phase-dependent changes in the coherent exciton−
plasmon coupling provide the capability of detecting and
distinguishing adsorption or detachment of target molecules. A
similar structure has also been considered for optical detection
and recognition of single biological molecules.543 Adsorption
of a specific molecule to the nanorod results in the ultrafast
upheaval of coherent dynamics of the system, that turns off the
blockage of energy transfer between the quantum dot and the
nanorod. The emission of the system is thus strongly modified
depending on the adsorption event. Measuring the emission
pattern from a quantum dot and metallic nanoshell system
would also enable the remote detection of the spatial
coordinates and movement of biological molecules or
nanostructures,544 as shown in Figure 37(b). Refractive index
sensing is also possible by analyzing the Rabi-splitting
spectrum of the exciton−plasmon strong coupling in the gap
between a plasmonic nanorod and plasmonic nanowire.545 In
another study, a full quantum mechanical theory was
developed to model how a small amount of absorbing
trinitrotoluene (TNT) molecules influences the spectrum of
a graphene spaser based on a graphene flake with quantum dot
emitters.546 All these studies of the emission spectrum from an
emitter-plasmon quantum dynamical system for sensing
purposes open up a promising direction for future work,
although a careful analysis is required in order to determine
whether the quantum effects being exploited provide a
quantum advantage in terms of subshot-noise sensing, an
improvement in the sensitivity, or both.
A related recent theory proposal has suggested the use of

quantum dots as quantum labels bonded to individual
antibody−antigen−antibody complexes being placed inside
or close to a nanoplasmonic dimer,547 as shown in Figure
37(c). As the surface density of the analyte−emitter complex
changes, the extinction cross section spectrum is modified,

Figure 37. Quantum plasmonic sensors based on emitter-plasmon coupling. (a) Single quantum nanosensor in a to-the-end configuration, where a
gold nanorod and quantum dot are functionalized. Reproduced with permission from ref 542. Copyright 2013 IOP Publishing. (b) Illustration of
quantum detection and ranging. The antenna includes a quantum dot and a metallic nanoshell. F(r, t) and G(r′, t′) refer to two different time-
dependent emission intensity patterns of an optically active nanoscale system at two different locations. Reproduced with permission from ref 544.
Copyright 2013 AIP Publishing. (c) Illustration of a strong-coupling immunoassay setup. A gold hemisphere nanodimer cavity captures an
immunoassay complex in the proximity of the plasmonic hot-spot. Reproduced with permission from ref 547. Copyright 2019 American Chemical
Society. (d) Nanofiber with dark-field heterodyne illumination. Nanoparticles in a droplet of ultrapure water are detected when entering the probe
beam waist next to the nanofiber. Reproduced from ref 548. Copyright 2017 Springer Nature.
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which not only causes spectrum shifting but also brings
multiple resonance peaks due to the strong coupling between
the emitters and LSP at the nanoplasmonic dimer. Through a
statistical study of multiple analyte-emitter complexes for the
theoretical simulation of realistic conditions, the proposed
splitting-type sensing approach using quantum emitter labels
has been shown to achieve a nearly 15-fold sensitivity
enhancement in comparison with conventional shifting-type
label-free plasmonic sensors. Such a study demonstrates the
potential of quantum plasmonic sensors to detect a single
analyte, which is usually challenging since the size of an analyte
(typically <100 nm) is far smaller than the optical wavelength
of the light exciting the system.
Another theoretical work focusing on the strong coupling

regime has considered a three-level quantum system, e.g., atom
or quantum dot, that by interacting with a plasmonic cavity
mode supports a so-called “embedded superstate”.549 The
resulting system relies on quantum interference between
multiple atomic transition pathways and strong coupling, and
it exhibits unboundedly narrow emission lines that enable a
significant reduction in noise in the scattering spectra. The
result thereby provides a means to improve the sensitivity
significantly.
On the experimental front, metallic nanorods have been

used in a recent study, where an optical nanofiber is immersed
in a droplet of water containing nanoparticles, such as silica
nanospheres or gold nanorods, and biomolecules, as shown in
Figure 37(d). Heterodyne interferometry was used together
with a dark-field illumination approach.548 The experiment
demonstrated a quantum-noise limited precision of evanescent
single-molecule biosensing, allowing a reduction of 4 orders of
magnitude in the optical intensity that is required to maintain
state-of-the-art sensitivity. In a related theoretical study, the
fraction of the total spontaneous emission energy from an
emitter coupled to SPPs, called the β-factor,550 has been
investigated for two nitrogen vacancy centers (NVCs) in
diamond placed in a plasmonic waveguide.551 It was shown
that a maximally entangled state of NVCs and a product NVC
state provide the optimal estimation of the β-factor at initial
times and at long times, respectively.
Finally, the use of color center emitters for quantum sensing

of magnetic552,553 and electric554 fields has experienced
significant attention in the past few years. The use of a
plasmonic system as a mediator of the sensing signal is an
interesting development. A recent experiment has demon-
strated the use of a plasmonic groove waveguide interacting
with multiple NVCs, which are positioned at the end of the
groove waveguide milled in a thick gold film.555 The gold film
carries the microwave control signal for the NVCs, while the
groove waveguide acts as a fluorescence collector. The
fluorescence signal enables the readout of the NV spin
population (or specifically a spin sublevel population) as a
function of an applied external magnetic field. This is known as
optically detected magnetic resonance (ODMR). It is
particularly appealing due to its simplicity and room-temper-
ature operation as well as its scope for also measuring strain or
temperature fields.
A related theoretical work has proposed the use of a

plasmonic metasurface as a means to achieve an infrared
absorption-based readout of the magnetic field resonance for
an ensemble of NVCs.556 This is important as standard
fluorescence-based ODMR techniques are limited by low-
photon collection efficiency and modulation contrast. The

work exploits the enhancement of an infrared probe field via
plasmonic excitation, which interacts with an NVC infrared
singlet state transition and whose absorption then carries
information about spin state populations that change as a
magnetic field is applied. The result is a new kind of
microscopic ODMR sensor with infrared readout providing
enhanced sensitivity.

5. PERSPECTIVE AND OUTLOOK
In this review we covered the background and latest
developments in the emerging field of quantum plasmonic
sensing. This is a research field that sits at the interface
between plasmonic sensing and quantum metrologythe
former provides researchers working in the field with decades
of extensive knowledge in classical optical sensing across a
wide array of plasmonic systems, their commercial develop-
ment, and applications, while the latter provides new concepts
and methods intensively developed in recent years that enable
the performance of the sensors to be improved by exploiting
quantum mechanical features in various quantum systems.
The review started with a discussion of conventional

plasmonic sensors and their basic working principles. The
excitation of SPPs was shown to enable enhanced sensing
compared to standard optical sensors due to their high
electromagnetic field confinement. Two main types of
plasmonic sensing were discussedintensity and phase
sensingwith the benefits of each described as depending
on the specific application. This was followed by a discussion
of estimation theory and the limits of sensing in plasmonic
systems using classical light, i.e., the SNL. We then showed
how the use of quantum states of light and quantum
measurements enables sensing beyond this SNL, where we
elaborated on single- and two-mode sensing schemes while
reviewing recent works on multimode or multiple parameter
sensing. Recent works combining these quantum sensing
techniques with plasmonic sensing were then reviewed. We
covered the basic theory behind the work and highlighted its
motivation in relation to applications, including biosensing,
monitoring chemical reactions and ultrasound sensing. It was
shown that despite the presence of loss in plasmonic systems,
one can use techniques from quantum sensing to obtain
improvements in sensing performance.
The field of quantum plasmonic sensing has grown steadily

over the last five years, with researchers studying many ways in
which to combine plasmonic and quantum sensing. However,
much work still needs to be done to address the current
challenges and bring quantum plasmonic sensors to the same
level of maturity as their classical counterparts, including
successful commercialization. In the short term (next five
years), it is likely that plasmonic sensors based on SPP sensing
will provide the most direct and accessible route for
incorporating the quantum intensity and phase sensing
techniques discussed in section 4. SPP sensing using the
Kretschmann configuration is still the main approach used by
researchers and in industry. Advancements made in the
experimental generation of quantum states of light, such as
NOON states and TMSD states, will help bring quantum SPP
sensing to maturity. New results from the field of quantum
sensing for dealing with loss,43−45,271,338 including error
correction395,557−561 and novel resource states,41,158,562,563

may lead to a widening in the range of plasmonic systems
that can be used for quantum sensing and their related
applications.
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In the mid to long-term (five to ten years) the next steps
would be the miniaturization and integration of the sensors.
Research currently being done in the field of classical
plasmonic sensors,12,159,168,177 including the use of fibers,
waveguides, and nanoparticles, would then enable compact
quantum plasmonic sensors to be realized for deployment in
commercial applications. Furthermore, nonstandard material
systems, including metamaterials,148−151,164,166,564 gra-
phene,517,565,566 and more exotic two-dimensional materi-
als,567,568 may help reduce loss, further improve the level of
precision in applications, and enable a range of specificity to be
achieved, such as in monitoring chemical and biological
reactions,24 food safety,569 pathogen detection,6,8 and environ-
mental monitoring.7 Hybrid systems that exploit electro-
optic,518−520 nonlinear,570 nonlocal,571 quantum size ef-
fects,60,456 and electron tunelling61 could also offer additional
quantum functionality. Another interesting direction is the
incorporation of quantum emitters into plasmonic systems,
such as quantum dots59,537 and color centers,541 which may
bring further applications, such as magnetic552,553 and electric
field sensing554 and molecular spectroscopy.572 There is also
the natural connection between sensing and imaging,125 and it
remains to be seen how the techniques developed for quantum
plasmonic sensing can be translated to plasmonic imag-
ing122,123,126 in order to improve aspects such as image
resolution, feature extraction, and pattern recognition for
applications in the life sciences and medicine.
The field of quantum plasmonic sensing is likely to develop

into a rich subfield of optical science, and it is an exciting time
to enter this emerging research field. Multidisciplinary
collaboration from researchers working in plasmonics,
quantum information science, material physics, chemistry,
biology, and medicine will advance this field significantly,
bringing with them new opportunities for sensing in science
and industry. For these prospective studies, this review will
provide helpful guidance and inspire novel avenues of research.

APPENDIX A: MULTIPARAMETER QFIM
The QFI matrix, H, in eq 38 is defined by

ρ[ ] = [ ̂ ̂ ̂ + ̂ ̂ ]H Tr ( )/2jk j k k jx (A1)

with ̂
j being a symmetric logarithmic derivative operator

associated with the jth parameter xj.
227 Here, F−1 and H−1 are

understood as the inverse on their support if the matrices are
singular, i.e., not invertible.393

For single parameter estimation, the optimal measurement
setting reaching the QCR bound given by eq 28 always exists
and can be constructed with projectors onto the eigenvectors
of the SLD operator.38,41,227 For multiparameter estimation, on
the other hand, the QCR bound has been known to be
attained only if the SLD operators commute, i.e., [ ̂ ̂ ] =, 0j k

for all j, k, which is valid even when the generators do not
commute, i.e., [Ĝj(xj), Ĝk(xk)] ≠ 0. This is the sufficient
condition for the saturability of the multiparameter QCR
bound, in which case the optimal set of POVMs can be
constructed over the common eigenbasis of the commuting
SLD operators.387 A weaker but necessary and sufficient
condition for the saturability can be found for pure states ρ̂(x)
= |Ψ(x)⟩⟨Ψ(x)|, written as235,573

⟨Ψ | ̂ ̂ − ̂ ̂ |Ψ ⟩ =x x( ) ( ) ( ) 0j k k j (A2)

for all j, k. The condition of eq A2 implies the commutation
relation among the SLD operators only on average with respect
to the state |Ψ(x)⟩. For commuting generators Ĝj(xj)
associated with the evolution of a pure probe state, i.e.,
[Ĝj(xj), Ĝk(xk)] = 0 for all j, k, eq A2 is satisfied, so that the
multiparameter QCR bound can be saturated.573

APPENDIX B: CALCULATION OF MULTIPARAMETER
QFIM
Generally for M parameters ϕ = {ϕ1, ..., ϕM}, the relation is
given by236

∑ ϕ ϕ ρ ρ= ̂ ̂ϕ ϕ ϕ+H d d 4 ( , )
j k

jk j k
,

B
2

d
(B1)

where the Bures distance can be written in terms of the
quantum fidelity as

ρ ρ ρ ρ̂ ̂ = [ − ̂ ̂ ]ϕ ϕ ϕ ϕ ϕ ϕ+ +( , ) 2 1 ( , )B
2

d d (B2)

and the quantum fidelity is defined as574,575

ρ ρ ρ ρ ρ̂ ̂ = ̂ ̂ ̂ϕ ϕ ϕ ϕ ϕ ϕ ϕ+ +( , ) (Tr )d d
2

(B3)

Thus, the calculation of the quantum fidelity leads to the
calculation of QFIM for any pair (ϕj, ϕk).
In particular, the input state |Ψ⟩in = |α⟩a|ξ⟩a considered in

the MZI of Figure 10(b) is called a Gaussian state as its
characteristic Wigner function can be described by a Gaussian
distribution. Because the BS operation B̂, the phase operation
Û(ϕ), and the linear photonic loss channel, including
inefficient detectors, are a Gaussian map, the output state
ρ̂out is kept in the form of a Gaussian state. This enables us to
describe the output state ρ̂out in terms of the first-order
moment vector d and the second-order moment matrix
V.576,577 The displacement vector d is defined as dj = Tr[ρ̂ϕQ̂j],
whereas the covariance matrix V is defined by Vjk = Tr[ρ̂ϕ{Q̂j
− dj,Q̂k − dk}/2], where {Â,B̂} ≡ ÂB̂ + B̂Â. Here, Q̂ denotes a
quadrature operator vector for a two-mode continuous variable
quantum system and is written as Q̂ = (x̂1, p̂1, x̂2, p̂2)

T,
satisfying the canonical commutation relation, [Q̂j,Q̂k] = iΩjk,
where

Ω =
−

×
0 1

1 0 2
i
k
jjj

y
{
zzz

(B4)

and n is the n × n identity matrix.
Due to the input state remaining a Gaussian state

throughout the evolution, the analytical form of the quantum
fidelity can be found for the displacement vectors and
covariance matrices,377,578 so one can readily calculate the
quantum fidelity. For two Gaussian states ρ̂j = 1,2 with dj=1,2
and Vj=1,2, the quantum fidelity can be calculated via377,578

ρ ρ
δ δ

̂ ̂ =
− +

Γ + Λ − Γ + Λ − Δ

−d V V d
( , )

exp ( )

( ) ( )
1 2

1
2

T
1 2

1

2

Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ

(B5)

where Δ = det(V1 + V2), Ω ΩΓ = −V V16 det( /4)1 2 4 , Λ = 16
det(V1 + iΩ/2) det(V2 + iΩ/2), and δd = d2 − d1.
Using eqs B1, B2, and B5, one can calculate the QFIM H

generally for multiple parameters ϕ = {ϕ1, ..., ϕM}. In the case
when only a single parameter ϕ encoded by Û(ϕ) is of interest,

the QFI is calculated by ρ ρ ϕ= [ − ̂ ̂ ]ϕ ϕ ϕ+H 8 1 ( , ) /dd
2.
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APPENDIX C: CR BOUND IN A LOSSY MZI

Homodyne detection is particularly useful, as the measurement
bases are represented by Gaussian states; that is, the POVM
element is written as Π̂x = |xϕHD

⟩⟨xϕHD
|, where |xϕHD

⟩ denotes a
quadrature variable state. Projection of the reduced output
state ρ̂out,a = Trb[ρ̂out] into the measurement basis |xϕHD

⟩ leads
to the probability density function of the quadrature variable
outcomes {x}, which is written as

ϕ ρ| = ⟨ | ̂ | ⟩ϕ ϕp x x x( ) out,aHD HD (C1)

It can be shown that the probability density function of eq C1
follows a Gaussian distribution for the measurement outcomes,
leading to homodyne detection often being called a Gaussian
measurement.577,579 Hence, the probability density function of
eq C1 can be described by the first-order moment vector d̃ and
the second-order moment covariance matrix Ṽ, for which the
FI can be calculated via223,580

ϕ
ϕ ϕ ϕ ϕ

= ∂ ̃
∂

̃ ∂ ̃
∂

+ ̃ ∂ ̃
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̃ ∂ ̃
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− − −V V
V

V
V

F
d d

( )
1
2

Tr
T

1 1 1
Ä

Ç
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É

Ö
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For an optimally chosen homodyne angle ϕHD with respect to
the phase ϕ being estimated, one can show that the CR bound
reads336

ϕ
ν α

η
η α

Δ =
| |

+ −
| |e

1 1 1
rCR 2 2 2

(C3)
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ABBREVIATIONS

AOM = acousto-optic modulator
ATR = attenuated total internal reflection
BBO = β-BaB2O4
BS = beam splitter
BSA = bovine serum albumin
CD = circular dichroism
CR = Crameŕ−Rao
EOM = extraordinar optical transmission
FI = Fisher information
FIM = Fisher information matrix
FWM = four-wave mixing
HL = Heisenberg limit
HOM = Hong−Ou−Mandel
LOD = limit of detection
MSE = mean-squared-error
MNP = metal nanoparticle
MZI = Mach−Zehnder interferometer
NDS = number-diagonal-signal
NRF = noise reduction factor
NVC = nitrogen vacancy center
ODMR = optically detected magnetic resonance
OPO = optical parametric oscillator
PC = product coherent
PEF = plasmon-enhanced fluorescence
POVM = positive-operator valued measure
PPKTP = periodically poled potassium-titanyl-phosphate
QCR = quantum Crameŕ−Rao
QE = quantum efficiency
QFI = quantum Fisher information
QFIM = quantum Fisher information matrix
RIU = refractive index unit
SERS = surface-enhanced Raman scattering

SIL = standard interferometric limit
SLD = symplectic logarithmic derivative
SNL = shot-noise limit
SNR = signal-to-noise ratio
SP = surface plasmon
SPDC = spontaneous parametric down conversion
SPP = surface plasmon polariton
SPR = surface plasmon resonance
SQL = standard quantum limit
TF = twin Fock
TMSD = two-mode squeezed displaced
TMSV = two-mode squeezed vacuum
TM = twin-mode
TNT = trinitrotoluene
ZZ = Ziv−Zakai

GLOSSARY

Bias = The difference between an estimate xest and the true
value x of the parameter being estimated on average, i.e., x̅est
− x. An unbiased estimator has a bias of zero.
Crameŕ−Rao bound = The lower bound of the Crameŕ−
Rao inequality.
Crameŕ−Rao inequality = The inequality that the standard
deviation of an unbiased estimator of a parameter should
obey for a given measurement setting. The inequality reads

νΔ ≥x F x1/ ( ) , where Δx is the standard deviation, ν is
the number of measurements in a sample, and F(x) is the
Fisher information. The equality holds when the optimal
unbiased estimator is chosen. It can also be asymptotically
saturated in the limit of large ν when the maximum-
likelihood-method is employed as an estimator although it is
not optimal.
Estimate = The value xest obtained from the estimator x̂(y1,
..., yν) for a given sample (single set of data observed). It is
also known as a point estimate.
Estimation accuracy = The interpretation of the bias x̅est −
x. The accuracy becomes better as the bias decreases.
Estimation precision = The interpretation of the standard
deviation, Δx, of the estimate xest, each taken from a sample
made up of a finite set of ν measurements of the parameter
x. The smaller Δx is, the better the precision is. It is
commonly known as the fluctuation or uncertainty in
estimation, or it can sometimes be interpreted as the
resolution. It can also be understood as the reproducibility.
Estimation uncertainty = The quantity directly given by the
standard deviation Δx. The smaller Δx is, the smaller the
uncertainty is.
Estimator = A rule, x̂, that yields an estimate xest of an
unknown parameter x from an underlying probability
distribution based on the observed data y from a sample
of ν measurements, y ≡ (y1, ..., yν). For example, x̂ can be
expressed by some function f, i.e., x̂ = f(y). The most
commonly used estimator is the sample mean.
Extraordinary optical transmission = The transmission of
light through a structured medium, where the transmission
is due to the excitation of surface plasmons. A similar
structured medium that does not support surface plasmons
has a reduced transmission.
Fisher information = A quantification of the amount of
information about a parameter x contained in the measure-
ment results for a given measurement setting. We express it
by F(x).
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Heisenberg limit = The ultimate quantum limit achievable
using the optimal quantum state and measurement, or the
precision scaled with N−1 that is often the case of
interferometeric sensing. A scaling of N−1 is called
Heisenberg scaling, where N is the average number of
particles in the resource.
Limit of detection = An overall figure of merit for sensing
quality that takes into account both the sensitivity y and
the minimum detectable range Δymin or equivalently the
value of the noise level. This is often interpreted as a
resolution.
Mean-squared-error = The average square distance
between the estimator x̂(y1, ..., yν) and true value of x as
the data y1, ..., yν varies according to the underlying
probability distribution. It is a measure of the average
closeness of an estimator x̂ to the true value x, and it
depends on both the standard deviation Δx and the bias x̅est
− x. If the estimator is unbiased, then the mean-square error
is equivalent to Δx2, allowing us to refer to the standard
deviation Δx as the “estimation error”, “estimation
precision”, or simply “precision”.
Multiparameter estimation = This is categorized into three
kinds:
1. Individual estimation = Multiple parameters (x1, x2, ..., xn)
are estimated individually. This scheme is also called a “local
strategy”.
2. Simultaneous estimation = Multiple parameters (x1, x2, ...,
xn) are estimated simultaneously. This scheme is also called
a “global strategy”.
3. Distributed estimation = A global parameter X, which is a
function of multiple parameters, i.e., X = f(x1, x2, ..., xn), is
estimated.
Noise reduction factor = In an intensity-difference
measurement, it is the ratio of the variance of the photon
number difference between the signal and reference mode
for a given quantum state to that of coherent states with
matching average photon number.
N-mode = A sensing scheme where N spatial/temporal/
angular/spectral modesthe eigenvectors of the wave
equationare used. Here, N can be “single”, “two”, or
“multi”.
Quantum Crameŕ−Rao bound = The lower bound of the
quantum Crameŕ−Rao inequality.
Quantum Crameŕ−Rao inequality = The same as the
Crameŕ−Rao inequality but with the Fisher information
replaced by quantum Fisher information, i.e., νΔ ≥x H1/ .
Quantum Fisher information = The maximized Fisher
information over all possible physical measurement settings
{Π̂}, i.e., H = max{Π̂}F(x).
Sensitivity = The derivative of a quantity y being monitored,
which is used to obtain an estimation of some parameter x
that changes with y. Mathematically, the sensitivity is Sy = |
dy/dx|. By increasing the sensitivity a sensor becomes more
sensitive to changes in x.
Shot noise = Pure noise originating from the underlying
statistical properties of a resource to be analyzed or a
measurement involving the random fluctuation of electric
signals. It has nothing to do with fundamental noise, which
in an ideal theory model can be assumed to be completely
absent. The term originally comes from electronics, where a
current consists of a stream of discrete charges, i.e.,
electrons. The charges are randomly distributed in space

and time, thereby following a Poisson distribution. The
same random feature is present in a coherent state of light
that consists of discretized particles, i.e., photons, that follow
a Poisson distribution in photon number. This leads to the
shot noise when the coherent state’s intensity, i.e., photon
number, is measured.
Shot-noise limit = The best possible precision obtained
using the classical resource of a coherent state. It originates
from statistical noise in the resource that is mapped into
noise in the quantity being measured; that is, for an intensity
measurement the shot-noise limit comes from Poissonian
noise that is intrinsic to the coherent state’s photon number
or energy.
Single-to-noise ratio = The ratio of the measurement signal
to the noise in the measurement signal.
Standard quantum limit = The fundamental limit to
precision achievable in standard interferometers made of
standard devices employing only classical resources. The
term is now generally used to denote the ultimate precision
limit achievable in arbitrary interferometric sensing when
only classical resources are used.
Unbiased estimator = The estimator has a bias of zero.
When applied to many samples from the underlying
probability distribution it equals the true value of the
parameter being estimated on average. Equivalently, the
sampling distribution of the estimator fluctuates around the
true value of the parameter.
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