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Abstract
Quantum correlations are subject to certain distribution rules represented by so-called monogamy
relations. Derivation of monogamy relations for multipartite systems is a non-trivial problem, as
the multipartite correlations reveal their behaviors in a way different from bipartite systems. We
here show that simple geometric properties of probabilistic spaces, in conjunction with
no-signaling principle, lead to genuine monogamy relations for a large class of Bell type
inequalities for many qubits. The term of ‘genuine’ implies that only one out of N Bell inequalities
exhibits a quantum violation. We also generalize our method to qudits. Using the similar
geometric approach with a quasi-distance employed, we derive Svetlichny–Zohren–Gill type Bell
inequalities for d-dimensional tripartite systems, and show their monogamous nature.

1. Introduction

Bell inequalities are a handy tool to check if spatially separated measurements have a local realistic
description [1–3]. As our universe is local, i.e. no perceived instantaneous action at a distance, any
observable departure from local realism must be rather subtle—we do not directly observe the lack of local
realism but only its consequences. One of them is the existence of strong quantum mechanical correlations
(usually called non-local) and most of Bell inequalities relies on the differences between these correlations
and the local realistic ones. The algorithm for Bell inequalities is deceptively simple: construct linear
algebraic inequalities with correlation functions whose local realistic bounds are violated by the quantum
correlations.

Initially, Bell inequalities were formulated for bipartite systems [1, 2] and it was expected that for a large
number of parties the system should lose its quantum character (non-locality) due to the correspondence
principle [4]. However, it was soon realized that multipartite systems exhibit an even more complex
departure from the local realism [5, 6]. Since then considerable efforts have been devoted to study
multipartite systems in this context [3, 7].

Multipartite systems exhibit another interesting property called correlation monogamy [8–17].
Monogamy imposes limits on the strength of distributed non-local correlations, i.e. the stronger the
non-local correlations between two systems A and B are the weaker they are between the system A and some
other system C. It was shown that many known monogamies are a direct consequence of the no-signaling
principle [8, 13]—all involved parties A, B and C cannot exchange any information faster than the speed of
light. This is, of course, strictly forbidden by the general relativity theory. Thus, the principle of
no-signaling underpins monogamy of non-local correlations. Obviously, quantum mechanics is an example
of a no-signaling theory and thus such monogamies are present in it.
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The monogamy relations for the multipartite Bell inequalities were studied in [12–16]. They mainly
focused on monogamies between bipartite divisions: a number of parties in some location X is
monogamous with the remaining parties at locations Y and Z. In this limited scenario, the multipartite Bell
inequalities are merely two-party Bell inequalities, each for two separated locations X and Y or X and Z.

However, the quantum correlations in multipartite systems have specific traits that are not present in
bipartite systems [18]. Therefore, monogamies between more than two divisions, i.e. more than two
multipartite Bell inequalities are interesting to study. This is a non-trivial problem. Indeed, it was reported
that for four parties A, B, C and D one can find an entangled state such that three out of four possible
tripartite Mermin type inequalities (ABC, ABD, ACD, and BCD) are violated. This is somewhat surprising
as one would expect that only one inequality can be violated due to monogamy relations [17].

In this paper we find genuine monogamies in the sense that only one Bell inequality can be violated
regardless of the number of Bell inequalities involved. Because we only use the no-signaling principle, our
results significantly limit the structure of quantum as well as any possible no-signaling correlations outside
of the quantum theory (super-quantum correlations). Our method is based on simple geometric properties
of probabilistic spaces and it leads to a series of new and genuine monogamy relations for any number of
parties with dichotomic observables. As an illustration of the power of the method, we show that the
‘anomaly’ reported in [17] vanishes, i.e. all possible tripartite Mermin type inequalities are genuinely
monogamous. Our method also produces a genuinely tripartite Svetlichny–Zohren–Gill type Bell inequality
for an arbitrary number of measurement outcomes and its monogamy. See references [14, 16, 19, 20] for
N-partite Svetlichny inequalities with d outcomes and the monogamy relations.

2. Monogamy relations for many qubits

One of the basic properties of any geometry is a distance d(A, B) between two points A and B. We introduce
information-theoretic distances d(A, B) defined on a space of probabilistic events such that d(A, B) is a real
function of the joint probabilities p(A ∩ B) of events A and B. The distance d(A, B) obeys the axioms of a
metric: nonnegativity, symmetry, and most importantly for our applications, the triangle inequality. Note
that the distance is valid for any sets of probabilistic events having a joint probability distribution.
Therefore, if applied to some physical measurements A and B, joint measurability of the corresponding
physical properties (property A and B) is implied.

It was shown that this geometric approach conveniently unifies different non-classical phenomena. It
generates various kinds of bipartite Bell inequalities as well as some of the known tests of quantum
contextuality [21, 22]. It also serves as a powerful tool to investigate correlation monogamies [22].

2.1. Preliminaries
The cornerstone of the method is a specific distance measure called statistical separation [23–25]. Let us
briefly discuss the statistical separation for two and three probabilistic events. We first define symmetric
difference between two probabilistic events A, B as A ⊕ B ≡ (A − B) ∪ (B − A). A probability measure of
the symmetric difference, P(A ⊕ B), is the statistical separation of the events A and B. It can also be written
as P(A ⊕ B) = P(A) + P(B) − 2P(A ∩ B). Note that the statistical separation conforms to all axioms of
distance, including the triangle inequality: P(A ⊕ B) + P(B ⊕ C) � P(A ⊕ C). This can be derived using the
following facts: (a) in the symmetric difference every event is its own inverse, i.e. A ⊕ A = Ø, where Ø is the
empty set, (b) the operation ⊕ is commutative and associative, i.e. A ⊕ B = B ⊕ A, and (A ⊕ B) ⊕ C =

A ⊕ (B ⊕ C). The above properties together with the definition of the statistical separation give us:
(A ⊕ B) ⊕ (B ⊕ C) = (A ⊕ C) and P(X) + P(Y) � P(X ⊕ Y). The triangle inequality is obtained by
replacing X with A ⊕ B and Y with B ⊕ C.

For the three event, one has A ⊕ B ⊕ C ≡ (A ∩ B ∩ C) ∪ (A ∩ B ∩ C) ∪ (A ∩ B ∩ C) ∪ (A ∩ B ∩ C),
where X is the complement of X. All three events in the brackets are mutually exclusive so the statistical
separation reads P(A ⊕ B ⊕ C) = P(A ∩ B ∩ C) + P(A ∩ B ∩ C) + P(A ∩ B ∩ C) + P(A ∩ B ∩ C). We stress
that the triangle inequality also holds for the statistical separation for three events, e.g. P(A ⊕ B ⊕ C) +
P(C ⊕ D ⊕ E) � P(A ⊕ B ⊕ D ⊕ E). See [25] for the derivation of the triangle inequality and the
generalization to N events for the statistical separation.

It is difficult to have an intuitive understanding of the statistical separation apart from thinking about it
as a generalized ‘geometric’ distance between three or more statistical events. This distance obeys the
generalized triangle inequality that allows us to talk about ‘geometric’ distance relations such as the ‘length’
of the path between a certain chain of statistical events is longer or shorter than the other path. This
intuition, as we will see in the rest of the paper, makes derivations of new multipartite Bell inequalities
easier. To highlight this intuition we simplify the notation by putting, for example, P(A ⊕ B ⊕ C) = [ABC].

2



New J. Phys. 23 (2021) 043054 J Ryu et al

2.2. Deriving Bell inequalities by using the triangle inequality
We first consider a scenario when four parties A, B, C and D perform spatially separated (local)
measurements of some physical property of their respective systems. If the observed property is found, the
measurement yields 1 as an outcome and 0 otherwise. Each party randomly and independently selects one
out of two measurement settings i ∈ {1, 2}. The observer’s X detection event for the setting i is denoted by
Xi. This event happens with the probability P(Xi). A joint probability for three events Ai, Bj, and Ck, which
is the probabilistic measure of their intersection Ai ∩ Bj ∩ Ck, is denoted as P(Ai, Bj, Ck) ≡ P(Ai ∩ Bj ∩ Ck).

Let us derive a Bell inequality from the statistical separation. Using the following triangle inequalities for
the statistical separation

[A1B2C2] + [A2B1C2] � [A1B2A2B1] ,

[A1B2A2B1] + [A2B2C1] � [A1B1C1] , (1)

and adding them together, we arrive at the following Bell type inequality

BABC = [A1B2C2] + [A2B1C2] + [A2B2C1] − [A1B1C1] � 0. (2)

This separation Bell inequality is a generalization of the quadrangle inequality known in elementary
geometry and first implemented to test local realism by Schumacher [21]. The above tripartite Bell
inequality is tight [25]. This inequality is violated by quantum mechanics with a GHZ state (see section 4).
The quantum violation is possible because in the derivation of (2) we assumed the existence of the
statistical separation between the events corresponding to the measurements of non-commuting
observables, A1, A2 and B1, B2 respectively. In any local realistic (LR) model such a statistical separation
exists but the quantum violation of (2) shows that it does not exist in quantum theory. This is in line with
Fine’s theorem [26] as the existence of the statistical distance between non-commuting observables
(non-comeasurable events) would imply the existence of a joint probability distribution for
non-commuting observables. For a more detailed explanation, see appendix A. Note that a different
chaining of triangle inequalities lead to the Bell inequalities with a minus sign at a different separation.
However, such all variant Bell inequalities are physically equivalent. In order to represent which separation
is assigned minus, we denote the inequality in (2) as B111

ABC. Additionally, we would like to mentioned that
the lower bound of the separation inequality for LR model is given zero as shown in (2) and the one for the
no-signaling principle is −1. The Bell inequalities with such boundaries are called normalized Bell
inequalities, for example, see [27, 28] address normalized Bell functions that have the same LR and
no-signaling models. However, our case is a natural result of deploying a chaining of triangle inequalities.
We have no intention of deriving the normalized Bell inequalities.

2.3. Primary monogamy relation
Consider another Bell inequality of B111

ABD which can be simply obtained by changing C → D in (2). Simple
adding two Bell inequalities does not result in a monogamy relation. Note that every LR model trivially
satisfies the monogamy inequality B111

ABC + B111
ABD � 0. This is because each term B111

ABC and B111
ABD is always

non-negative for any LR model.
We now derive a monogamy relation for the violations of Bell inequalities in any no-signaling theory. It

is a non-trivial observation because there are no-signaling theories that can violate Bell inequalities.
Quantum mechanics is an example of such a theory for which we can have BABC � 0 and BABD � 0 or vice
versa. Our claim is that for all no-signaling theories we have

MAB;CD ≡ B111
ABC + B122

ABD �
NS

0. (3)

MAB;CD is called the primary monogamy (see figure 1).
The gist of our reasoning is to show that a suitable chaining of the triangle inequalities satisfied by any

no-signaling theory leads to BABC and BABD. The following set of triangle inequalities hold,

[A2B1C2] + [A2B1D2] � [C2D2] ,

[C2D2] + [A1B2C2] � [A1B2D2] ,

[A2B2C1] + [A2B2D1] � [C1D1] ,

[C1D1] + [A1B1D1] � [A1B1C1] . (4)

These triangle inequalities are also derived from the mathematical properties of the statistical separation
and the symmetric difference: (a) P(X) + P(Y) � P(X ⊕ Y) and (b) (A ⊕ B) ⊕ (B ⊕ C) = (A ⊕ C). For
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Figure 1. No-signaling monogamy diagram for two tripartite Bell inequalities B111
ABC (red) and B122

ABD (blue). Only one of the
inequalities can be violated by quantum theory.

instance, the first inequality is derived by replacing the event X by the event A2B1C2, the event Y by the
event A2B1D2. Then the event X ⊕ Y, because of the property (b), is equivalent to the event (A2B1C2)
⊕ (A2B1D2) = C2D2. Combining this with the property (a) we recover the first triangle inequality. All the
other inequalities in the above inequalities are derived in a similar way. We would like to remark that these
inequalities hold in any no-signaling model not only in an LR model. We also show how to derive these
inequalities in a non-local model supplemented with the no-signaling condition. See appendix A for more
details.

Each triangle inequality has the common statistical separations CiDi with i ∈ {1, 2}. The no-signaling
principle guarantees that any given separation is independent on the context it was measured with; the
separation C2D2 in the first triangle inequality is the same as the separation in the second one. Without the
no-signaling principle these two separations could be context dependent: C2D2 in the first inequality
dependent on the context A2B1 and C2D2 in the second inequality dependent on the context A1B2. This
common statistical separation CiDi in (4) cancels out when all triangle inequalities are added, resulting in
the monogamy relation (3): [A1B2C2] + [A2B1C2] + [A2B2C1] − [A1B1C1] − [A1B2D2] + [A2B1D2]+
[A2B2D1] + [A1B1D1] � 0.

Note that the minus signs appear in two Bell functions B111
ABC and B122

ABD at certain positions that are direct
consequences of the separations’ geometric properties encoded in (4). As we will see later, this simple
observation has strong consequences that make our monogamies different and stronger from those reported
in [8–17]. To be more precise, we could put the minus sign in the BABD in front of any other separation
without changing the monogamy and the physics of the problem. However, this innocent change leads to
non-genuine no-signaling monogamies for more than two Bell functions as we will show below. The
primary monogamy in (3) will be used as a base method to derive genuine monogamy relations.

2.4. Genuine monogamies of four tripartite Bell inequalities
Let us now derive genuine monogamy relations involving many Bell inequalities such that only one of the
inequalities can show the quantum violations. Figure 2(a) depicts the geometry of three tripartite Bell
inequalities: B111

ABC (red), B122
ABD (blue), and B212

ACD (green). This geometry implies the following monogamy:

B111
ABC + B122

ABD + B212
ACD �

NS
0, (5)

where each inequality reads

B111
ABC = [A1B2C2] + [A2B1C2] + [A2B2C1] − [A1B1C1] ,

B122
ABD = − [A1B2D2] + [A2B1D2] + [A2B2D1] + [A1B1D1] ,

B212
ACD = [A1C2D2] − [A2C1D2] + [A2C2D1] + [A1C1D1] . (6)

The proof follows an observation that any pair of the Bell inequalities in (5) is the primary monogamy.
More precisely, for the Bell functions B111

ABC and B212
ACD, the following triangle inequalities lead the primary

monogamy as MAC;BD ≡ B111
ABC + B212

ACD � 0:

[A1B2C2] + [A1C2D2] � [B2D2] ,

[B2D2] + [A2B2C1] � [A2C1D2] ,

[A2B1C2] + [A2C2D1] � [B1D1] ,

[B1D1] + [A1C1D1] � [A1B1C1] . (7)
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Figure 2. Genuine monogamies for four tripartite Bell inequalities of B111
ABC (red), B122

ABD (blue), B212
ACD (green), and B122

BCD (black).
(a) Genuine monogamy relation states that only one of the inequalities B111

ABC,B122
ABD, and B212

ACD can be violated. (b) Full symmetric
monogamy relation holds if we add one more Bell inequality B122

BCD.

For the primary monogamy MAD;BC ≡ B122
ABD + B212

ACD � 0, we have

[A1B1D1] + [A1C1D1] � [B1C1] ,

[B1C1] + [A2B1D2] � [A2C1D2] ,

[A2B2D1] + [A2C2D1] � [B2C2] ,

[B2C2] + [A1C2D2] � [A1B2D2] . (8)

The primary monogamies MAB;CD,MAC;BD,MAD;BC are greater or equal to zero and thus MAB;CD+

MAC;BD +MAD;BC � 0, which is exactly the formula (5). This new monogamy is genuine in the sense that
only one of the three Bell functions can be negative, leaving the other two compatible with LR. More
precisely, if one Bell inequality in (5), e.g. B111

ABC shows a violation (it is negative), then the other inequalities,
B122

ABD and B212
ACD, should be positive (no violation) because the B111

ABC must be monogamous with B122
ABD and

B212
ACD. This works for any other Bell inequalities in (5).

Now we take a step further, throw in one more Bell inequality B122
BCD (see figure 2(b)) and use the similar

reasoning to prove that
B111

ABC + B122
ABD + B212

ACD + B122
BCD �

NS
0, (9)

where the B122
BCD reads

B122
BCD = − [B1C2D2] + [B2C1D2] + [B2C2D1] + [B1C1D1] .

Similar to the previous case, one can construct the primary monogamies for B122
BCD with the rest of Bell

inequalities B111
ABC,B122

ABD,B212
ACD, respectively.

This is also the genuine monogamy in the same way as before, i.e. only one Bell inequality can be
violated by no-signaling correlations. In contrast, the [17] derives a ‘Mermin monogamy’ consisting of four
Mermin inequalities such that three of them can be simultaneously violated by a four-qubit partially
entangled state. Each inequality reads E122 + E212 + E221 − E111 � 2. Here, Eijk stands for the usual
correlation function of the measurement results corresponding to the settings ijk. These correlation
functions can be cast in the form of separation used in this paper, see for instance [25]. Note that all
Mermin inequalities in their monogamy assign the minus sign to the correlation functions E111. This leads
to the simultaneous violations of up to three inequalities and thus to a non-genuine monogamy. This can be
easily ‘fixed’ by changing the position of the minus sign in the inequalities—a fix that is not necessary in
our method. Genuine monogamies are definitely more desirable in quantum communication protocols
such as cryptography, secret key sharing etc [29–32]. They also can be used in characterization of quantum
many body systems as well as in quantum biology [33–37].

2.5. Generalization to multipartite case
We extend our monogamy relations for a general case of N-partite Bell inequalities. For the binary
outcomes, we introduce two sets of symmetric differences for N-party measurement events: X =

{A1 ⊕ B2 ⊕ · · · ⊕ N2, and all cyclic permutations } and Y = {A1 ⊕ B1 ⊕ · · · ⊕ N1} for odd N, and for even
N one more term A2 ⊕ B2 ⊕ · · · ⊕ N2 is added to the set X . In the set X , each local measurement event
with the setting 2 appears an even number of times because of the cyclic permutations, so that these terms
can be dropped out in deriving the N-partite separation Bell inequalities. This is because every event in the
symmetric difference is its own inverse, i.e. X ⊕ X = Ø. Thus, the additional term of symmetric difference

5
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A2 ⊕ B2 ⊕ · · · ⊕ N2 is needed for even number of parties. Thus, the N-partite inequality reads

BAB...N =
∑

i

P(Xi) − P(Y1) � 0, (10)

where the Xi (Y1) implies the ith (1st) element of the set X (Y). For example of N = 4, the Bell function
reads

B1111
ABCD = [A1B2C2D2] + [A2B1C2D2] + [A2B2C1D2]

+ [A2B2C2D1] + [A2B2C2D2] − [A1B1C1D1], (11)

and for N = 5,

B11111
ABCDE = [A1B2C2D2E2] + [A2B1C2D2E2] + [A2B2C1D2E2]

+ [A2B2C2D1E2] + [A2B2C2D2E1] − [A1B1C1D1E1], (12)

where we use the notation as P(A ⊕ B ⊕ C) = [ABC]. We can see that the Bell function for N = 4 (even N)
in (11) has an additional separation [A2B2C2D2] as we explain above. Note that such a geometric inequality
is invariant with respect to swapping of any one separation from the set X and the other from Y . That is, all
variants of Bell inequalities are equivalent.

The above N-partite separation Bell inequality is different from those of Mermin–Ardehali–Belinski–
Klyshko, known as MABK inequality [6, 38]. It is a kind of a chained Bell inequality which has been studied
in [39–41]. We show the quantum violations in section 4.

With another party denoted by N′, we have the following no-signaling primary monogamy: BA...N−1N +
BA...N−1N ′ � 0. Similar to the tripartite case, one can group the separations in the monogamy into two sets
such that each of which has one separation with the minus sign. Then, as before, under the assumption of
no-signaling, each set can be rewritten into two triangle inequalities linked via the context-independent
separations (see the argument below (4)). Moreover, by using the primary monogamy we can derive the
genuine monogamies for N-partite system: any four N-partite Bell inequalities out of (N + 1) inequalities
must hold the no-signaling monogamy relations. For N = 5, one example of the genuine monogamy is
B11111

ABCDE + B22122
ABCDF + B22212

ABCEF + B22122
ABDEF � 0. Each Bell inequality is given in a form of (10). The separations

with minus sign for each inequality are − [A1B1C1D1E1] ,− [A2B2C1D2F2] ,− [A2B2C2E1F2], and
− [A2B2D1E2F2]. This is an example of an AB division monogamy in the sense that the parties A and B are
in the monogamous relations with the remaining parties as C, D, E, F, i.e. AB is monogamous with CDE,
CDF, CEF, and DEF. Note that because of the symmetries presented in our approach this division holds for
any two parties. For any N, our results can be extended to a (N − 3) division monogamy relations. A rule of
assigning the minus sign to separations is as follows: for a given division, the minus is given to the
separations in which the measurement settings for the remaining parties are {111, 122, 212, 122} (refer to
the measurement settings for C, D, E, F of the N = 5 example). Unlike the tripartite scenario, we cannot
derive a fully symmetric monogamy relations for arbitrary N where all Bell inequalities are involved. This is
in contrast to the monogamy (9) and we conjecture that this can be improved if we consider the Bell
inequalities with more separations or more than two measurement settings.

3. d-outcome scenario

An extension for an arbitrary number of measurement outcomes d requires a use of a quasi-distance—a
metric that is not symmetric. Interestingly, our method still stands with a few simple modifications to
account for the lack of symmetry.

3.1. Quasi-distance
Let us first show the triangle inequality for the quasi-distance. For two events, it reads

P(A > B) + P(B > C) � P(A > C), (13)

where P(X > Y) ≡
∑

x

∑
y<x P(Xx, Y y). A joint probability P(X x, Y y) describes that two parties obtain the

outcomes x and y, respectively. To prove this, define the event A � B ≡
⋃

a�b Aa ∩ Bb. Note that
(A � B) ∩ (B � C) ⊆ (A � C) and (A > B) ∪ (B > C) ⊇ (A > C). These result in the triangle inequality in
(13). The event X > Y is not symmetric so the order of events in the triangle inequality is crucial.

6
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We define a quasi-distance between events A, B, C as

P([A + B] < C) ≡
∑
a,b

∑
c>[a+b]

P(Aa, Bb, Cc). (14)

Here P(Aa, Bb, Cc) is the probability of a joint event where three parties detect the outcomes a, b, and c,
respectively, and [x] reads ‘x modulo d’ [42] (note that the notation [·] is different to the one previously
used to present the statistical separation). The quasi-distance satisfies all axioms of a regular distance sans
symmetry, importantly the triangle inequality: P([A + B] < C) + P(C < [D + E]) � P([A + B] < [D + E]).

3.2. Bell inequalities by using the quasi-distance
Consider a tripartite scenario involving two choices of measurement settings Xi(i = 1, 2) each of which has
d possible outcomes: Xi = 0, 1, . . . , d − 1. Using the properties of the quasi-distance we have the following
triangle inequalities:

P([A1 + B1] < C2) + P(C2 < [A2 + B1]) � P([A1 + B1] < [A2 + B1]),

P([A1 + B1] < [A2 + B1]) + P([A2 + B1] < C1) � P([A1 + B1] < C1),

P(C2 < [A1 + B2]) + P([A1 + B2] < C1) � P(C2 < C1),

P(C2 < C1) + P(C1 < [A2 + B2]) � P(C2 < [A2 + B2]). (15)

Adding these triangle inequalities lead to the Bell inequality as

BABC = P([A1 + B1] < C2) + P(C2 < [A2 + B1]) + P([A2 + B1] < C1)

− P([A1 + B1] < C1) + P(C2 < [A1 + B2]) + P([A1 + B2] < C1)

+ P(C1 < [A2 + B2]) − P(C2 < [A2 + B2]) � 0. (16)

To this end, we followed exactly the steps outlined in the derivation of (1). Nothing has changed because
those steps do not rely on the symmetry of the common statistical separation.

Another Bell inequality BABD can be derived by the swaps of the type Ci → Di and ‘ < ’ → ‘ > ’. These
swaps depend on the sign and their logic is easier to understand from the inequalities shown below rather
than to describe in words. The triangle inequalities read

P(D2 < [A1 + B1]) + P([A1 + B1] < D1) � P(D2 < D1),

P(D2 < D1) + P(D1 < [A2 + B1]) � P(D2 < [A2 + B1]),

P([A1 + B2] < D2) + P(D2 < [A2 + B2]) � P([A1 + B2] < [A2 + B2]),

P([A1 + B2] < [A2 + B2]) + P([A2 + B2] < D1) � P([A1 + B2] < D1). (17)

We highlight that the Bell inequality (16) is the Svetlichny-type extension of the Zohren–Gill inequality
[43] (see e.g. references [14, 16, 19, 20] for the multipartite and d outcomes extensions of the Svetlichny
inequalities). It is a genuinely tripartite Bell inequality for d-outcomes to detect the genuinely tripartite
nonlocality (see appendix B for the proof). The quantum violations of the inequality imply that the given
quantum state is the genuinely tripartite entanglement. It is violated by the generalized GHZ state (see
section 4). By a simple swap ‘[A + B] < C’ → ‘[A + B] > C’ we get yet another Bell inequality.

3.3. Monogamy relations
By following exactly the same route as in the tripartite scenario discussed before we arrive at the primary
monogamy

BABC + BABD �
NS

0. (18)

The following chain of triangle inequalities gives the monogamy relation:

P(D2 < [A1 + B1]) + P([A1 + B1] < C2) � P([D2 < C2]),

P([D2 < C2]) + P(C2 < [A2 + B1]) � P(D2 < [A2 + B1]),

P(D1 < [A2 + B1]) + P([A2 + B1] < C1) � P([D1 < C1]),

P([D1 < C1]) + P([A1 + B1] < D1) � P([A1 + B1] < C1),

P(C2 < [A1 + B2]) + P([A1 + B2] < D2) � P([C2 < D2]),

7
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P([C2 < D2]) + P(D2 < [A2 + B2]) � P(C2 < [A2 + B2]),

P(C1 < [A2 + B2]) + P([A2 + B2] < D1) � P([C1 < D1]),

P([C1 < D1]) + P([A1 + B2] < C1) � P([A1 + B2] < D1). (19)

For an arbitrary d, the genuine monogamy conditions for tripartite systems and their extension to
multipartite cases are still unknown, and they will be discussed elsewhere. It is worth noticing that reference
[16] also presents the monogamy relations for N-partite Svetlichny inequalities for M measurement settings
and d outcomes. In particular, for N = 3 and M = 2 the monogamy relation is similar in form to (18).

4. Quantum violations

We show the quantum violations of the Bell inequalities presented in the paper. The violations can be
observed for the N-qudit GHZ state

|Ψ〉 = 1√
d

d−1∑
n=0

|n〉⊗N . (20)

As stated previously, spatially separated parties measure two projectors on the GHZ state.
First consider the separation Bell inequality for the binary outcomes. For odd N, the Bell inequality in

(10) reads

P(A1 ⊕ B2 ⊕ · · · ⊕ N2) + (its cyclic permutations)

−P(A1 ⊕ B1 ⊕ · · · ⊕ N1) � 0. (21)

For even N, one more separation P(A2 ⊕ B2 ⊕ · · · ⊕ N2) is added to the inequality. For the N-qubit GHZ
state, i.e. d = 2 in (20), the separation is given by

P(A ⊕ B ⊕ · · · ⊕ N) =
1

2

(
1 + k

〈
N⊗

s=1

b̂s · �σ
〉)

, (22)

where b̂s are Bloch vectors of the local projectors for the observer s. The variable k has two possible values
depending on N; k = −1 for even N, and k = +1 for odd N. The symbol 〈·〉 denotes the expectation value
for the GHZ state.

We show the proof of (22) for N = 2 before generalizing to arbitrary N. The projector for the
measurement setting i of the party A is given by

Π̂Ai =
1

2

(
1 + b̂Ai · �σ

)
, (23)

where b̂Ai is a unit Bloch vector for the ith setting of A. By definition of the statistical separation we have

P(Ai ⊕ Bj) = P(Ai) + P(Bj) − 2P(Ai, Bj)

= Tr �(Π̂Ai ⊗ 𝟙+ 𝟙⊗ Π̂Bj − 2Π̂Ai ⊗ Π̂Bj ), (24)

where � is a density operator for the given state. Using (23), the separation (24) leads to

P(Ai ⊕ Bj) = Tr

[
1

2

(
𝟙⊗ 𝟙− b̂Ai · �σ ⊗ b̂Bj · �σ

)
�

]
. (25)

It can be extended to an arbitrary N recursively (see section 3 of [25]). Note that the sign of the correlation
measurement depends on the number of N as −1 for even N and +1 for odd N.

To calculate (22), let us confine b̂s to the x–y plane with bsz = 0. We introduce complex variables
bs = bsx + ibsy, where bsx and bsy are x and y components of the local Bloch vectors b̂s, respectively. Then, for

8
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Figure 3. Value of the left-hand side of the Bell inequality in (16) as a function of the dimension d up to 50. As the lowerbound
of the inequality by the local realistic description is zero, thus the negative values of the results imply the quantum violations.

arbitrary N we have 〈
N⊗

s=1

b̂s · �σ
〉

= R

(∏
s

bs

)
, (26)

where R(b) is the real value of b. It is clear that the right-hand side removes imaginary terms, containing
the even number of by’s. Letting bsx = cos θs and bsy = sin θs, the complex variable bs = exp (iθs) so that

R

(∏
s

bs

)
= cos θ, (27)

where θ =
∑

s θs. Then, the separation reads

P(A ⊕ B ⊕ . . .⊕ N) =
1

2
(1 + k cos θ)

=

⎧⎨
⎩(1 + k)/2, if θ = 2mπ

(1 − k)/2, if θ = (2m + 1)π
(28)

for an integer m. This is the perfect correlation for the GHZ state. Therefore, when we set the measurement
setting 1 as x and the setting 2 as x rotated around z by π/(N − 1) for each respective party, we will have
that P(A1 ⊕ B2 ⊕ · · · ⊕ N2) and its cyclic permutations are zero. But, as P(A1 ⊕ B1 ⊕ · · · ⊕ N1) = 1, finally
the inequality (21) leads to −1 � 0 for odd N. For an even N, we set the measurement setting 1 as x rotated
around z by π/N and the setting 2 as x rotated around z by −π/N(N − 1) for each respective party. Such
settings show that the P(A1 ⊕ B2 ⊕ · · · ⊕ N2) and its cyclic permutations are zero, and P(A1 ⊕ B1 ⊕ · · ·
⊕ N1) = 1. Additional term P(A2 ⊕ B2 ⊕ · · · ⊕ N2) = [1 − cos (−π/(N − 1))]/2 is not perfectly
correlated, but it is always less than one. Thus, we still observe the violation (a weaker one).

For higher dimensional cases, we used the quasi-distance to derive Bell inequalities with two local
measurements. To see the quantum violations, we use a Fourier basis

|x〉Xi
=

1√
d

d−1∑
n=0

ωn(x+ϕi)|n 〉 , (29)

where ω = exp(2πi/d) and ϕi is a local phase of the Xith measurement. Then, the probability P(Aa
i , Bb

j , Cc
k)

to get the outcomes a, b, c given the settings i, j, k for a GHZ state (20) reads

P(Aa
i , Bb

j , Cc
k) =

1

d4

∣∣∣∣∣
d−1∑
n=0

ωn(ai+bj−ck+ϕijk)

∣∣∣∣∣
2

, (30)

9
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where ϕijk = ϕi + ϕj − ϕk. To violate the Bell inequality, we set ϕ111 = 1, ϕ222 = −1, ϕ112 = ϕ211 = ϕ121 =
1/3, and ϕ212 = ϕ122 = ϕ221 = −1/3. Figure 3 shows the quantum predictions of the left-hand side in (16)
up to d = 50. Negative values imply the quantum violations.

5. Conclusions

We presented a new way of deriving the monogamies of the Bell inequalities violations. Our method is
based on geometric properties of probability spaces called statistical separation, first introduced by
Kolmogorov and developed further in the context of non-classical correlations in [23–25]. The cornerstone
of results obtained is the triangle inequality.

We derived new monogamies for N parties, each performing measurement of two dichotomic
observables. These monogamies are stronger than any other monogamies of this kind reported in the
literature6. They are stronger because of their strictly exclusivity, i.e. only one out of N Bell inequalities can
be violated. This can have potential applications in various quantum information protocols. It also
improves our understanding of the relation between multipartite quantum, super-quantum correlations
and no-signaling principle.

Using the similar geometric approach we also derived a genuinely tripartite Svetlichny–Zohren–Gill
type Bell inequality for two d-outcome measurements and showed its quantum violation. We also showed a
no-signaling monogamy for this inequality. Interestingly, we had to use the quasi-distance in these
derivations. As far as we know, this is the first usage of this particular quasi-distance in the context of
non-classical correlations. It would be interesting to see how to extend this to multipartite correlations and
how to derive genuine multipartite monogamies. This will be presented in a forthcoming work.
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Appendix A. Kolmogorov probabilistic description

Here we describe the event and its probability measure in terms of Kolmogorov probability space denoted
by (Ω,F , P), where Ω is a sample space, F an event space, P a probability measure. Consider the simplest
scenario in which two observers, Alice and Bob perform two binary local measurements each.

We first show the local realistic description for probabilistic events and then extend it to the nonlocal
model. In general, the nonlocal model includes not only no-signaling theories but also signaling models.
Then, we show how the no-signaling condition applies to the nonlocal events and how it yields the desired
triangle inequalities.

A.1. Local model
In a local realistic model, all possible outcomes form a sample space which can be written as

ΩL = {(a1, a2, b1, b2)|ai, bj = 0, 1}, (A.1)

for all i, j. The total number of elements in the sample space ΩL is 24 = 16 (in a general case of n observers,
m local settings, and d outcomes, it is dnm). Event space F is a set of subsets of the sample space ΩL. An
event X is an element of F . For instance, the event with outcome α for Alice’s choice of the measurement

6 The term ‘strong’ is used to highlight that our monogamy relations involving many Bell inequalities are genuine such that only one
Bell inequality can be violated by the quantum theory and by any no-signaling theory.
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setting i = 1 is given by
Aα

i=1 = {(a1 = α, a2, b1, b2)|a2, b1, b2 = 0, 1}. (A.2)

Alice’s detection event is encoded by α = 1 and no detection event by α = 0. The events A0
i and A1

i are
subsets of the sample space ΩL. Similarly, we can define the events Aα

2 , Bβ
1 , and Bβ

2 . For a given probability
measure P, event X has probability

P(X) =
∑
ω∈Ω

ξX(ω)P(ω), (A.3)

where ω is a sample point, that is, an element of the sample space and ξX(ω) is an indicator function with
values 1 if ω ∈ X and 0 otherwise. Obviously, it holds P(A0

i ) + P(A1
i ) = 1 for all i. In the main text, as we

deal with the ‘detection’ events only, αs are omitted unless there is a possibility of confusion.

A.2. Nonlocal model
Now let us discuss a nonlocal model. While measurement outcomes in a local model only depend on the
local settings, measurement outcomes in a nonlocal model can be affected by the measurement settings of
the spatially separated parties. For example, Alice’s measurement outcome a depends on both her and Bob’s
settings, i and j respectively, and thus is denoted by aij.

The sample space for a nonlocal model is given by

ΩNL = {(a11, a12, a21, a22, b11, b12, b21, b22)|aij, bij = 0, 1}, (A.4)

for all i, j. Each element of the event space can be denoted by

Aα
ij = {(. . . , aij = α, . . .)|ai′ j′ , bij = 0, 1}, (A.5)

for i �= i′ and j �= j′. The probability of the event has the same formula as in (A.3) except that in the
nonlocal model the sample is given by (A.4).

We are now interested in no-signaling theories. It means that the marginals of the joint probability
distribution are independent from the other party’s measurement setting. For a joint probability
distribution P(a, b|x, y) this means∑

b

P(a, b|x, y) =
∑

b

P(a, b|x, y′) ∀ a, x, y, y′, (A.6)

where a and b are Alice’s and Bob’s measurement outcomes for the settings x and y, respectively. In our
case, this condition can be rewritten as

P(a, 0|1, 1) + P(a, 1|1, 1) = P(a, 0|1, 2) + P(a, 1|1, 2).

The no-signaling condition in terms of the probability measure can be written as

P(Aa
ij) = P(Aa

ij′). (A.7)

One can see immediately that this probability does not depend on the Bob’s measurement settings. The
no-signaling condition for Bob is defined in a similar way. The formulas of (A.6) and (A.7) are thus related

P(a, 0|1, 1) =
∑
�a,�b

P(a11 = a,�a, b11 = 0,�b). (A.8)

Here �a = (a12, a21, a22), �b = (b12, b21, b22) and we have P(a, 0|1, 1) + P(a, 1|1, 1) = P(Aa
11).

A.3. Proof of the triangle inequalities in (4)
Here we prove the triangle inequalities (4) presented in the main text using the Kolmogorov probability
description explained in the previous sections. As four parties are involved, the event for each party has four
subscripts. For example, Alice’s detection event is denoted by Aijkl, where i is Alice’s measurement setting
and j, k, l are the measurement settings chosen by others. Then, the triangle inequalities in (4) can be
rewritten as

[A2122B2122C2122] + [A2122B2122D2122] � [C2122D2122] = [C1222D1222] ,

[C1222D1222] + [A1222B1222C1222] � [A2122B2122D2122] ,

[A2211B2211C2211] + [A2211B2211D2211] � [C2211D2211] = [C1111D1111] ,

[C1111D1111] + [A1111B1111D1111] � [A1111B1111C1111] , (A.9)

11
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where we used the no-signaling condition and the following properties of the common separation:
[C1222D1222] = [C2122D2122] and [C2211D2211] = [C1111D1111]. More precisely, the first two subscripts for C
and D imply the choices of the measurement settings by the parties A and B, respectively. Because the
parties are spatially separated, the choices of the measurement settings for the parties A and B do not affect
the choices made by C and D (no-signaling condition). Similarly, this condition also applies to C and D. All
these observations yield the triangle inequalities (4) in the main text.

Appendix B. Proof of genuine tripartite Bell inequality

Here we show that the Bell inequality (16) in the main text is the genuine tripartite Bell inequality. A
violation of such inequality implies that the systems present the genuine tripartite entanglement. It was first
discovered by Svetlichny for tripartite case [44] and later generalized to multipartite one [14, 19, 20].

To this end, we convert the probability functions in (16) to averages of floor functions. This was used in
[45] to prove that Zohren–Gill inequality is equivalent to CGLMP inequality for two qudits. For
a, b ∈ {0, 1, . . . , d − 1}, the relation reads P(B < A) = −〈� B−A

d �〉, where �·� is the floor function and
〈 f(A, B)〉 =

∑
a,b f(a, b)P(Aa, Bb). As

−d − 1

d
� b − a

d
� d − 1

d
,

we have ⌊
b − a

d

⌋
=

⎧⎨
⎩0 for b � a

−1 for b < a.

We generalize the method to three qudits and we get the relation P([A + B] < C) = −〈� [A+B]−C
d �〉. Note

that by definition of [x] the range reads [a + b] ∈ {0, 1, . . . , d − 1}, thus we can apply the above relation to
our tripartite Bell inequality (see (14) in the main text for the definition of the probability function for
tripartite case).

The method enables to rewrite the Bell inequality (16) in a form of

−
〈⌊

A1 + B1 − C2

d

⌋〉
−
〈⌊

−A2 − B1 + C2

d

⌋〉
−
〈⌊

A2 + B1 − C1

d

⌋〉
+

〈⌊
A1 + B1 − C1

d

⌋〉

−
〈⌊

−A1 − B2 + C2

d

⌋〉
−
〈⌊

A1 + B2 − C1

d

⌋〉
−
〈⌊

−A2 − B2 + C1

d

⌋〉

+

〈⌊
−A2 − B2 + C2

d

⌋〉
� 0, (B.1)

where we used the following properties: [x] = x − d� x
d�, �x + n� = �x�+ n for integer n, and ��x�� = �x�.

We show that our inequality (B.1) is equivalent to the genuine tripartitie Bell inequalities in [14, 20]. Note
that 〈� [A+B]−C

d �〉 = 〈�A+B−C
d �〉 − 〈�A+B

d �〉 and the terms of pair variables in a form of 〈�A+B
d �〉 are

cancelled out. Multiplying (B.1) by d, using the relation [x] = x − d� x
d� and applying the relation

[−x] = (d − 1) − [x − 1] we rewrite the inequality (B.1) in another form of

〈[A1 + B1 − C2]〉+ 〈[−A2 − B1 + C2]〉+ 〈[A2 + B1 − C1]〉+ 〈[−A1 − B1 + C1 − 1]〉

+ 〈[−A1 − B2 + C2]〉+ 〈[A1 + B2 − C1]〉+ 〈[−A2 − B2 + C1]〉

+ 〈[A2 + B2 − C2 − 1]〉 � 2(d − 1). (B.2)

This form of our inequality coincides with the genuine tripartite Bell inequality S3,d in [20] when the sign of
C is flipped to be plus. Moreover, applying B1 →−B2, B2 →−B1 and Ci →−Ci in (B.2) leads to another
genuine tripartite Bell inequality I3

M for two measurement settings (M = 2) in [14].
It is worth noting that the inequality (16) remains genuinely tripartite under party permutations. When

the parties A and C are exchanged, we have

P([B1 + C1] < A2) + P(A2 < [B1 + C2]) + P([B1 + C2] < A1) − P([B1 + C1] < A1)

+ P(A2 < [B2 + C1]) + P([B2 + C1] < A1) + P(A1 < [B2 + C2])

− P(A2 < [B2 + C2]) � 0. (B.3)
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By applying the similar procedure from (B.1) and (B.2), the inequality (B.3) is expressed in a form of (B.2)
but flipping signs of A and C. Note that such a sign flip for the local party leaves unchanged physical
properties of the Bell inequality. We have the similar equivalence also for exchanging B and C.
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