
Received February 15, 2021, accepted March 5, 2021, date of publication March 29, 2021, date of current version April 8, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3069223

MeetGo: A Trusted Execution Environment
for Remote Applications on FPGA
HYUNYOUNG OH 1,2, KEVIN NAM 1,2, SEONGIL JEON 1,2, YEONGPIL CHO 3,
AND YUNHEUNG PAEK 1,2, (Member, IEEE)
1Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
2Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul 08826, Republic of Korea
3Department of Computer Science, Hanyang University, Seoul 04763, Republic of Korea

Corresponding authors: Yeongpil Cho (ypcho@hanyang.ac.kr) and Yunheung Paek (ypaek@snu.ac.kr)

This work was supported in part by the Institute of Information & Communications Technology Planning & Evaluation (IITP)
Grant funded by the Korean Government (MSIT) under Grant 2018-0-00230 (Development on Autonomous Trust Enhancement
Technology of IoT Device and Study on Adaptive IoT Security Open Architecture based on Global Standardization [TrusThingz Project])
and Grant 2020-0-00325 (Traceability Assurance Technology Development for Full Lifecycle Data Safety of Cloud Edge) and Grant
2020-0-01840 (Analysis on Technique of Accessing and Acquiring User Data in Smartphone), in part by the National Research Foundation
of Korea (NRF) Grant funded by the Korean Government (MSIT) under Grant NRF-2020R1A2B5B03095204, in part by the BK21
FOUR program of the Education and Research Program for Future ICT Pioneers, Seoul National University, in 2021, and in part by the
research fund of Hanyang University under Grant HY-2020. The EDA tool was supported by the IC Design Education Center (IDEC),
South Korea.

ABSTRACT Remote computing has emerged as a trendy computing model that enables users to process
an immense number of computations efficiently on the remote server where the necessary data and
high-performance computing power are provisioned. Unfortunately, despite such an advantage, this com-
puting model suffers from insider threats that are committed by adversarial administrators of remote servers
who attempt to steal or corrupt users’ private data. These security threats are somewhat innate to remote
computing in that there is no means to control administrators’ unlimited data access. In this paper, we present
our novel hardware-centric solution, called MeetGo, to address the intrinsic threats to remote computing.
MeetGo is a field-programmable gate array (FPGA)-based trusted execution environment (TEE) that aims
to operate independently of the host system architecture. To exhibit the ability and effectiveness ofMeetGo as
a TEE ensuring secure remote computing, we have built two concrete applications: cryptocurrencywallet and
GPGPU.MeetGo provides a trust anchor for these applications that enable their users to trade cryptocurrency
or to run a GPGPU program server on a remote server while staying safe from threats by insiders. Our
experimental results clearly demonstrate that MeetGo incurs only a negligible performance overhead to the
applications.

INDEX TERMS Field-programmable gate array (FPGA), remote computing, remote attestation, secure
communication channel, trusted execution environment (TEE).

I. INTRODUCTION
In remote computing, users transmit their own data to a
remote application and receive its result. The significant
benefit that users expect from remote computing is that they
can perform a broad spectrum of computations—from small
to large scale—directly on the remote site at lower costs
and with better performance than on their own facilities.
Cloud technology is one good example that serves this benefit

The associate editor coordinating the review of this manuscript and

approving it for publication was Alex Noel Joseph Raj .

from remote computing to cloud users. For example, users
can entrust the cloud with personal information management
(e.g., google-cloud), customer relation management (e.g.,
Salesforce), or a big data analysis based on machine learning
(e.g., AWS-AI and Azure-AI).

With the growing popularity of remote computing services,
security is becoming an ever-increasingly important issue for
service providers and users. For instance, in one type of cloud,
Software as a Service, everything, including applications and
remote user data, is managed by the cloud server. It is known
that data security compliance issues are somewhat intrinsic

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 51313

https://orcid.org/0000-0001-5123-4921
https://orcid.org/0000-0002-4621-2434
https://orcid.org/0000-0001-5719-4545
https://orcid.org/0000-0001-7842-1719
https://orcid.org/0000-0002-6412-2926
https://orcid.org/0000-0003-1505-3159

H. Oh et al.: MeetGo: A Trusted Execution Environment for Remote Applications on FPGA

to these types of cloud or remote computing mainly because
the privacy and integrity of user data are built on the trust in
the remote server. To be specific, as the server (or its admin-
istrator) normally has to manage all computing resources in
the system, it is entrusted with the full privilege of controlling
access to private data belonging to users. Unfortunately, any
server dealing with private data entrusted by remote own-
ers innately entails a security risk, called an insider threat,
which comes from a privileged insider (i.e., administrator)
of a server who turns into an adversary trying to steal or
tamper with clients’ data. According to [1], about a third
of cyberattacks are suspected of being the result of insider
threats.

A well-known solution to thwart such threats by insid-
ers is building a trusted execution environment (TEE) [2]
within a server for remote users. The TEE aims to ensure
the privacy and integrity of user code and data loaded on the
server. Applications loaded in the TEE are guaranteed to run
and process data in an isolated environment securely from the
rest of the host system, namely the rich execution environment
(REE), administered by privileged insiders. Private user data
are stored in secure storage shielded from the REE, and sensi-
tive functions are executed inside a TEE without interference
from the REE. Therefore, even if malicious insiders have full
control over the REE, in principle, they cannot corrupt or leak
remote user data processed inside a TEE.

Intel SGX provides a readily available TEE, called an
enclave, that is isolated from all software entities including
the kernel and the hypervisor. An enclaves is built up on top
of an enclave page cache (EPC), encrypted memory regions
so that any arbitrary accesses from outside are impossible.
Therefore, SGX enclaves can provide remote users with reli-
able protection against insider threats. However, using SGX
for remote computing poses a severe challenge in terms of
scalability because the EPC is statically sized as 128 MB,
which is too limited to execute data-intensive computations.
Enclaves spending memory exceeding the size of the EPC
bring about frequent memory swapping between the EPC
and non-EPC, which results in considerable performance
degradation. In addition, CPU where SGX enclaves are
implemented is not optimized inherently for highly parallel
workloads such as a machine learning based big data anal-
ysis. As such, SGX enclaves are somewhat unattractive to
be leveraged on remote computing for a broad spectrum of
workloads.

In this paper, hereby, we aim to realize another TEE that is
solid in terms of both security and scalability, enabling remote
computation that is robust against insider threats and efficient
even on various performance requirements. Our approach
to achieve the goal is to leverage an emerging architecture,
called a CPU/FPGA hybrid architecture [3]–[5]. More specif-
ically, we have built a TEE specialized for remote computing,
calledMeetGo, on a field-programmable gate array (FPGA).
The foremost reason why FPGA is suitable for this purpose
is that it is physically isolation from the would-be malicious
CPU. Therefore, FPGA can serve as a TEE as long as proper

control mechanisms are implemented to regulate arbitrary
access to the inside of it. In fact, a recent study [6] has shown
that FPGA can securely run a security-oriented application
such as secure storage using this isolation feature. Another
important reason is that FPGA is versatile because its internal
hardware logic can be programmed dynamically. By deploy-
ing customized acceleration modules, FPGA can efficiently
run a wide spectrum of applications such as data analytics,
media processing, artificial intelligence, network security,
finance, and genomics, as demonstrated in practice [7]–[12].
Even better, optimized logic design allows FPGA to achieve a
higher power-efficiency than other computing hardware such
as the CPU and the GPU.

To realize MeetGo on FPGA which is originally employed
as a workhorse for the CPU in a CPU/FPGA hybrid archi-
tecture, we have implemented security mechanisms that are
necessary for trustworthy remote computing. To be specific,
we first have devised a remote attestation mechanism that
can verify the integrity of the applications that exist as the
form of hardware logic. We have also implemented an isola-
tion mechanism to block unauthorized access to the applica-
tions from the malicious CPU. Lastly, we have developed a
secure communication mechanism to allow secure transmis-
sions of sensitive data between the installed applications and
remote users. All of these are backed by a robust hardware
trust anchor rather than relying on software implementations,
as described in section III. One thing to note about MeetGo
is that it can collaborate with other TEEs on the CPU side
to improve their performance reliably. For example, an SGX
enaclave can be connected to MeetGo as a remote user,
and then it can entrust burdensome computations to MeetGo
equipped with accelerator logics to process them more
efficiently.

The purpose of this paper is to exhibit the ability and
effectiveness of MeetGo as a TEE that ensures secure remote
computing. For empirical demonstrations, we have built two
trusted applications onMeetGo. One is a cryptocurrency wal-
let application described in section IV. The security of cryp-
tocurrency trading depends on the protection of the private
key of a cryptocurrency owner, which is the personal secret
representing the ownership of and right to trade cryptocur-
rency, from unauthorized use by adversaries. Unfortunately,
this security requirement has been violated in the common
practices of owners that entrust their private keys to a remote
server such as a cryptocurrency exchange for ease of use.
Accordingly, our wallet application ensures that private keys
are always stored and processed within MeetGo, thereby
enabling secure cryptocurrency trading on a remote server
without the worry of insider threats [13]. The other exem-
plar application we built on MeetGo is GPGPU, explained
in section V. To preserve privacy and process big data effi-
ciently, several attempts [14], [15] have been made to incor-
porate a GPU having massive computational power into a
TEE. However, applying these attempts in practice is difficult
due to their inevitable hardware modifications to the GPU
itself and the associated interfaces. On the other hand, without

51314 VOLUME 9, 2021

H. Oh et al.: MeetGo: A Trusted Execution Environment for Remote Applications on FPGA

any further hardware changes, MeetGo can offer a trusted
GPGPU computing environment by loading a GPU module
implemented in the bitstream. Overall, MeetGo capitalizes
on the programmability of FPGAs to enable users to build
their own TEE on an untrusted remote server at their disposal
simply by loading the corresponding hardware module in
bitstreams.

In our implementation, MeetGo along with the two afore-
mentioned applications is built on a commodity FPGA board,
Xilinx VCU118, coupled with Intel x86 CPUs via the PCIe
interface. According to our experiments, the core com-
ponents of MeetGo are implemented with 21,393 lookup
tables (LUTs), which only occupy 1.8 % of the FPGA LUT
resources. It is worth noting that, MeetGo rarely affects the
performance of the applications. By adopting a pipelined
design, it increases the communication latency of an
individual application a mere 0.72 µs. In addition, the cryp-
tocurrency wallet is fast enough to handle 300 transactions
per second, and when implementing a CNN-based image
classifier, the GPGPU handles the MNIST test database
in 109.11 seconds, which are both virtually zero-overhead
compared to without MeetGo.

II. THREAT MODEL AND ASSUMPTIONS
Users are eager to protect the integrity and confidentiality
of their code and data that are loaded on remote computing
servers. For this purpose, users will employ our FPGA-based
TEE to securely run their own applications and deal with
security-critical data in an isolated environment.We postulate
that the built-in modules of MeetGo are trustworthy, but
applications dynamically installed in our TEE may contain
security vulnerabilities. In this work, we consider strong
adversaries (e.g., malicious insiders in charge of administra-
tion) who have full control over the host system that comes
with our TEE. That is, they have no limitations in execut-
ing code, accessing data, or controlling system components,
including the CPU cores and peripherals. However, note
that they are completely prevented from directly reaching
the inside of our TEE, which is built on top of an FPGA
physically isolated from the host system. In addition, since
we trust themanufacturing process of FPGAs, we assume that
they have no hardware backdoors or Trojans. For this reason,
the only possible attacks from adversaries are as follows.
First, adversaries may attempt to undermine the isolation
property of our TEE by deceiving its authentication process or
by installing malicious modules inside the FPGA. They may
also try to leak users’ secrets by eavesdropping or interfering
with communications between remote users and our TEE
through varied physical and side-channel attacks. We are
convinced that all the aforementioned attacks are thwarted
by adopting the conventional protection mechanisms that are
orthogonal to MeetGo. The details will be discussed through
the security evaluation in subsection VI-C.

III. MeetGo ARCHITECTURE
In this section, we explain the architecture of MeetGo,
the TEE built on an FPGA. The first step to build our TEE

FIGURE 1. Key management for securing MeetGo.

is constructing inside the FPGA a trust anchor, which must
be completely isolated from the outside. As this ultimate
trust, a private key, called the master private key (MKpriv),
is embedded in the FPGA. Since the chain of trust in MeetGo
starts from this root of trust, we have designed our security
mechanism carefully so that MKpriv can be tamper-proof.
Along with MKpriv, we install a dedicated module, called
the security agent (SA), which plays the pivotal role in our
TEE. The SA, with exclusive access to MKpriv for various
cryptographic functions, provides core security functions:
(1) remote attestation that enables remote users to assess
the authenticity and integrity of their applications running in
the FPGA, (2) isolation to prevent unauthorized access from
untrusted hosts and between applications runningwith private
states, and (3) secure connection between a remote user and
the FPGA. In the following subsections, we will explain how
all these mechanisms are designed for building a TEE in the
FPGA.

A. INSTALLING MASTER KEY
As depicted in 1© of Figure 1, MKpriv is the FPGA’s built-in
private key from the well-known private-public asymmetric
key algorithm [16], [17]. MeetGo’s prerequisite is that each
FPGA holds a unique private key MKpriv, which is essential
to keep the integrity and confidentiality of our TEE built
on an FPGA. It allows the FPGA to be identified through
the matching public key MKpub, which can be distributed to

VOLUME 9, 2021 51315

H. Oh et al.: MeetGo: A Trusted Execution Environment for Remote Applications on FPGA

remote users securely by certificate authorities (CAs) (1©-c).
We hereby posit that FPGA manufacturers who are trustwor-
thy in our threat model in section II generate MKpriv/MKpub
pairs (1©-a) and then map each pair to individual FPGAs by
baking a different MKpriv to each FPGA during the manu-
facturing process. The installation of MKpriv (1©-b) can be
fulfilled by one of the following two methods, which are
equally secure.

1) STORING MKpriv IN SA
In this method, the MKpriv is stored in the SA. More specif-
ically, FPGA manufacturers implant the generated MKpriv
inside the code of the SA (i.e., bitstream). As will be
explained in subsection III-B, the SA bitstream is distributed
and installed in encrypted form by a secure bitstream load-
ing mechanism so that the MKpriv embedded in the SA bit-
streams is securely protected against any reverse engineering
attempts. In this way, however, MeetGo’s essential prereq-
uisite that each FPGA must have its own unique MKpriv
may be unmet when identical SA bitstreams having the same
MKpriv are loaded in multiple FPGAs. To prevent this prob-
lem, we need to strongly bind FPGAs and SA bitstreams
possessing each MKpriv, one-to-one. This binding can be
constructed by FPGA manufacturers’ allocating each pair of
FPGA and SA bitstream a different cryptographic key used
in the secure bitstream loading mechanism.

2) STORING MKpriv IN NON-VOLATILE MEMORY
In this method MKpriv is stored in non-volatile memory such
as eFUSE or PROM of FPGA rather than in SA bitstreams.
However, as such internal non-volatile memory is already
implemented in the current commodity FPGAs but originally
intended to store the cryptographic keys used in the secure
bitstream loading mechanism, FPGA manufacturers block
applications from accessing the internal memory for security.
Therefore, to permit the SA to reach the MKpriv, the FPGA
hardware needs to be modified to relax this access restriction
for the internal memory, but it could allow unauthorized
applications to access the MKpriv as well. Therefore, to grant
the SA exclusive access to the MKpriv, we can store the
MKpriv in the internal memory in encrypted form and put the
corresponding decryption key only in the SA bitstream. The
SA bitstream is tamper-proof thanks to the secure bitstream
loading mechanism; thereby, the decryption key and MKpriv
are kept secure.

In a comparison of the two aforementioned methods,
the former one shows a clear advantage in that it can be imple-
mented on commodity FPGAs. On the other hand, the latter
one has a drawback of requiring a slight modification on
FPGAhardware. However, once themodification is done, this
method has an obvious merit in terms of ease of deployment,
because a single SA bitstream can be used for all FPGAs,
unlike the former method that necessitates as many different
SA bitstreams as the number of FPGAs. In our prototyping of
MeetGo, we used the former method because we carried out
the implementation on a commodity FPGA in section VI.

B. LOADING SECURITY AGENT
Based on the exclusive privilege to accessMKpriv, the SA per-
forms the core TEE functions such as secure application load-
ing, remote attestation, and secure channel establishment. To
prevent any interference with the loading procedure of the
SA on the FPGA, the SA bitstream is designed to be loaded
at boot time (see 1©-d in Figure 1). It can be achieved by the
secure bitstream loading mechanism provided on a commod-
ity FPGA. This mechanism supports the automatic loading
of a bitstream encrypted and stored inside a storage medium,
such as NAND or SD card, after power-on. As briefly men-
tioned earlier, the decryption key is stored within non-volatile
memory in the FPGA, such as eFUSE or PROM. The exclu-
sive access to the decryption key is restricted to the built-in
module of the FPGA, called the infrastructure hardware,
so that even arbitrarily installedmalicious applications cannot
leak the key. Only the infrastructure hardware can use the
key to decrypt and install the encrypted bitstream when the
FPGA is booted. The SA loading process by this mechanism
is logically secure, but an insider who can physically access
the FPGA devicemay interfere with this process by switching
the mode selection jumper on the FPGA board to disable
this mechanism. Even so, such interference can never break
the security of the SA, and it may only disturb the loading
of the SA to deactivate our TEE on the FPGA. MeetGo
allows remote users to check whether the TEE is activated
and applications are running through a remote attestation
mechanism described in subsection III-D.

C. LOADING APPLICATIONS
To load and run applications dynamically on the FPGA,
we utilize the partial reconfiguration feature [18] that allows
a subset of the FPGA to be modified by a partial bitstream
downloaded while the FPGA is operating. In our design,
the SA is loaded to the static area, which is programmable
only at boot time, but applications can be loaded, whenever
necessary, as partial bitstreams into the dynamic area that
allows reprogramming at runtime. The dynamic area is again
partitioned into several regions in each of which an individual
application is installed. The partition is organized at boot
time according to the configuration (i.e., number and size of
regions) that is predefined in the SA bitstream. The partition
is fixed after being configured once, and the exclusive access
authority for the regions is only given to the SA, so that
subsequent processes of loading applications are performed
under the full control of the SA.

To be specific, the user may remotely transmit the appli-
cation bitstream or request to load the bitstream stored in the
server memory. In either case, to protect its contents, a bit-
stream is encrypted by using the asymmetric encryption algo-
rithm using the public and private key pair, MKpub/MKpriv,
which is already associated with the FPGA, as described
in subsection III-A (2©-a). Note that no FPGAs have the same
MKpub/MKpriv. This implies that when the server is equipped
with multiple FPGAs, a remote user may choose a specific
FPGA, which the desired bitstream is targeted to run on,

51316 VOLUME 9, 2021

H. Oh et al.: MeetGo: A Trusted Execution Environment for Remote Applications on FPGA

simply by encrypting the bitstream with the key associated
with the target FPGA. When the target FPGA receives a
bitstream encrypted with MKpub as input (2©-b), the SA first
verifies its signature to ensure that the application has been
certified by a trusted third party (e.g., well-known app store)
and has not been illegally modified (2©-c). The SA then
decrypts it with MKpriv and installs the bitstream on a region
of its dynamic area (2©-c). After successfully loading the
application, the SA sends amessage notifying the remote user
of the application ID, together with the signature representing
the integrity and authenticity of the message (2©-e). As the
application ID, the index of the region where the bitstream is
placed within the dynamic area is used. Since, in our partial
reconfigurationmechanism, the number and size of regions in
the dynamic area are fixed after being configured statically
at boot time and only the SA has access to the regions,
an adversary cannot arbitrarily corrupt the loaded application
or remap the allocated application ID to a malicious applica-
tion in the operating FPGA.

The loaded application does not share any resources, such
as caches and buffers, with other applications to avert the
unavoidable security issues that arise under resource sharing,
as stated in section I. Each application uses only the resources
of its allocated region and communicates only with the SA.
The SA encrypts the application response and transmits it to
the remote user using a session key. It is worth noting that any
entity other than the remote user sharing the session key with
the SA cannot leak or tamper with the information within the
encrypted message. The procedure used to securely share the
session key will be described in subsection III-C.

In our design, the SA and the loaded applications are
connected in accordance with the standard AXI bus pro-
tocol [19], which is one of the most popular bus protocol
standards between IPs in SoC design. MeetGo hereby can
incorporate various (conventional) IPs by loading them as
applications, which are readily fulfilled with no interface
change or a slight interface change of adding AXI bridge,
which translates the original signals into AXI transactions.
In this way, MeetGo can provide a GPGPU-enabled TEE,
whose details are described in section V.

D. REMOTE ATTESTATION
MeetGo allows remote users to verify the authenticity and
integrity of applications that are running on the FPGA at
any time. The SA carries out a proof whenever there is
a request for remote attestation. For this, the SA employs
a static measurement scheme. Whenever the SA loads an
application into a region in the dynamic area, it measures
(computes the hash of) the bitstream (2©-d) and stores it in
a table along with the application ID (i.e., region index).
Such static measurement is trustworthy, because in the design
of our TEE, the SA is the only entity that is authorized to
access the dynamic area where applications are installed.
The attestation protocol runs as follows. The remote user
can send an attestation request message for an application.
The message should contain the target application’s ID and

an unpredictable nonce for preventing a replay attack [20]
(3©-a). Upon receipt, the SA responds with themeasured hash
value of the target application and the received nonce, after
signing with the MKpriv (3©-b). Now, the remote user can
verify the attestation (3©-c) by (1) checking the correctness
of the nonce, (2) comparing the delivered hash value with
the known value associated with the target application, and
(3) authenticating the signature through the MKpub.

E. ESTABLISHING SECURE COMMUNICATION CHANNEL
The SA allows the remote user to securely communicate
with an application running in the FPGA. All the messages
transferred between the user and the application are encrypted
with a symmetric session key. To securely share this key with
the FPGA, the user initiates the key exchange algorithm in the
following steps: (1) The user generates a session key (Sk) and
then encrypts it with the MKpub of the FPGAwhere the target
application is running. A random nonce and the application
ID are also included and encrypted together (4©-a). (2) When
the SA receives the encrypted message, SA decrypts it with
the MKpriv to obtain the Sk. (3) Then, the SA tries to prevent
multiple users from accessing the same application at one
time by managing a one-to-one mapping table between the
Sk and the application ID. (4) It then returns the acknowl-
edgement, which comprises the sent nonce and the signature
generated using the MKpriv (4©-b). (5) Finally, the remote
user can be sure that a session has been opened and the associ-
ated Sk has been securely shared with the SA by verifying the
signature using the MKpub (4©-c). It is noteworthy that unless
they know the MKpriv, adversaries cannot launch a man-in-
the-middle attack through the key exchange algorithm pro-
posed above. We adopt AES (with Galois/Counter Mode) as
our symmetric key algorithm to keep the integrity and fresh-
ness as well as the confidentiality during the communication
session. When encrypted messages arrive from remote users,
the SA decrypts the messages with the Sk, verifies that it is
legitimate access by referring to the mapping table between
the Sk and the application ID, and delivers the messages to
the application running in the FPGA. In addition, the SA
encrypts the response messages sent from the application
with the Sk and then requests the host system to deliver the
encryptedmessages to the remote user. The SA performs both
encryption and decryption in a pipelined manner to minimize
the latency in secure communications to a little initial delays
(i.e., pipeline startup delay). The Sk shared between the user
and SA is valid until the user closes the established session
afterward or a predefined session timeout is expired.

F. IMPLEMENTING SA
The SA consists of several internal modules each for inde-
pendent operations, as illustrated in Figure 2. First, the two
modules for elliptic curve cryptography (ECC) and AES are
involved in the encryption and decryption processes using
MKpriv and Sk, respectively. Next, the elliptic curve digital
signature algorithm (ECDSA) module generates and verifies
the signature using MKpriv. Then the ICAP module loads

VOLUME 9, 2021 51317

H. Oh et al.: MeetGo: A Trusted Execution Environment for Remote Applications on FPGA

FIGURE 2. Organization of cryptocurrency wallet and GPGPU built on MeetGo.

partial bitstreams on the FPGA cooperating with the cryp-
tographic modules. These application bistreams are verified
in ECDSA, decrypted in the ECC, and configured on the
FPGAby ICAP. Lastly, the two followingmodules are used in
terms of communication: The PCIe interface module is used
to communicate with the host, and the AXI interface module
plays a role of connecting the SA and the applications within
the FPGA.

IV. CRYPTOCURRENCY WALLET BUILT ON MeetGo
In this section, we explain our cryptocurrency wallet real-
ized by using MeetGo. Our wallet enables users to securely
carry out cryptocurrency transactions by processing their
cryptocurrency keys (e.g., Bitcoin keys) in a TEE provided
by MeetGo on a remote server. We implement our wallet to
generate transactions compatible with two major currencies:
Bitcoin and Ethereum.

A. WALLET IMPLEMENTATION
Figure 2 depicts the overall organization of our cryp-
tocurrency wallet implemented on MeetGo. A cryptocur-
rency wallet is a program that generates and stores a
pair of cryptocurrency private/public keys, denoted here as
Cryptopriv and Cryptopub. It also executes various functions to
trade cryptocurrencies. Among them, we have implemented
three important functions: generating Cryptopriv, generating
Cryptopub, and signing transactions. Officially, our wallet
is composed of two sub-wallets. One is the signing-only
wallet, which performs these three functions defined in [21].
The other is the networked wallet, which performs the other
functions, such as monitoring the spending, generating the
unsigned transactions, and broadcasting the signed transac-
tions. The signing-only wallet needs to execute functions
processing Cryptopriv, the security-sensitive data that should
be protected with the highest priority, whereas the networked
wallet does not. Thus, in our implementation, only the former
is loaded into MeetGo, and the latter is realized as software
to run on the CPU. As the wallet needs to transfer data
frequently to/from remote users and the signing-only wallet,

we have made minor modifications to the wallet software for
such communication.When a remote user wants to talk to our
signing-only wallet, all the messages pass through the CPU
in encrypted form via a secure channel.

In our wallet implementation, the signing-only wallet mod-
ule contains the key for its user, Cryptopriv, along with three
wallet functions: PrivKeyGen, PubKeyGen and TxSign. We
have classified the above components as either common or
user-specific components. The three functions for key and
signature generation are classified as common ones, as they
are performed commonly by all users. In contrast, the gener-
ated keys are classified as user-specific ones, as storage for a
key must be separately assigned to each user. To efficiently
utilize the FPGA resources, we generate a common module,
called the wallet agent (WA), which performs the common
signing-only wallet functions for key generation and signing.
We construct a user-specific module, called the user wallet
(UW), which contains only storage for the associated user’s
private key Cryptopriv. The UW associated with each remote
user stores Cryptopriv and communicates with the WA to
process transaction requests. The wallet bitstreams, i.e., the
WA and UW bitstreams, are verified in ECDSA, decrypted in
the ECC, and configured on the FPGA by ICAP, as illustrated
in Figure 2. To prevent attacks from other loaded UWs,
we do not allow oneUW to access another UW’s interconnec-
tion with the WA. In addition, the cryptographic operations
requested from UWs in the WA are performed sequentially,
and all the internal buffers are flushed after handling each
request.

B. OPERATING PROCEDURES OF IMPLEMENTED WALLET
After a remote user securely shares a session key with the
SA, as stated in subsection III-E, the user communicates with
our wallet for trading cryptocurrency using the following
procedures. First, the remote user sends a request for gen-
erating Cryptopriv and a mnemonic phrase (a seed phrase to
represent the wallet) to our wallet. The mnemonic phrase
should be encrypted with the shared Sk and delivered securely
to the WA in the FPGA. Then the PrivKeyGen module in the

51318 VOLUME 9, 2021

H. Oh et al.: MeetGo: A Trusted Execution Environment for Remote Applications on FPGA

FPGA creates Cryptopriv from the mnemonic sent from the
user, according to the BIP-0039 standard [22]. The generated
Cryptopriv is stored in the UW. To keep Cryptopriv safe,
it never moves to the CPU or persistent storage. Therefore,
the user needs to send the encrypted mnemonic to generate
Cryptopriv every time the procedure starts. Second, the Pub-
KeyGen module derives the pair Cryptopub from Cryptopriv,
and delivers Cryptopub to the user and the networked wallet.
Cryptopub is used later to check the cryptocurrency account
or verify the signed transaction. Third, the remote user sends
a trading request to the networked wallet to generate an
unsigned transaction. Then, the networked wallet checks the
validity of the request (e.g., whether the balance is equal to or
greater than the amount to be transferred). If the verification
is successful, the TxSign module generates a signature of the
transaction using the user’s Cryptopriv. Finally, the SA sends
the signed transaction to the networked wallet to broadcast it
on the blockchain network.

V. SECURE GPGPU BUILT ON MeetGo
A noticeable advantage of MeetGo in contrast with con-
ventional TEEs is that it can provide any hardware support
desired by trusted applications for more effective execu-
tion. GPGPU is a representative type of hardware support
that is considered a near necessity with the rise of machine
learning and big data. However, it is not straightforward
for the conventional TEEs to exploit GPGPU, since they
are able to connect to this computing unit only through
untrusted interfaces. For this reason, attempts have been
made to harden the interfaces through hardware-level mod-
ifications [14], [15], which have a drawback in feasibility.
On the other hand, the high level of programmability of the
FPGA allows MeetGo to embed hardware support includ-
ing GPGPU in the TEE itself; thereby, remote users can
run data/computation-intensive trusted applications such as
privacy-preserving neural network inferences [23], [24] in
the GPGPU-enabled environment. In this section, we explain
howMeetGo providesGPGPU to users and their applications.

Figure 2 depicts the overall architecture of our
GPGPU implemented on MeetGo. We employed an
open-core GPGPU MIAOW [25], which is available in the
register-transfer level (RTL) form and prototyped in the
FPGA. As explained earlier, since the SA adopts the AXI
bus protocol to connect with applications, MIAOW, which is
already designed for AXI, can be plugged intact intoMeetGo.
MIAOW is compatible with a subset of AMD’s Southern
Islands ISA, and it supports the OpenCL programmingmodel
widely used for general heterogeneous parallel computing.
MIAOW RTL code is synthesized and implemented into the
bitstream that fits into a dynamic region so that MeetGo can
install it as an application upon a user’s request.

Once MIAOW hardware is loaded on MeetGo, as illus-
trated in Figure 2, multiple compute units are instantiated as
a parallel processing engine, and buffers named local data
share (LDS) and global data share (GDS) are included for
storing data. As mentioned earlier, since MIAOW does not

TABLE 1. Synthesized results of applications on MeetGo.

need to be modified to be equipped in MeetGo, the remote
user can execute the original GPU code targeted at MIAOW
without tailoring it to MeetGo. The remote user transfers the
code/data to the SA within the FPGA and then transmits
a trigger signal to run the user’s GPU code on MIAOW.
Note that as explained in subsection III-E, the communi-
cation channel between the user and MIAOW is protected
securely by the SA, so MeetGo can overcome the main
security concern (protecting the privacy of the user’s data)
in a GPGPU-based service such as Machine Learning as a
Service (MLaaS) [23].

VI. EVALUATION
To evaluate MeetGo, we have implemented its prototype on
the Xilinx Virtex UltraScale+ VCU118 FPGA board. This
development board equips the PCIe interface that transfers
data from/to the host CPU at a speed of 8.0 GT/s. The 8-
GB DDR4 SDRAM is available to store data in the FPGA
memory.

All our FPGA modules, the two applications (cryptocur-
rency wallet, GPGPU), and the SA module are developed
by Verilog-HDL. In our wallet application, the WA module
that performs cryptographic functions for cryptocurrencies
is developed from the open-source C files ([22], [26]).
Those C sources are converted to HDL codes by the Xilinx
Vivado HLS tool and mapped onto the FPGA as a partial
bitstream. We also generated the GPGPU bitstream from the
open-source MIAOW RTL, but we have slightly changed
the original architecture by adding four more compute units
(from 1 to 5) to improve the performance. Mainly due to
the speed limit of the FPGA, the cryptocurrency wallet and
SA modules are configured to operate at 25 MHz, while our
GPGPU is set to be operated at 50 MHz. We have ensured
that the implemented modules on the FPGA board satisfy
timing constraints when a clock frequency is set to 25 MHz
and 50 MHz, respectively.

A. SYNTHESIS RESULTS
Based on the parameters mentioned above, we synthesized
our MeetGo design onto the FPGA, loaded our two MeetGo
applications, and quantified the logics necessary for MeetGo
and the applications in terms of LUTs, flip-flops (FFs), DSPs
and block RAMs (BRAMs). The synthesis results are shown
in Table 1. The SA occupies 1.8% (21,393/1,182,240) of
the total LUTs, 0.5% (12,922/2,364,480) of the total FFs,
2.7% (188/6,840) of the total DSPs, and 1.4% (30/2,160) of

VOLUME 9, 2021 51319

H. Oh et al.: MeetGo: A Trusted Execution Environment for Remote Applications on FPGA

the total BRAMs. As shown from the above results, the SA
module, essential in MeetGo, occupies only a small fraction
of FPGA resources (e.g., 1.8% LUTs); thereby, most of the
FPGA resources are still available to the applications.

The cryptocurrency wallet application module comprising
the WA and UW accounts for 10.8% of the total LUTs, 2.3%
of the total FFs, 2.6% of the total DSPs, and 15.3% of the
total BRAMs. We deem that this size is acceptable, but we
have found that if we carefully adjust the various options of
the HLS tool, we can get a smaller WA module. Otherwise,
experts on the RTL and cryptographic algorithm may be
recruited to design those modules from scratch to attain the
best area and performance. It is worth noting that these kinds
of hardware updates can be applied even after it is released
the the market, because FPGAs are reprogrammable.

Our GPGPU application utilizes 77.3% of the total LUTs,
23.3% of the total FFs, 45.8% of the total DSPs and 56.2% of
the total BRAMs. In our current implementation, the number
of compute units for parallel processing is configured to five,
which is enough to provide great performance for remote
users, resulting in this high ratio in FPGA utilization. When
we tried to add more compute units, the timing constraint
was not satisfied due to the severe routing congestion when
running the place and route phase in logic synthesis. Thus,
the number of compute units of GPGPU needs to be adjusted
considering the FPGA chip specification and the performance
requirement. Remote users should have a choice of the appro-
priate version of GPGPU bitstream that includes as many
compute units as necessary.

B. PERFORMANCE ANALYSIS
To show the feasibility, we evaluated MeetGo in terms of per-
formance. Experiments were performed on Intel(R) Xeon(R)
CPU E5-2630 v4@ 2.20GHz (with 25 MB cache) with 64 GB
RAM, running Ubuntu 16.04 with Linux 4.4.0.164 (64-bit).
To obtain experimental results, each of the experiments was
repeated at least 100 times. The power-saving mode was
turned off and the CPU frequency was set to the maximum
value in Linux to minimize variation between experiments.

We first measured the execution time of primitive oper-
ations of bitstream loading and data transfer between the
host and MeetGo. As a result, we observed that it takes
10.31 and 61.78 minutes on average to load cryptocurrency
wallet bitstream of size 43.88 MB and GPGPU bitstream of
size 263.06 MB, respectively. According to our analysis, such
a long loading time is attributed to the bitstream decryp-
tion process based on asymmetric key cryptography, specif-
ically ECIES, which is one of the most robust algorithms.
MeetGo by default accepts encrypted bitstreams to protect
their confidentiality. This strong policy is only needed for
some applications whose bitstreams statically contain secret
information (e.g., cryptographic key and password). Thus, for
most applications including our two examples, we can accept
raw bitstreams, reducing the loading time by over 99 percent.
In this case, the adversaries in the middle would be able to
compromise the integrity of the bitstreams, but they will be

TABLE 2. Data transfer delay comparison.

TABLE 3. Processing delay comparison.

easily detected by the remote attestation mechanism provided
by MeetGo.

Similar to the bitstream loading, some delays are added
in transferring data to applications and receiving results,
because the SA in the middle protects all the data being
transferred with encryption based on a symmetric key algo-
rithm. Fortunately, the overhead is minimized thanks to the
pipelining scheme, as mentioned in subsection III-E. Table 2
demonstrates that the data transfer delay of MeetGo is rea-
sonably acceptable.

For further evaluation, we investigated the processing time
of the two implemented applications when they are run-
ning on the FPGA without and with MeetGo. We devel-
oped host-side applications to give tasks and get results to
the cryptographic wallet and GPGPU running on MeetGo.
In particular, in regards to GPGPU, we also developed an
image classification program for the MNIST database using
OpenCL. This program employed the CNN model defined
in [24] that we trained using Tensorflow, and executed the
CNN-based inference in GPGPU built in MeetGo. Resul-
tantly, in both applications, MeetGo incurs negligible per-
formance overhead as clarified in Table 3. This is because
MeetGo is designed not to affect the execution performance
of the applications except the initial delay in secure communi-
cations. We also observed in each application that the timing
variations of the PCI interface between the host and the FPGA
exerts more influence on the performance thanMeetGo itself.

We have also compared the performance of the two appli-
cations implemented based on MeetGo with those imple-
mented differently in prior works: SW-only wallet [22] and
GPU-based image classification [24] We note that both
implementations in prior works are untrusted for the follow-
ing reasons: First, privileged administrators are allowed to
arbitrarily read or write the memory used by applications,
as we discussed in section I, since the SW-only wallet runs
within the REE. Second, the authors in [24] did not fully

51320 VOLUME 9, 2021

H. Oh et al.: MeetGo: A Trusted Execution Environment for Remote Applications on FPGA

TABLE 4. Performance comparison with untrusted prior work.

figure out how to secure homomorphic encryption against
side-channel attacks on a commodity GPU, even though
their image classification operates on encrypted data for data
privacy. By comparison, MeetGo provides a more robust
environment for side-channel issues (see in subsection VI-C).

As shown in Table 4, when operating a wallet function
that signs a cryptocurrency transaction, our wallet running
on MeetGo is on average 37 times slower than the SW-only
wallet. This performance degradation is mainly attributed to
the significant clock speed difference in between the CPU
(2.2GHz) and the FPGA (25MHz). The reason why our
MeetGo-based wallet operates with such a low clock fre-
quency is that we produced its Verilog HDL code from C
sources using the HLS tool that is still unmature to fully draw
the computing power of modern FPGA boards.1 Therefore,
we believe that the operating clock will be increased if the
HLS tool is improved or the wallet bitstream is developed
from scratch by using Verilog HDL.

When it comes to image classification, MeetGo-based
application out-performed about 473 times than the untrusted
one for a single image as shown in Table 4. The authors in [24]
tried to accelerate multi-image classification by enabling a
batch mode where they encoded 8192 images in a form that
can be processed at once. In this case, MeetGo-based classi-
fication was 17 times slower. However, since MeetGo-based
one operates based on GPGPU, the batch approach would be
easily applied to our implementation to enhance the perfor-
mance, which is left for the future work.

C. SECURITY ANALYSIS
Although MeetGo introduces a new hardware component,
the FPGA, to the system, we assert that MeetGo never widen
the attack surface of the system. In the following paragraphs,
we elaborate on details of potential attacks against MeetGo
along with how they are tackled.

Systematically, attacks to MeetGo can be classified into
those on the interface with remote users and those on
MeetGo’s FPGA component. First, adversaries may attempt
to launch man-in-the-middle attacks to eavesdrop or corrupt
themessages exchangedwith remote users, but these attempts
are thwarted completely because all the messages are trans-
mitted encrypted and their freshness are easily guaranteed by
adding a timestamp. Therefore, even privileged adversaries
residing in the host system are prevented from disclosing or
compromising the messages, and the only types of attacks

1A modern FPGA board usually provides much higher clock frequency
than our prototype, e.g., Xilinx VCU118 FPGA supports up to 810MHz
clock frequency and Intel Stratix 10 supports 1GHz.

they can launch are denial-of-service attacks (which are
beyond the scope of our work). As for adversaries, the only
way to succeed in attacks on the interface is to obtain a Sk that
is used to encrypt the contents of a secure session. However,
according to the key exchange algorithm in subsection III-E,
the Sk is delivered from users to SA as a ciphertext that is
encrypted by MKpub, and MKpriv never leaves FPGA; thus
adversaries cannot extract the Sk. Adversaries may try to
pretend to be benign users and establish a secure channel with
their own Sk. However, as the validity of the Sk is confined
by the SA to each session, adversaries cannot exploit their Sk
to meddle with other sessions (of different users/applications)
already established on the interface.

Adversaries may also be able to initiate some attacks
on MeetGo’s FPGA component. Remember that since we
assume that the SA has no security defects in our threat
model, adversaries cannot manipulate this module directly.
Therefore, alternatively, adversaries may try to replace the
SA with a fake one that aims at performing some malicious
actions such as extracting theMKpriv and Sk. Fortunately, this
attempt is prevented thanks to the secure bitstream loading
mechanism explained in subsection III-B. After power-on,
this mechanism automatically loads a SA bitstream that is
encrypted and authorized by FPGA manufacturers so that
a fake SA cannot substitute for the genuine SA. Once it is
loaded, the SA controls all access to the dynamic area where
applications are loaded. Thus, adversaries are prevented from
modifying already-loaded applications. Instead, they could
try to load a malicious application to MeetGo, but it cannot
adversely affect other applications, because all applications
are isolated from each other and do not share resources such
as wire, logic, or memory. Rather than tampering with bit-
streams themselves, adversaries may also conduct fault injec-
tion attacks on the FPGA to maliciously alter the functioning
of loaded modules (e.g., bypassing some security checks
of the SA within the FPGA). They may induce physical
faults by causing the power supply variations, clock glitches,
electromagnetic disturbances, and so on. These fault injection
attacks can bemitigated by shielding the FPGA device to pro-
tect against such physical injections. Alternatively, MeetGo
can adopt the currently known mitigating techniques, includ-
ing algorithmic change [27], fault detection [28], and random-
ization [29] techniques.

Adversaries, who are unable to directly compromise the
modules in the FPGA, may try to launch side-channel attacks
on MeetGo. For example, they can perform conventional
side-channel attacks through shared hardware resources, such
as page tables, cache units, and branch prediction-units,
but MeetGo is physically isolated from these resources so
that it is robust against these attacks. Besides, adversaries
also can execute FPGA-specific side-channel attacks that
exploit power, thermal, and co-located FPGA modules as an
attack vector; however, fortunately, we can cope with them
through the existing solutions [30], [31] that are orthogonal
to MeetGo. Adversaries can even conduct different types
of side-channel attacks by observing the timing informa-

VOLUME 9, 2021 51321

H. Oh et al.: MeetGo: A Trusted Execution Environment for Remote Applications on FPGA

tion (e.g., interval and execution time) of the operations of
MeetGo or the length of the messages that come from/to
MeetGo. However, such timing information and message
lengths that can be observed outside of the FPGA are too
coarse-grained to infer meaningful information. For exam-
ple, to the best of our knowledge, no attack has been
found that exploits the interval, execution time, or mes-
sage length only to deduce secrets from a cryptocurrency
wallet. Lastly, against timing side-channel attacks, MeetGo
can easily employ well-known mechanisms that eliminate
timing information by regularly generating heartbeat-style
packets [32].

VII. DISCUSSION
A. SUPPORT FOR VARIOUS ARCHITECTURES
In addition to GPGPU, MeetGo can fully utilize the pro-
grammability of the FPGA to provide remote users with a
TEE based on different types of architecture. For example,
open-source CPUs like RISC-V [33] and ARM Cortex-M
series [34] can be readily converted to bitstreams that are
loadable byMeetGo. Therefore, by installing these bitstreams
onto MeetGo, remote users can execute trusted applica-
tions compiled with the ISA of RISC-V or ARM Cortex-M.
It would be particularly beneficial, for example, for a remote
user with Cortex-M based IoT devices wanting to migrate
their sensitive code to MeetGo to run it securely in the server
side containing the necessary data.

B. EASE OF APPLICATION DEVELOPMENT
With the advance of the high-level synthesis (HLS) tech-
nique, it is not necessary to use a low-level language like
Verilog-HDL to develop applications ofMeetGo. HLS allows
developers to work at a higher abstraction level. HLS has
been studied in-depth for the past decade, and the commercial
HLS tool has also recently achieved convincing levels in
terms of area, power, and performance [35]. Moreover, major
FPGA vendors, Xilinx [36] and Intel [37] are officially sup-
porting OpenCL, the standard heterogeneous programming
language, making it easier for developers to exploit the highly
parallel nature of FPGAs. To sum up, the entry barriers for the
development of FPGA applications have been lowering.

C. FEASIBILITY ON MOBILE DEVICES
Since MeetGo is designed to operate independently to CPU
architecture or OS, it can provide the same TEE environ-
ment to the mobile platform in the same way as the server
system. The only requirement to apply MeetGo to mobile
platforms is that the FPGA should be mounted. For this
purpose, a one-chip or two-chip solution that packs the CPU
and FPGA in the same die or that mounts the CPU and FPGA
on separate dies is possible. Here, the spec of the FPGA chip
to be incorporated into the mobile platform can be selected
flexibly according to the targeted power/area constraint.

VIII. RELATED WORK
To protect trusted applications from the REE under the con-
trol of system administrators, various hardware-based TEEs

have been developed by extending existing CPU architec-
tures. Among them, probably the closest TEE model to
MeetGo would be Intel SGX [38], which has been integrated
into commodity desktop CPUs since Intel Skylake in 2015.
LikeMeetGo, SGX can be used to create and support a secure
runtime environment, called the enclave, for the remote appli-
cation of any user who wants to run a program remotely on
the server equipped with SGX-enabled CPUs. Each enclave
is isolated by the underlying hardware from any entities in the
server, including the OS and hypervisor, such that all private
user data inside the enclave can be protected against any
theft and tampering attempts. Also likeMeetGo, SGX enables
remote users to attest their applications inside enclaves by
offering attestation key infrastructures. In academia, there
have been similar efforts to incorporate SGX-like TEEs into
the RISC-V open-source CPU [39], [40].

One notable difference betweenMeetGo and all these CPU
extensions for TEE is that their implementations are only
available in certain CPU platforms while ours is applica-
ble to any platform based on the CPU/FPGA hybrid archi-
tecture [3]–[5]. Another difference is that as their TEEs
are built in the host CPU hardware, applications running
inside the TEEs share many computing resources with the
untrusted host system. For instance, an SGX enclave uses
page tables, caches, and branch prediction units that are
all accessible or shared by untrusted entities like the OS
or other enclaves. The potential problem of such resource
sharing is that it increases the chances of user secrets inside
the enclave being leaked by side-channel attacks [41], [42].
In the development of MeetGo, therefore, we endeavored to
avoid the resource sharing problem by capitalizing on the
reconfigurability of the FPGA in that we implemented into
MeetGo all hardware modules necessary to perform sensi-
tive cryptocurrency transactions and execute security-critical
GPGPU programs, as described in section IV and section V.
Furthermore, to avert attacks from other applications, in the
implementation, we ensured that no resources were shared
among MeetGo applications.

Aside from this one, several studies have been performed
noting the FPGA’s value as a TEE isolated at the hardware
level. However, most of them [43]–[45] have focused on
building a TEE for local users, unlike MeetGo, which is
specialized for remote users. For example, a state-of-the-art
work [45] proposed a FPGA-based TEE whose trustworthi-
ness is ensured on the basis of its self-provisioned master
key. However, this work is less appropriate than MeetGo for
remote users at far distances because it requires the the users
to sign their applications through a reliable channel (e.g.,
physical access to the FPGA) prior to installing them to the
FPGA.

IX. CONCLUSION
MeetGo is an ordinary FPGA on a modern computer
armed with a security mechanism for remote computing.
Our security mechanism employs cryptographic algorithms
based on the master key prudently managed in the FPGA.

51322 VOLUME 9, 2021

H. Oh et al.: MeetGo: A Trusted Execution Environment for Remote Applications on FPGA

These algorithms are used not only to construct a TEE for
remote users, but also to establish a secure communica-
tion channel between the remote users and their applica-
tions running inside the TEE. In the actual implementation,
MeetGo has been used to (1) create cryptocurrency wallets
that enable the owners to trade their currencies remotely on
a server without any server-side intervention and (2) provide
GPGPU, which securely accelerates data-intensive computa-
tions without reliance on the legacy GPU. Experimentally,
MeetGo showed a low FPGA resource utilization ratio and
incurred negligible performance overhead on those applica-
tions. We also analyzed potential attacks targeting MeetGo
and explained why MeetGo is safe from these attacks.

REFERENCES
[1] R. F. Trzeciak. (2017). Sei Cyber Minute: Insider Threats. Accessed:

May 26, 2020. [Online]. Available: https://resources.sei.cmu.edu/library/
asset-view.cfm?assetid=496626

[2] M. Sabt, M. Achemlal, and A. Bouabdallah, ‘‘Trusted execution envi-
ronment: What it is, and what it is not,’’ in Proc. IEEE Trust-
com/BigDataSE/ISPA, Aug. 2015, pp. 57–64.

[3] Intel. (2018). Intel Xeon Gold 6138 Processor. Accessed: May 26, 2020.
[Online]. Available: https://en.wikichip.org/wiki/intel/xeon_gold/6138p

[4] Amazon. (2018). Aws Ec2 FPGA Development Kit. Accessed:
May 26, 2020. [Online]. Available: https://github.com/aws/aws-fpga

[5] Intel. (2018). Intel Programmable Acceleration Card With Intel Arria
10 Gx FPGA Datasheet. Accessed: May 26, 2020. [Online]. Avail-
able: https://www.intel.com/content/dam/www/programmable/us/en/pdfs/
literatur%e/ds/ds-pac-a10.pdf

[6] H. Oh, A. Ahmad, S. Park, B. Lee, and Y. Paek, ‘‘TRUSTORE: Side-
channel resistant storage for SGX using intel hybrid CPU-FPGA,’’ in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2020, pp. 1903–1918,
doi: 10.1145/3372297.3417265.

[7] K. Neshatpour, M. Malik, M. A. Ghodrat, and H. Homayoun, ‘‘Accelerat-
ing big data analytics using FPGAs,’’ in Proc. IEEE 23rd Annu. Int. Symp.
Field-Program. Custom Comput. Mach., May 2015, p. 164.

[8] R. Dhanabal, S. K. Sahoo, V. Bharathi, K. Dowluri, B. S. R. P. Varma,
and V. Sasiraju, ‘‘FPGA based image processing unit usage in coin detec-
tion and counting,’’ in Proc. Int. Conf. Circuits, Power Comput. Technol.
[ICCPCT], Mar. 2015, pp. 1–5.

[9] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, ‘‘A survey of FPGA-based
neural network accelerator,’’ 2017, arXiv:1712.08934. [Online]. Available:
http://arxiv.org/abs/1712.08934

[10] B. Nagy, P. Orosz, and P. Varga, ‘‘Low-reaction time FPGA-based DDoS
detector,’’ in Proc. IEEE/IFIP Netw. Oper. Manage. Symp. (NOMS),
Apr. 2018, pp. 1–2.

[11] A. Boutros, B. Grady, M. Abbas, and P. Chow, ‘‘Build fast, trade fast:
FPGA-based high-frequency trading using high-level synthesis,’’ in Proc.
Int. Conf. ReConFigurable Comput. FPGAs (ReConFig), Dec. 2017,
pp. 1–6.

[12] A. Surendar, ‘‘Fpga based parallel computation techniques for bioinfor-
matics applications,’’ Int. J. Res. Pharmaceutical Sci., vol. 8, pp. 124–128,
01 2017.

[13] T. Dvorin. (2019). Crypto Hacks: The Rise of the Rogue Insider. Accessed:
May 26, 2020. [Online]. Available: https://www.unboundtech.com/crypto-
hacks-the-rise-of-the-rogue-insider

[14] S. Volos, K. Vaswani, and R. Bruno, ‘‘Graviton: Trusted execution envi-
ronments on GPUs,’’ in Proc. 12th USENIX Conf. Operating Syst. Design
Implement. (OSDI), Berkeley, CA, USA: USENIX Association, 2018,
pp. 681–696.

[15] I. Jang, A. Tang, T. Kim, S. Sethumadhavan, and J. Huh, ‘‘Heterogeneous
isolated execution for commodity GPUs,’’ in Proc. 24th Int. Conf. Archi-
tectural Support Program. Lang. Operating Syst., Apr. 2019, pp. 455–468,
doi: 10.1145/3297858.3304021.

[16] Digital Signature Standard (DSS), National Institute of Standards and
Technology, FIPS Publication, Gaithersburg, MD, USA, May 1994.

[17] R. L. Rivest, A. Shamir, and L. Adleman, ‘‘A method for obtaining digital
signatures and public-key cryptosystems,’’ Commun. ACM, vol. 21, no. 2,
pp. 120–126, Feb. 1978.

[18] Xilinx. (2020). Vivado Design Suite User Guide. Accessed: May 26, 2020.
[Online]. Available: https://www.xilinx.com/support/documentation/
sw_manuals/xilinx2019_2/ug%901-vivado-synthesis.pdf

[19] ARM. (2011). Amba(R) Axi and Ace Protocol Specification. Accessed:
Aug. 22, 2019. [Online]. Available: http://www.gstitt.ece.ufl.edu/courses/
fall15/eel4720_5721/labs/refs/AXI%4_specification.pdf

[20] P. Syverson, ‘‘A taxonomy of replay attacks [cryptographic protocols],’’ in
Proc. Comput. Secur. Found. Workshop VII, Jun. 1994, pp. 187–191.

[21] B. Project. (2019). Wallets. Accessed: May 28, 2020. [Online]. Available:
https://developer.bitcoin.org/devguide/wallets

[22] Libbitcoin. (2019). Bip-0039 Standard. Accessed: May 28, 2020.
[Online]. Available: https://github.com/libbitcoin/libbitcoin-system/blob/
master/src/wallet

[23] E. Hesamifard, H. Takabi, M. Ghasemi, and R. N. Wright, ‘‘Privacy-
preserving machine learning as a service,’’ Proc. Privacy Enhancing
Technol., vol. 2018, no. 3, pp. 123–142, Jun. 2018. [Online]. Available:
https://content.sciendo.com/view/journals/popets/2018/3/article-
p123.xm%l

[24] A. Al Badawi, J. Chao, J. Lin, C. F. Mun, J. J. Sim, B. H. M. Tan,
X. Nan, K. M. M. Aung, and V. Ramaseshan Chandrasekhar, ‘‘Towards
the AlexNet moment for homomorphic encryption: HCNN, theFirst homo-
morphic CNN on encrypted data with GPUs,’’ 2018, arXiv:1811.00778.
[Online]. Available: http://arxiv.org/abs/1811.00778

[25] R. Balasubramanian, V. Gangadhar, Z. Guo, C.-H. Ho, C. Joseph,
J. Menon, M. P. Drumond, R. Paul, S. Prasad, P. Valathol, and
K. Sankaralingam, ‘‘Enabling GPGPU low-level hardware explorations
with MIAOW: An open-source RTL implementation of a GPGPU,’’ ACM
Trans. Archit. Code Optim., vol. 12, no. 2, pp. 1–21, Jul. 2015, doi:
10.1145/2764908.

[26] B. Core. (2019). secp256k1. Accessed: May 28, 2020. [Online]. Available:
https://github.com/bitcoin/bitcoin/tree/master/src/secp256k1

[27] R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali, and T. Rabin, ‘‘Algo-
rithmic tamper-proof (ATP) security: Theoretical foundations for security
against hardware tampering,’’ in Theory Cryptography, M. Naor, Ed.
Berlin, Germany: Springer, 2004, pp. 258–277.

[28] H. Mestiri, N. Benhadjyoussef, M. Machhout, and R. Tourki, ‘‘An FPGA
implementation of the AES with fault detection countermeasure,’’ in Proc.
Int. Conf. Control, Decis. Inf. Technol. (CoDIT), May 2013, pp. 264–270.

[29] A. Shamir, ‘‘Method and apparatus for protecting public key schemes from
timing and fault attacks,’’ U.S. Patent 5 991 415 A, Nov. 23, 1999.

[30] J. Wu, Y. Shi, and M. Choi, ‘‘FPGA-based measurement and evaluation of
power analysis attack resistant asynchronous S-box,’’ in Proc. IEEE Int.
Instrum. Meas. Technol. Conf., May 2011, pp. 1–6.

[31] J. Knechtel and O. Sinanoglu, ‘‘On mitigation of side-channel attacks in
3D ICs: Decorrelating thermal patterns from power and activity,’’ in Proc.
54th Annu. Design Autom. Conf., Jun. 2017, pp. 1–6.

[32] S. Aga and S. Narayanasamy, ‘‘InvisiMem: Smart memory defenses for
memory bus side channel,’’ in Proc. 44th Annu. Int. Symp. Comput. Archit.,
Jun. 2017, pp. 94–106.

[33] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio,
H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz, and S. Karandikar, ‘‘The
rocket chip generator,’’ EECS Dept. Univ. California Berkeley, Berkeley,
CA, USA, Tech. Rep. UCB/EECS-2016-17, 2016.

[34] ARM. (2020). Easy access to cortex-m processors on FPGA. Accessed:
May 26, 2020. [Online]. Available: https://www.arm.com/resources/
designstart/designstart-fpga

[35] R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen,
H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K. Bertels, ‘‘A survey
and evaluation of FPGA high-level synthesis tools,’’ IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 35, no. 10, pp. 1591–1604,
Oct. 2016.

[36] Xilinx. (2019). Sdaccel Environment Userguide. Accessed: May 26, 2020.
[Online]. Available: https://www.xilinx.com/support/documentation/
sw_manuals/xilinx2019_1/ug%1023-sdaccel-user-guide.pdf

[37] Intel. (2019). Intel(R) FPGA Sdk for Opencl(TM) Pro Edition. Accessed:
May 26, 2019. [Online]. Available: https://www.intel.com/content/
dam/www/programmable/us/en/pdfs/literatur%e/hb/opencl-
sdk/aocl_getting_started.pdf

[38] V. Costan and S. Devadas, ‘‘Intel SGX explained,’’ IACR Cryptol. ePrint
Arch., Tech. Rep. 2016/086, 2016.

[39] V. Costan, I. Lebedev, and S. Devadas, ‘‘Sanctum: Minimal hardware
extensions for strong software isolation,’’ in Proc. 25th USENIX Secur.
Symp. (USENIX Secur.), 2016, pp. 857–874.

VOLUME 9, 2021 51323

http://dx.doi.org/10.1145/3372297.3417265
http://dx.doi.org/10.1145/3297858.3304021
http://dx.doi.org/10.1145/2764908

H. Oh et al.: MeetGo: A Trusted Execution Environment for Remote Applications on FPGA

[40] D. Lee, D. Kohlbrenner, S. Shinde, D. Song, and K. Asanovic, ‘‘Keystone:
A framework for architecting tees,’’ 2019, arXiv:1907.10119. [Online].
Available: https://arxiv.org/abs/1907.10119

[41] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and
A.-R. Sadeghi, ‘‘Software grand exposure: SGX cache attacks are practi-
cal,’’ in Proc. 11th USENIX Workshop Offensive Technol. (WOOT), 2017,
p. 11.

[42] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, ‘‘Inferring
fine-grained control flow inside SGX enclaves with branch shadowing,’’
in Proc. 26th USENIX Secur. Symp. (USENIX Secur., 2017, pp. 557–574.

[43] O. Gelbart, P. Ott, B. Narahari, R. Simha, A. Choudhary, and J. Zambreno,
‘‘Codesseal: Compiler/FPGA approach to secure applications,’’ in Intel-
ligence and Security Informatics, P. Kantor, G. Muresan, F. Roberts,
D. D. Zeng, F.-Y.Wang, H. Chen, and R. C.Merkle, Eds. Berlin, Germany:
Springer, 2005, pp. 530–535.

[44] E. M. Benhani, L. Bossuet, and A. Aubert, ‘‘The security of ARM
TrustZone in a FPGA-based SoC,’’ IEEE Trans. Comput., vol. 68, no. 8,
pp. 1238–1248, Aug. 2019.

[45] A. Coughlin, G. Cusack, J.Wampler, E. Keller, and E.Wustrow, ‘‘Breaking
the trust dependence on third party processes for reconfigurable secure
hardware,’’ in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays,
Feb. 2019, pp. 282–291, doi: 10.1145/3289602.3293895.

HYUNYOUNG OH received the B.S. and M.S.
degrees in electrical and electronic engineering
from Yonsei University, South Korea, in 2005 and
2007, respectively. He is currently pursuing the
Ph.D. degree in electrical and computing engi-
neering with Seoul National University, South
Korea. He worked as a SoC Designer with Sam-
sung Electronics Company Ltd., South Korea,
from 2007 to 2017. His research interest includes
hardware-backed system security against various
types of threats.

KEVIN NAM received the B.S. degree in electrical
and computer engineering from Seoul National
University, South Korea, in 2020, where he is
currently pursuing the Ph.D. degree in electrical
and computing engineering. His research interest
includes hardware-backed system security against
various types of threats.

SEONGIL JEON received the B.S. degree from the
School of Electronic Engineering, Soongsil Uni-
versity, South Korea, in 2017, and the M.S. degree
in electrical and computing engineering from
Seoul National University, South Korea, in 2020.
His research interest includes hardware-backed
system security against various types of threats.

YEONGPIL CHO received the B.S. degree in elec-
trical engineering from POSTECH, South Korea,
in 2010, and the Ph.D. degree in electrical and
computer engineering from Seoul National Uni-
versity, South Korea, in 2018. He is currently a
Professor with the Department of Computer Sci-
ence, Hanyang University. His research interest
includes system security against various types of
threats.

YUNHEUNG PAEK (Member, IEEE) received
the B.S. and M.S. degrees in computer engineer-
ing from Seoul National University, South Korea,
in 1988 and 1990, respectively, and the Ph.D.
degree in computer science from the University
of Illinois at Urbana-Champaign, in 1997. He is
currently a Professor with the Department of Elec-
trical and Computer Engineering, Seoul National
University. His research interests include system
security with hardware, secure processor design

against various types of threats, and machine learning based security
solution.

51324 VOLUME 9, 2021

http://dx.doi.org/10.1145/3289602.3293895

