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Abstract: The collision effects on the low-frequency ion-acoustic Trivelpiece–Gould wave are inves-
tigated in weakly and completely ionized plasma waveguides by using the normal mode analysis.
In weakly ionized plasma waveguides, it is found that the dependence of the harmonic mode on
the absolute value of the scaled damping rate shows the opposite tendency for large and small radii
of the cylindrical waveguide. It is also is found that the scaled damping rates for both weakly and
completely ionized plasma waveguides decrease with an increase of the electron temperature. It
is interesting to note that the scaled damping rate for weakly ionized plasma waveguides shows
anti-symmetric behavior when the Trivelpiece–Gould wave propagates in the negative-z direction.
However, it is found that the scaled damping rate for completely ionized plasma waveguides shows
the symmetric behavior when the Trivelpiece–Gould wave propagates in the negative-z direction.

Keywords: symmetric and anti-symmetric modes; Trivelpiece–Gould waves

PACS: 52.20-j; 52.35.Fp

1. Introduction

The stability analysis of the propagation of linear and nonlinear waves in various
physical systems has received considerable attention since the conditions for the stable or
unstable modes can provide useful information on the geometrical configuration and the
physical characteristics [1]. In plasma environments, it has been shown that the influence
of wave–particle and wave–wave interactions plays an important role in the stability of
the propagation of linear and nonlinear plasma waves [2]. The condition for the stability
of plasma waves in a confined configuration of the bounded plasma has been extensively
investigated owing to the wide application of the surface plasma wave [3–7]. It has been
shown that the condition for the propagation of surface waves in bounded and semi-
bounded plasmas can be explored from the dispersion relation obtained by the surface
impedance on the interface between the two different media. Hence, it is obvious that
the appropriate boundary conditions at the interface are essential to legitimate the phys-
ical properties of surface waves. It is also shown that the cylindrical plasma waveguide
has received considerable attention since the space-change wave on the interface of the
plasma column would support various harmonic modes owing to the multi-existence of
harmonized cylindrical Bessel solutions [8]. The stability of cylindrical plasma with sharp
boundaries has been extensively investigated since the non-zero azimuthal component
related to a flutelike perturbation is related to the kink instability [9]. In collisional plasmas,
it is well known that the influence of collision frequencies causes complex imaginary terms
in plasma susceptibilities [10]. Even though there are many investigations on Trivelpiece–
Gould waves [11–13], we do not have enough information on the effect of collisional
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damping on the propagation and stability of Trivelpiece–Gould waves in a plasma waveg-
uide containing noble electrons and ions. In addition, the influences of the ion-neutral and
ion–ion collisions in weakly and completely ionized plasma waveguides on the Trivelpiece–
Gould have not been investigated yet. Hence, this work is motivated to present general
descriptions of Trivelpiece–Gould waves propagating in weakly and completely ionized
plasma waveguides, including ion-neutral and ion–ion collisions, which seem to affect the
dispersive properties. It would be expected that the damping and instability modes could
exist in collisional plasma waveguides. Then, in this work, the influence of ion collisions
on the low-frequency ion-acoustic space-change wave known as the Trivelpiece–Gould
wave are investigated in weakly and completely ionized plasma waveguides. This inves-
tigation was conducted to understand the theoretical aspects of the collision effects on
the propagation of the low-frequency ion-acoustic Trivelpiece–Gould wave by using the
method of normal modes and the separation of variables. Hence, the dispersion relations
of the low-frequency ion-acoustic Trivelpiece–Gould waves are derived for weakly ionized
plasma waveguides as well as for completely ionized plasma waveguides. The variations
of the damping rates owing to ion collisions in weakly and completely ionized plasma
waveguides are also discussed.

2. Strum–Liouville Equations for Weakly and Completely Ionized Plasmas

The continuity equation and the momentum equation for the species j of plasma
particles are given by, respectively,

∂nj

∂t
+ ∇ · (njvj) = 0 , (1)

mjnj

(
∂vj

∂t
+ vj · ∇ vj

)
= −∇Pj − qjnj∇ϕ , (2)

where nj, vj, mj, Pj, qj, and ϕ are density, velocity, mass, pressure, charge, and electro-
static potential. Here, Poisson’s equation is given by ∇2 ϕ = − 4π ∑

j= e, i
qjnj, where

e = electron and i = ion. In the frequency range, kvTi << ω << kvTe, the plasma
dielectric function εW(ω, k) for weakly ionized plasmas (W) and the plasma dielectric
function εC(ω, k) for completely ionized plasmas (C) can be, respectively, expressed as
follows [14]:

εW(ω, k) = 1 −
ω2

pi

ω2

(
1 − i

νin
ω

)
+

ω2
pe

k2v2
Te

(
1 + i

√
π

2
ω

kvTe

)
, (3)

εC(ω, k) = 1 −
ω2

pi

ω2

(
1 − i

8k2v2
Ti

5ω2
νii
ω

)
+

ω2
pe

k2v2
Te

(
1 + i

√
π

2
ω

kvTe

)
, (4)

where ω is the frequency, k is the wave number, vTj is the thermal velocity, ωpj =

(4πnjq2
j /mj)

1/2 is the plasma frequency of the species j, νin is the ion-neutral collision
frequency, and νii is the ion-ion collision frequency. Based on the perturbation theory, the
small perturbations from the equilibrium values for the density, velocity, and electrostatic
potential would be given as ñ1j = nj − n0j, ṽ1j = vj − v0j, and ϕ̃1 = ϕ, where the
subscript 1 stands for the small perturbing quantity and the subscript 0 for the equilibrium
quantity. Here, the time-dependent parts of the perturbed density, perturbed velocity,
and perturbed electrostatic potential are given by ñ1j(r, t) = ñ1j(r)e− iωt, ṽ1j(r, t) =

ṽ1j(r)e− iωt, and ϕ̃1(r, t) = ϕ̃1(r)e− iωt. In cylindrical coordinates, these perturbed quanti-
ties can be represented by the wave-like forms [15–17]: ñ1j(r) = ñ1j(r) exp(ik‖z + i χθ),
ṽ1j(r) = ṽ1j(r) exp(ik‖z + i χθ), and ϕ̃1(r) = ϕ̃1(r) exp(ik‖z + i χθ), where ñ1j(r),
ṽ1j(r), and ϕ̃1(r) are the perturbed quantities in the transverse plane, kz = k‖[ =

(k2 − k2
⊥)

1/2
] is the wave number along the axial z-direction, k⊥[ = (k2 − k2

z)
1/2

] is
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the transverse wave number, and χ is the azimuthal wave number. From Equations (1)–(4),
the differential equation for the perturbed electrostatic potential ϕ̃1(r) would be written as
the following self-adjoint form of the Strum–Liouville eigenvalue problem [18]:

Lϕ̃1(r) =
d
dr

[
r

dϕ̃1(r)
dr

]
− χ2

r
ϕ̃1(r) = − β2

µ(ω, kz) rϕ̃1(r) , (5)

In Equation (5), the operator L ≡ (d/dr)(rd/dr) − χ2/r is a self-adjoint operator
and β2

µ(ω, kz) = − k2
‖εµ(ω, kz), where µ = W for weakly ionized plasma waveguides

(WIP) and µ = C for completely ionized plasma waveguides (CIP), respectively,

β2
W(ω, kz) = − k2

z
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)]
for CIP. (7)

Hence, the Strum–Liouville equations for weakly and completely ionized plasma
waveguides are, respectfully, found to be

d
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[
r

dϕ̃1(r)
dr

]
− χ2

r
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d
dr

[
r

dϕ̃1(r)
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]
− χ2

r
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3. Dispersion Relations for Weakly and Completely Ionized Plasmas

The general eigenvalue solutions of the Strum–Liouville equations (Equations (8)
and (9)) for weakly and completely ionized plasma waveguides can be represented by
ϕ̃1(r) = ∑

χ

[
A Jχ(βµr) + B Nχ(βµr)

]
, where the constants A and B are functions of the

separation constants χ and βµ, and Jχ(βµr) is the χ-th order cylindrical Bessel function,
and Nχ(βr) is the χ-th order Neumann function. Hence, a general solution for ϕ̃1(r, θ) is
found to be ϕ̃1(r, θ) = ∑

β, χ

[
A Jχ(βµr) + B Nχ(βµr)

] (
C ei χθ + D e− i χθ

)
. If the plasma

waveguide is assumed to be the azimuthally symmetric cylindrical system, we can set χ2[ =
− (∂2 ϕ̃1/∂θ2)/ϕ̃1] = 0 so that the r-dependence of ϕ̃1 for the azimuthally symmetric
plasma waveguide is put by ϕ̃1(r) = A J0(βµr) + B N0(βµr). Since the singular behavior
of the zeroth-order Neumann function N0(βµr) for r → 0 , this constraint implies B = 0.
In addition, the r-dependence of ϕ̃1 must be null on the surface of the cylindrical waveguide
at r = R, i.e., J0(βµR) = 0. Since J0(βµr) has the oscillatory behavior with many zeros,
such as J0(α0p) = 0 where α0q is the q-th zero of the Bessel function of zeroth order
(for example, α01 = 2.4048, α02 = 5.5201, α03 = 8.6537), the parameter βµ is then
obtained by βµ = α0q/R, where µ = W for weakly ionized plasma waveguides (WIP)
and µ = C for completely ionized plasma waveguides (CIP), respectively. Hence, we can
obtain the following equations for weakly and completely ionized plasmas such as(

α0q

R

)2
= − k2

z

[
1 −

ω2
pi
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ω

)
+
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for WIP, (10)

(
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)2
= − k2
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π
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for CIP. (11)
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Hence, the dispersion relation DW(ω, kz, νin) for weakly ionized plasma waveguides
yields

DW(ω, kz, νin) = DW
r (ω, kz, νin) + iDW

i (ω, kz, νin)

= 1 −
ω2

pi
ω2 +

ω2
pe

k2
zv2

Te
+

α2
0q

k2
z R2 + i

(
ω2

piνin

ω3 +
√

π
2

ω ω2
pe

k3
zv3

Te

)
= 0 ,

(12)

where DW
r (ω, kz, νin) and DW

i (ω, kz, νin) denote the real and the imaginary parts of the
dispersion function DW(ω, k‖, νin), respectively. The dispersion relation DC(ω, kz, νii) for
completely ionized plasma waveguides is then obtained as

DC(ω, kz, νii) = DC
r (ω, kz, νii) + iDC

i (ω, kz, νii)

= 1 −
ω2

pi
ω2 +

ω2
pe

k2
zv2

Te
+

α2
0q

k2
z R2 + i

(
8ω2

pik
2
zv2

Tiνii

5ω5 +
√

π
2

ω ω2
pe

k3
zv4

Te

)
= 0 ,

(13)

where DC
r (ω, kz, νii) and DC

i (ω, kz, νii) are the real and the imaginary parts of the dis-
persion function DC(ω, kz, νii), respectively. As shown in Equations (12) and (13), the
dispersion relations for weakly and completely ionized plasma waveguides are complex
functions so that the corresponding frequencies ω(kz) should be complex forms, such as
ω(kz) = ωr(kz) + iγ(kz), where the real part of the frequency ωr and the damping rate
γ are holding the following constraint condition: ωr(kz) >> |γ(kz)|. From Equations (12)
and (13), we have found that

DW
r (ω, kz, νin) = DC

r (ω, kz, νii) = 1 −
ω2

pi

ω2 +
ω2

pe

k2
zv2

Te
+

α2
0q

k2
zR2 , (14)

with ω = ωr + iγ. The real part of the frequency ωr for weakly and completely ionized
plasma waveguides is obtained as

ω2
r (kz) =

k2
zv2

Teω2
pi

k2
zv2

Te + ω2
pe +

v2
Teα2

0q
R2

. (15)

From Equations (12), (14) and (15) with ω = ωr + iγ, the small damping rate
γW(kz) for weakly ionized plasma waveguides becomes

γW(kz) = −
DW

i (ωr, kz)

∂DW
r (ωr, kz)/∂ωr

= −

ω2
piνin

ω3
r

+
√

π
2

ωr ω2
pe

k3
zv3

Te

2ω2
pi

ω3
r

. (16)

Hence, the absolute scaled damping rate |γW |( = γW/ωpi) in the unit of the ion
plasma frequency for weakly ionized plasma waveguides is found to be

∣∣∣γW(kz)
∣∣∣ =

1
2

νin +

√
π

2
1

ωpe

kz(
k

2
z +

α2
0q

R2 + 1
)2

 , (17)

where νin ≡ νin/ωpi, ωpe ≡ ωpe/ωpi, kz( ≡ kzλDe) is the scaled axial wave number,
R( ≡ R/λDe) is the scaled radius of the cylindrical plasma waveguide, and λDe is the
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electron Debye length. From Equations (13)–(15) with ω = ωr + iγ, the small damping
rate γC(kz) for completely ionized plasma waveguides is found to be

γC(kz) = −
DC

i (ωr, kz)

∂DC
r (ωr, kz)/∂ωr

= −

8k2
‖v

2
Tiω

2
piνii

5ω5
r

+
√

π
2

ωr ω2
pe

k3
zv3

Te

2ω2
pi

ω3
r

. (18)

The absolute scaled damping rate |γC|( = γC/ωpi) in units of the ion plasma fre-
quency for completely ionized plasma waveguides is then obtained as

∣∣∣γC(kz)
∣∣∣ =

1
2

8
5

(
λDi
λDe

)
νii

(
k

2
z +

α2
0q

R2 + 1

)
+

√
π

2
1

ωpe

kz(
k

2
z +

α2
0q

R2 + 1
)2

 , (19)

where νii ≡ νii/ωpi and λDi is the ion Debye length. Recently, the properties of quantum
plasmas including the quantum-diffraction and electron-exchange effects have been exten-
sively explored in various laboratory and natural plasma systems, such as astrophysical
compact objects, laser-induced plasmas, nano-wires, quantum dots, and semiconductor
plasmas [19–21]. Therefore, the study on the collision effects on quantum Trivelpiece–
Gould wave in plasma waveguides composed of degenerate electrons and ions, including
the electron-exchange phenomena, will be treated elsewhere.

4. Discussion

Figures 1 and 2 show the scaled real frequencies ωr for weakly and completely ionized
plasma waveguides as a function of kz for various values of the harmonic modes α0p when
R = 10 and R = 2, respectively. As we see in Figures 1 and 2, the scaled real frequency
ωr decreases with the harmonic number p for the Bessel eigenvalue α0p when R = 10.
However, it is interesting to note that the scaled real frequency ωr increases with the
harmonic number p for the Bessel eigenvalue α0p when R = 2. Hence, we have found that
the dependence of the harmonic mode on the scaled real frequency ωr shows the opposite
tendency for large and small radii of the cylindrical waveguide. Figures 3 and 4 show the
absolute values of the scaled damping rate |γW | for weakly ionized plasma waveguides
as a function of kz for various values of the harmonic modes α0p when R = 10 and
R = 2, respectively. As shown in Figures 3 and 4, the scaled damping rate |γW | decreases
with the harmonic number p for the Bessel solution α0p when R = 10. However, it is
interesting to note the scaled damping rate |γW | increases with the harmonic number p
for the Bessel solution α0p when R = 2. Hence, it is found that the dependence of the
harmonic mode on the scaled damping rate |γW | shows the opposite tendency for large
and small radii of the cylindrical waveguide. Figure 5 represents the absolute value of the
scaled damping rate |γW | for weakly ionized plasma waveguides as a function of kz for
various values of the ion-neutral collision frequency νin. As we can see from this figure,
the scaled damping rate |γW | increases with an increase of the collision frequency νin.
Figures 6 and 7 show the absolute values of the scaled damping rate |γW | for the weakly
ionized plasma waveguides as a function of kz for various values of the harmonic modes
α0p when R = 10 and the temperature ratio are Ti/Te = 0.01 and Ti/Te = 0.001,
respectively. As shown in Figures 6 and 7, the scaled damping rate |γw| decreases with a
decrease of the temperature ratio Ti/Te. Hence, it is found that the scaled damping rate
|γw| for weakly ionized plasma waveguides decreases with an increase of the electron
temperature. Figures 8 and 9 show the absolute values of the scaled damping rate |γC|
for completely ionized plasma waveguides as a function of kz for various values of the
harmonic modes α0p when R = 2 and the temperature ratio are Ti/Te = 0.01 and
Ti/Te = 0.001, respectively. As shown in Figures 8 and 9, the scaled damping rate |γC|
decreases with a decrease of the temperature ratio Ti/Te. Hence, the scaled damping
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rate |γC| is found to decrease with an increase of the electron temperature. Figure 10
represents the absolute value of the scaled damping rate |γC| for completely ionized
plasma waveguides as a function of kz for various values of the ion-ion collision frequency
νii. As we can see from this figure, the scaled damping rate |γC| increases with an increase
of the collision frequency νii. In addition, it is shown that the influence of the collision
frequency νii is found to be more significant when kz > 1. Figure 11 represents the surface
profile of the absolute value of the scaled damping rate |γW | for weakly ionized plasma
waveguides as a function of R and kz. As we can see from this figure, the dependence
of the wave number on the scaled damping rate |γW | is getting more significant as an
increase of the scaled radius R of the waveguide. It is interesting to note that the scaled
damping rate |γW | for weakly ionized plasmas shows the anti-symmetric behavior when
the Trivelpiece–Gould wave propagates in the negative-z direction. Figure 12 represents
the surface plot of the absolute value of the scaled damping rate |γC| for completely
ionized plasma waveguides as a function of R and kz. As we can see from this figure, the
dependence of the wave number on |γC| is getting more significant as the scaled radius
R increases. We should note that |γC| for completely ionized plasmas shows symmetric
behavior when the Trivelpiece–Gould wave propagates in the negative-z direction. Hence,
it is quite important to note that the mirror-reflection behavior of the scaled damping rate
shows the opposite tendency for weakly and completely ionized plasmas.
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Figure 1. The scaled real frequency ωr of the Trivelpiece–Gould wave for weakly and completely
ionized plasma waveguides as a function of kz when R = 10. The blue solid line is the case of
α01 = 2.4048. The red dashed line is the case of α02 = 5.5201. The green dotted line is the case of
α03 = 8.6537.
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Figure 2. The scaled real frequency ωr of the Trivelpiece–Gould wave for weakly and completely
ionized plasma waveguides as a function of kz when R = 2. The blue solid line is the case of
α01 = 2.4048. The red dashed line is the case of α02 = 5.5201. The green dotted line is the case of
α03 = 8.6537.
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Figure 3. The absolute value of the scaled damping rate |γW | of the Trivelpiece–Gould wave for
weakly ionized plasma waveguides as a function of kz when R = 10 and νin = 0.01. The blue
solid line is the case of α01 = 2.4048. The red dashed line is the case of α02 = 5.5201. The green
dotted line is the case of α03 = 8.6537.
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Figure 4. The absolute value of the scaled damping rate |γW | of the Trivelpiece–Gould wave for
weakly ionized plasma waveguides as a function of kz when R = 2 and νin = 0.01. The blue solid
line is the case of α01 = 2.4048. The red dashed line is the case of α02 = 5.5201. The green dotted
line is the case of α03 = 8.6537.
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Figure 5. The absolute value of the scaled damping rate |γW | of the Trivelpiece–Gould wave for
weakly ionized plasma waveguides as a function of kz when R = 10. with α01 = 2.4048. The blue
dashed line is the case of νin = 0.01. The red dotted line is the case of νin = 0.05. The green dotted
line is the case of νin = 0.01.
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Figure 6. The absolute value of the scaled damping rate |γC| of the Trivelpiece–Gould wave for com-
pletely ionized plasma waveguides as a function of kz when R = 10, νii = 0.01, and Ti/Te = 0.01.
The blue solid line is the case of α01 = 2.4048. The red dashed line is the case of α02 = 5.5201. The
green dotted line is the case of α03 = 8.6537.
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Figure 7. The absolute value of the scaled damping rate |γC| of the Trivelpiece–Gould wave
for completely ionized plasma waveguides as a function of kz when R = 10, νii = 0.01, and
Ti/Te = 0.001. The blue solid line is the case of α01 = 2.4048. The red dashed line is the case of
α02 = 5.5201. The green dotted line is the case of α03 = 8.6537.



Symmetry 2021, 13, 699 10 of 13
Symmetry 2021, 13, x FOR PEER REVIEW 11 of 14 
 

 

 

Figure 8. The absolute value of the scaled damping rate Cγ  of the Trivelpiece–Gould wave for 

completely ionized plasma waveguides as a function of zk  when 0.01iiν =  and 

/ 0.01i eT T =  with 01 2.4048α = . The blue solid line is the case of 2R = . The red dashed 

line is the case of 5R = . The green dotted line is the case of 10R = . 

 

Figure 9. The absolute value of the scaled damping rate Cγ  of the Trivelpiece–Gould wave for 

completely ionized plasma waveguides as a function of zk  when 0.01iiν =  and 

/ 0.001i eT T =  with 01 2.4048α = . The blue solid line is the case of 2R = . The red dashed 

line is the case of 5R = . The green dotted line is the case of 10R = . 

Figure 8. The absolute value of the scaled damping rate |γC| of the Trivelpiece–Gould wave for
completely ionized plasma waveguides as a function of kz when νii = 0.01 and Ti/Te = 0.01 with
α01 = 2.4048. The blue solid line is the case of R = 2. The red dashed line is the case of R = 5.
The green dotted line is the case of R = 10.
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Figure 9. The absolute value of the scaled damping rate |γC| of the Trivelpiece–Gould wave for
completely ionized plasma waveguides as a function of kz when νii = 0.01 and Ti/Te = 0.001
with α01 = 2.4048. The blue solid line is the case of R = 2. The red dashed line is the case of
R = 5. The green dotted line is the case of R = 10.
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Figure 11. The surface plot of the absolute value of the scaled damping rate Wγ  of the Trivel-

piece–Gould wave for weakly ionized plasma waveguides as a function of R  and zk  when 
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Figure 10. The absolute value of the scaled damping rate |γC| of the Trivelpiece–Gould wave for
completely ionized plasma waveguides as a function of kz when R = 10 with α01 = 2.4048. The
blue solid line is the case of νii = 0.001. The red dashed line is the case of Ti/Te = 0.005. The
green solid line is the case of νii = 0.01.
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Figure 11. The surface plot of the absolute value of the scaled damping rate |γW | of the Trivelpiece–
Gould wave for weakly ionized plasma waveguides as a function of R and kz when νin = 0.01 with
α01 = 2.4048.
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5. Summary 
In this work, we investigated the influence of ion collisions on the low-frequency ion-

acoustic Trivelpiece–Gould wave in weakly and completely ionized plasma waveguides 
by using the method of normal modes and the separation of variables. Trivelpiece–Gould 
waves contain many advantages over bulk waves since they can produce plasmas with 
more spatially confined uniform density profiles, resulting in a wide range of applications. 
Since the collision frequency is not often small under experimental conditions for plasma 
research, we should take into account the collision frequency for the dielectric permittivity 
of the plasma when the deviation of the experimental results from the theoretical predic-
tion is evident. In weakly ionized plasma waveguides, the dependence of the harmonic 
modes on the absolute value of the scaled damping rate shows the opposite tendency for 
large and small radii of the cylindrical waveguide. The scaled damping rates for both 
weakly and completely ionized plasma waveguides also decrease with an increase of the 
electron temperature. It is interesting to find that the scaled damping rate for weakly ion-
ized plasma waveguides shows the anti-symmetric behavior when the Trivelpiece–Gould 
wave propagates in the negative-z direction. However, it is found that the scaled damping 
rate for completely ionized plasma waveguides shows symmetric behavior when the Triv-
elpiece–Gould wave propagates in the negative-z direction. Hence, it is quite interesting 
to note that the mirror-reflection behavior of the scaled damping rate shows the opposite 
tendency for weakly and completely ionized plasma waveguides. From this work, we 
have found that the collision effects on the damping rates of the Trivelpiece–Gould waves 
play significant roles in weakly and completely ionized plasma waveguides. These results 
would provide useful information on the stability of the Trivelpiece–Gould waves in col-
lisional plasma waveguides. 
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Figure 12. The surface plot of the absolute value of the scaled damping rate |γC| of the Trivelpiece–
Gould wave for completely ionized plasma waveguides as a function of R and kz when νin = 0.01
and Ti/Te = 0.01 with α01 = 2.4048.

5. Summary

In this work, we investigated the influence of ion collisions on the low-frequency ion-
acoustic Trivelpiece–Gould wave in weakly and completely ionized plasma waveguides
by using the method of normal modes and the separation of variables. Trivelpiece–Gould
waves contain many advantages over bulk waves since they can produce plasmas with
more spatially confined uniform density profiles, resulting in a wide range of applications.
Since the collision frequency is not often small under experimental conditions for plasma
research, we should take into account the collision frequency for the dielectric permittivity
of the plasma when the deviation of the experimental results from the theoretical prediction
is evident. In weakly ionized plasma waveguides, the dependence of the harmonic modes
on the absolute value of the scaled damping rate shows the opposite tendency for large
and small radii of the cylindrical waveguide. The scaled damping rates for both weakly
and completely ionized plasma waveguides also decrease with an increase of the electron
temperature. It is interesting to find that the scaled damping rate for weakly ionized
plasma waveguides shows the anti-symmetric behavior when the Trivelpiece–Gould wave
propagates in the negative-z direction. However, it is found that the scaled damping rate for
completely ionized plasma waveguides shows symmetric behavior when the Trivelpiece–
Gould wave propagates in the negative-z direction. Hence, it is quite interesting to note that
the mirror-reflection behavior of the scaled damping rate shows the opposite tendency for
weakly and completely ionized plasma waveguides. From this work, we have found that
the collision effects on the damping rates of the Trivelpiece–Gould waves play significant
roles in weakly and completely ionized plasma waveguides. These results would provide
useful information on the stability of the Trivelpiece–Gould waves in collisional plasma
waveguides.
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