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Abstract— In this paper, we propose computationally
efficient yet near-optimal soft-output detection methods for
coded millimeter-wave (mmWave) multiple-input-multiple-output
(MIMO) systems with low-precision analog-to-digital convert-
ers (ADCs). The underlying idea of the proposed methods
is to construct an extremely sparse inter-symbol-interference
channel model by jointly exploiting the delay-domain sparsity
in mmWave channels and a high quantization noise caused
by low-precision ADCs. Then, we harness this sparse channel
model to create a trellis diagram with a reduced number of
states and a factor graph with very sparse edge connections,
which are used for the computationally efficient soft-output
detection methods. Using the reduced trellis diagram, we present
a soft-output detection method that computes the log-likelihood
ratios (LLRs) of coded bits by optimally combining the quantized
received signals obtained from multiple receive antennas using a
forward-and-backward algorithm. To reduce the computational
complexity further, we also present a low-complexity detection
method using the sparse factor graph to compute the LLRs in an
iterative fashion based on a belief propagation algorithm. Simula-
tions results demonstrate that the proposed soft-output detection
methods provide significant frame-error-rates gains compared
with the existing frequency-domain equalization techniques in a
coded mmWave MIMO system using one- or two-bit ADCs.

Index Terms— Millimeter wave communications, multiple-
input-multiple-output (MIMO), low-precision analog-to-
digital converter (ADC), soft-output detection, time-domain
equalization.

I. INTRODUCTION

MMWAVE communication combined with massive
multiple-input multiple-output (MIMO) is a key feature

of next-generation wireless systems to provide high data rates
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beyond hundreds of Gbits/sec [1]–[3]. Thanks to relatively
large bandwidths available at the mmWave band, it is possible
to linearly increase the throughput of the wireless system with
the bandwidth. In addition, the use of a massive antenna array
allows the system to compensate a significant path loss at the
mmWave band by beamforming gains. In spite of the signif-
icant rate enhancement, implementing the mmWave system
that uses both the large bandwidth and the massive antenna
array is difficult. One of the major reasons is that prohibitive
power consumption is required by high-precision (8∼16 bits)
analog-to-digital converters (ADCs) at the receiver, whose
power consumption increases linearly with both the system
bandwidth (i.e., the sampling rate) and the number of RF
chains [4]–[6]. A simple yet effective solution to resolve
this difficulty is to reduce the number of precision bits of
the ADCs [7]–[13], because the power consumption of the
ADCs decreases exponentially with the number of quantiza-
tion bits [4], [5].

Unfortunately, the use of low-precision (1∼2 bits) ADCs
faces a challenge brought by the nonlinear quantization effect
of the ADCs. Particularly, in a coded system, this nonlinear
effect causes a severe frame-error-rate (FER) degradation due
to inter-subcarrier interference when applying conventional
frequency-domain equalization techniques such as orthogo-
nal frequency division modulation (OFDM) or single-carrier
frequency domain equalization (SC-FDE). To resolve this
problem, it is essential to design effective soft-output detec-
tion methods for mmWave (frequency-selective) MIMO sys-
tems when low-precision ADCs are employed. In this paper,
we make progress toward designing near-optimal time-
domain soft-output detection methods. Using the sparse
property in the mmWave channels [13]–[16], we present
how to extract out the soft-information (e.g., log-likelihood
ratios (LLRs) of coded bits) by optimally combining the
quantized received signals obtained from multiple receive
antennas in a computationally-efficient manner.

A. Related Work

There is a rich literature on data detection methods in
MIMO systems with low-precision ADCs [17]–[24]. For
frequency-flat MIMO channels, the maximum-likelihood (ML)
detection and its low-complexity variations were introduced
in [17]–[20]. Data detection methods that are robust to the
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effect of a high channel estimation error were also pro-
posed using several approaches such as Bayesian approach
for joint channel-and-data estimation [21], supervised-learning
approach [22], and reinforcement-learning approach [23].
Unfortunately, these methods are not applicable to general
mmWave MIMO channels with frequency-selectivity because
of the frequency-flat assumption that ignores the effect of
inter-symbol interference (ISI). Recently, a data detection
method for frequency-selective channels was proposed based
on Viterbi algorithm [24]. This method is shown to be opti-
mal in the sense of detecting the sequence of transmitted
data symbols. The common limitation of the aforementioned
detection methods is that they cannot produce the LLRs of
coded bits, which are the necessary inputs for modern channel
decoders (e.g., Turbo, low-density-parity-check (LDPC) and
polar codes) to obtain the optimal coding gain.

Soft-output detection methods for conventional MIMO sys-
tems with high-precision ADCs have been intensively stud-
ied in the literature [25]–[30]. Frequency-domain equalization
techniques with a soft demapper were popular, because they
allow the computation of LLRs with per-subcarrier operation.
Whereas, the time-domain soft-output detection methods were
not preferable for the conventional MIMO systems due to their
high computational complexity. For example, the BCJR algo-
rithm using the forward-backward recursion in [25] and [26]
computes the exact LLRs based on the Trellis diagram con-
structed by a ISI channel. This algorithm requires the computa-
tional complexity that increases exponentially with the number
of ISI channel taps, the modulation size, and the number of
transmit antennas. To reduce the complexity, soft-output detec-
tion methods based on the belief propagation (BP) algorithm
were also proposed in [27]–[29]. They compute the LLR val-
ues using an iterative message-passing algorithm based on the
factor graph constructed by a ISI channel. Unfortunately, both
algorithms cannot be directly applicable to mmWave MIMO
systems with low-precision ADCs. The major challenge is that
in these systems, only quantized observations of the received
signals are available at the detector to compute the LLRs,
which are distorted by the nonlinear quantization effect.

Very limited work has focused on the development of
soft-output detection methods for MIMO systems with low-
precision ADCs [31]–[36]. In our prior work [31], a weighted
Hamming distance was used to compute the LLRs for the
MIMO systems with one-bit ADCs; yet, this work does not
take into account the ISI effect of mmWave channels. Soft-
output detection methods for frequency-selective channels
were proposed in [32]–[35] based on the frequency-domain
equalization (e.g., OFDM and SC-FDE). Unlike conventional
OFDM/SC-FDE systems, per-subcarrier soft-output detection
is highly suboptimal in mmWave OFDM/SC-FDE systems
with low-precision ADCs. The major reason is that when the
fast Fourier transform operation is applied after the ADCs,
perfect inter-subcarrier interference cancellation is not feasible
due to the nonlinearity of the quantization function. To resolve
this problem, a joint-subcarrier detection method based on
convex optimization was developed in [32], while iterative
detection algorithms based on approximations were considered
in [33]–[35]. These frequency-domain techniques were shown

to be fairly effective when the number of receive antennas is
sufficiently larger than the number of simultaneously transmit-
ted data streams at the transmitter. Recently, a joint soft-output
detection and channel-decoding method has been developed
in [36] on the basis of bilinear GAMP algorithm, but the
algorithm is limited to the use for single-input single-output
(SISO) systems. Moreover, none of the aforementioned meth-
ods in [32]–[36] guarantees the optimality in the soft-output
detection performance, because all these methods compute the
LLRs based on the approximate algorithms.

B. Contributions

The major contributions of this paper are summarized as
follows:

• We construct an extremely sparse ISI channel model
for mmWave MIMO systems with low-precision ADCs,
by jointly exploiting the delay-domain sparsity in
mmWave channels and a high quantization noise caused
by low-precision ADCs. Considering the quantization
noise level, the constructed channel model consists only
of a few dominant channel-impulse-response (CIR) taps,
while treating weak CIR taps as additional noise. We also
develop a dominant-tap-selection algorithm to reduce a
modeling error in the constructed channel. The key idea
of the developed algorithm is to minimize the normal-
ized mean-squared-error between the arguments of two
conditional probability mass functions (PMFs), computed
based on the true channel model and on the extremely
sparse channel model, respectively. The design parame-
ters of the developed algorithm are chosen to adjust
the performance-complexity tradeoff of the soft-output
detection.

• We propose a soft-output detection method, referred to
as quantized BCJR (Q-BCJR), that computes the LLRs of
coded bits by optimally combining the quantized received
signals obtained from multiple receive antennas using the
forward-and-backward algorithm. Based on the extremely
sparse ISI channel model, we reduce the computational
complexity of Q-BCJR by creating a trellis diagram
that has a reduced number of states determined only by
the dominant CIR taps. From the complexity analysis,
we show that the computational complexity order of
Q-BCJR depends only on the maximum delay index of
the dominant CIR taps. One promising feature of Q-BCJR
is that it guarantees near-optimal performance when the
power of the weak CIR taps is sufficiently lower than
the noise level. In addition, for the extreme case (i.e.,
every CIR tap is dominant), Q-BCJR becomes the optimal
soft-output detection method that computes the exact
LLRs at the expense of the computational complexity.

• We also propose a low-complexity soft-output detec-
tion method, referred to as quantized belief propagation
(Q-BP), that iteratively compute the LLRs using the BP
algorithm. Based on the extremely sparse ISI channel
model, we reduce the computational complexity of Q-BP
by constructing a sparse factor graph that ignores the
edges associating with the weak CIR taps. We also
design the messages of Q-BP that consider not only the
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Fig. 1. A mmWave MIMO communication system with low-precision ADCs when hybrid beamforming is employed at both a transmitter and a receiver.

quantization function at the ADCs but also the effect
of the ignored edges. From the complexity analysis,
we show that the computational complexity order of
Q-BP depends only on the number of the dominant
CIR taps, which achieves a significant reduction in the
computational complexity compared to Q-BCJR.

• Using simulations, we evaluate the frame-error-rate
(FER) performance of the proposed soft-output detection
methods for a coded mmWave MIMO system with low-
precision ADCs, compared to the existing OFDM-based
detection methods. Simulation results show that both
Q-BCJR and Q-BP outperform the existing methods in
terms of FERs when employing one- or two-bit ADCs.
It is also shown that both the proposed methods are
robust to a channel estimation error when applying
a practical channel-estimation method. By simulations,
we also show that our dominant-tap-selection algorithm
effectively improves the performance-complexity tradeoff
achieved by the proposed methods.

Notation: Upper-case and lower-case boldface letters denote
matrices and column vectors, respectively. E[·] is the statistical
expectation, P(·) is the probability, (·)� is the transpose, (·)H
is the conjugate transpose, | · | is the absolute value, Tr(·)
is the trace, Re{·} is the real part, Im{·} is the imaginary
part, �a�=

√
aHa is the Euclidean norm of a vector a, and

�A�F =
√

Tr(AAH) is the Frobenius norm of a matrix A.
I{A} is an indicator function which equals one if an event
A is true and zero otherwise. 0n is an n-dimensional vector
whose elements are zero. Φ(·) is the cumulative distribution
of the standard normal random variable.

II. SYSTEM MODEL AND PRELIMINARY

We consider a mmWave MIMO communication system with
low-precision ADCs, as illustrated in Fig. 1. In the considered
system, a transmitter equipped with Na

tx antenna elements
followed by Ntx ≤ Na

tx RF chains communicates with a
receiver equipped with Na

rx antenna elements followed by
Nrx ≤ Na

rx RF chains.

A. Channel Model

A mmWave channel between the transmitter and the receiver
is modeled using a transmit array-response vector, a receive

array-response vector, and Ncl multi-path clusters, in which
the c-th cluster consists of Npath,c subpaths. Let atx(φ, θ) ∈
C

Na
tx and arx(φ, θ) ∈ C

Na
rx be a transmit and a receive

array-response vector, respectively, which depends on the
geometry of the antenna elements, a horizontal angle φ
of arrival (or departure), and a vertical angle θ of arrival
(or departure). Let also αc,s ∈ C and τc,s ∈ R be the complex
channel gain and the propagation delay of the s-th subpath
in the c-th cluster, respectively. Then an analog channel
matrix at discrete time index �, namely A[�] ∈ C

Na
rx×Na

tx ,
is expressed as

A[�]=
Ncl∑

c=1

Npath,c∑

s=1

αc,sarx(φrx
c,s, θ

rx
c,s)a

H
tx(φ

tx
c,s, θ

tx
c,s)p(�Ts−τc,s),

(1)

for � ∈ {0, . . . , L− 1}, where Ts is the symbol duration, p(·)
is a pulse-shaping function, φtx

c,s (θtx
c,s) is a horizontal (vertical)

angle of departure, φrx
c,s (θrx

c,s) is a horizontal (vertical) angle
of arrival associating with the s-th subpath in the c-th cluster,
L = � τmax

Ts
+ 1

2� is the maximum delay index of the analog
channel, and τmax = maxc,s τc,s is the maximum propagation
delay.

We consider an effective mmWave channel that contains
both the transmit and receive analog BFs, as illustrated
in Fig. 1. Let FRF

tx ∈ C
Na

tx×Ntx and FRF
rx ∈ C

Na
rx×Nrx

be the analog BF matrix at the transmitter and the receiver,
respectively, that consists of phase shifters. Then the l-th CIR
tap of the effective mmWave channel is given by

H[�] = (FRF
rx )HA[�]FRF

tx , (2)

for � ∈ {0, . . . , L−1}. In this representation, the effects of the
antenna array, the transmit analog BF, and the receive analog
BF are abstracted by the channel coefficients in {H[�]}�.
Extensive studies and measurement evidences have already
shown that the CIR taps of the mmWave channel are sparsely
distributed in the delay domain [13]–[16], because the vul-
nerability of mmWave signals to reflection and diffraction
effects significantly decreases the number of effective channel
paths between the transmitter and the receiver. Motivated
by this fact, we denote the set of non-zero CIR taps as
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Fig. 2. (a) The cumulative distribution function (CDF) of L and |S| for
various mmWave channels implemented according to [16], and (b) a typical
power-delay distribution of a 28-GHz NLOS channel.

S = {� | H[�] 	= 0} which is expected to satisfy |S| 
 L by
the delay-domain sparsity in the mmWave channels.

Numerical example (Delay-domain sparsity in mmWave
channels): We also demonstrate the delay-domain sparsity
in mmWave channels by a numerical example using a mea-
surement model in [16]. Fig. 2(a) plots the cumulative dis-
tribution function (CDF) of L and |S| for various mmWave
channels implemented1 from [16], while Fig. 2(b) plots a
typical power-delay distribution of a 28-GHz non-line-of-sight
(NLOS) channel. Both Figs. 2(a) and 2(b) show that the
number of non-zero CIR taps is significantly less than the
maximum delay index, i.e., |S| 
 L. These numerical results
support our previous discussion on the delay-domain sparsity
of the mmWave channels. Fig. 2(b) also shows that some
non-zero CIR taps have very large discrete-time delays in the
range of 450 ∼ 500. The reason is that the delay index is a
relative value of the propagation delay to the symbol duration;
thereby, the larger the system bandwidth, the higher the delay
index for the given propagation delay.

1In this implementation, the system bandwidth is set to be 1 GHz, the trans-
mitter is assumed to use 4 × 4 uniform-planar-array (UPA) with Ntx = 1
RF chain, and the receiver is assumed to use 8 × 8 UPA with Nrx = 8 RF
chains. The antenna-element spacing in both the horizontal and the vertical
domains of the UPA is set to be 0.5λ. The transmit and receive analog BFs
are designed based on Algorithm 1 in [37].

B. Signal Model

At the transmitter, Iinfo information bits intended to be sent
to the receiver are encoded into Icode coded bits by a channel
encoder. Then every group of M coded bits is modulated
into an Ntx-dimensional symbol vector by a symbol mapper.
A symbol vector transmitted at time slot n is denoted by
x[n] ∈ X for n ∈ {1, . . . , Nd}, where Nd = Icode

M and X
is the modulation set for the symbol vector with |X | = 2M .
The modulation set is assumed to satisfy the power constraint
of E[|xt[n]|2] = 1 for all t ∈ {1, . . . , Ntx}, where xt[n] is the
t-th element of x[n]. For example, if 4-QAM modulation is
used in each RF chain, the symbol vector set is given by

X =
{

1√
2
(1+j),

1√
2
(−1+j),

1√
2
(1−j),

1√
2
(−1−j)

}Ntx

.

(3)

Each symbol vector is precoded by the transmit digital BF
matrix FBB

tx ∈ C
Ntx×Ntx with the average power constraint of

Tr(FBB
tx E

[
x[n]xH[n]

]
(FBB

tx )H) = Ntx. Then, using the sparse
channel property of the mmWave system, the received signal
vector at time slot n is expressed as

r[n] =
L−1∑

�=0

H[�]FBB
tx x[n− �] + v[n]

=
∑

�∈S
H[�]FBB

tx x[n− �] + v[n], (4)

where v[n] =
[
v1[n], · · · , vNrx [n]

]� ∼ CN (0Nrx , σ
2INrx) is

a complex Gaussian noise vector.
At the ADCs, the real and imaginary parts of each element

of r[n] are separately quantized by two B-bit scalar quantizers.
Let Q : R → Q = {q1, q2, . . . , q2B} be the quantization
function of each scalar quantizer, defined as Q(r) = qp for
r ∈ R if bp−1 < r ≤ bp, where qp is the p-th quantization
output, and bp is the p-th quantization bin boundary such that
b0 =−∞< b1 < . . . < b2B−1 < b2B =∞. Using this function,
the quantized signal vector obtained after the ADCs at time
slot n is defined as

y[n] = Q
(
Re
{
r[n]
})

+ jQ
(
Im
{
r[n]
})

. (5)

The sequence of the quantized vector obtained during
Nd + L − 1 time slots is denoted by Y =

(
y[1], · · · ,y[Nd+

L−1]
)
, which is used as an input of the soft-output detection.

Note that in the hybrid BF architecture, the quantized signal
in (5) can be combined by a receive digital BF matrix
FBB

rx ∈ C
Nrx×Nrx before the soft-output detection, as illus-

trated in Fig. 1. This additional process, however, cannot
improve the performance of the subsequent soft-output detec-
tion, because linearly combining the quantized signals only
maintains or loses the amount of the information that can be
used in the detection. Since the focus of our work is to develop
the soft-output detection methods by optimally combining the
quantized observations in the detection method, we assume a
simple digital BF at the receiver (i.e., FBB

rx = INrx ).
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C. Soft-Output Detection

The goal of the soft-output detection is to produce the
log-likelihood ratios (LLRs) of all coded bits based on the
quantized observations, so that they can be used as an input
of a soft-input channel decoder. Let c[i] be the i-th coded
bit (i.e., the i-th bit output of the channel encoder). In the
mmWave MIMO systems with low-precision ADCs, the LLR
of the i-th coded bit is defined as

L[i]=log
P(c[i] = 0|Y)
P(c[i] = 1|Y)

, for i ∈ {1, . . . , Icode}, (6)

for the given sequence of the quantized received vector, Y.
The above LLR can be rewritten as a function of the a
posteriori probability (APP) of the transmitted symbol vector,
denoted by P(x[n]|Y). To show this, let Km(u) be a set of
symbol vector indexes that obtain bit u as its m-th bit output
after a symbol-vector demapping, defined as

Km(u) =
{
k
∣
∣ Demapm(xk) = u, k ∈ K}, for u ∈ {0, 1},(7)

where xk is the k-th element of X , K = {1, . . . , |X | = 2M},
and Demapm(·) : X → {0, 1} is the m-th bit output of a
symbol-vector demapping function. Then the LLR in (6) is
rewritten as

L[i] = log

∑
k∈Kmi

(0) P(x[ni] = xk|Y)
∑

k∈Kmi
(1) P(x[ni] = xk|Y)

(8)

= log

∑
k∈Kmi

(0) P(x[ni] = xk,Y)
∑

k∈Kmi
(1) P(x[ni] = xk,Y)

, (9)

for i ∈ {1, . . . , Icode}, where ni = 
 i
M � and mi =

i − M(ni − 1). Note that ni and mi are defined in a way
that Demapmi

(x[ni]) = c[i] for all i ∈ {1, . . . , Icode}. As can
be seen in (8) and (9), the LLRs of the coded bits can be
determined either by computing the APP of P(x[n] = xk|Y),
or by computing the marginal probability of P(x[n] = xk,Y),
for all n ∈ {1, . . . , Nd} and k ∈ K.

III. CONSTRUCTION OF EXTREMELY

SPARSE ISI CHANNEL

One intriguing aspect of using the low-precision ADCs at
the receiver is that it is possible to model the sparse mmWave
channel as an extremely sparse ISI channel using the fact that
the quantization noise level is sufficiently high. Particularly,
under high quantization noise, treating some weak ISI signals
as additional noise may not severely degrade the FER perfor-
mance, while reducing the computational complexity of the
soft-output detection. Motivated by this fact, in this section,
we first construct an extremely sparse ISI channel model for
the mmWave system with low-precision ADCs, which consists
only of a few dominant CIR taps. We then optimize the
selection of the dominant CIR taps to reduce the modeling
error in the extremely sparse ISI channel.

A. Extremely Sparse ISI Channel

Let D = {d1, d2, . . . , d|D|} ⊂ S be a subset of S that
consists of the delays of the dominant CIR taps, and also
let W = S/D = {w1, w2, . . . , w|W|} be the non-overlapping

subset that consists of the delays of weak CIR taps which
are not selected as the dominant CIR taps. Using these two
non-overlapping subsets, we rewrite the receive signal in (4) as

r[n] =
∑

�∈D
H[�]FBB

tx x[n− �] +
∑

�∈W
H[�]FBB

tx x[n− �] + v[n]

= HDxD[n] + HWxW [n] + v[n], (10)

where

HD =
[
H[d1]FBB

tx , · · · ,H[d|D|]FBB
tx

]
,

HW =
[
H[w1]FBB

tx , · · · ,H[w|W|]FBB
tx

]
,

xD[n] =
[
x�[n−d1], · · · ,x�[n−d|D|]

]�
,

xW [n] =
[
x�[n− w1], · · · ,x�[n−w|W|]

]�
.

In (10), the ISI power from the weak CIR taps can be made
sufficiently low compared to the quantization noise level by
properly determining D and W . Using this fact, we treat the
ISI signals from the weak CIR taps as additional Gaussian
noise by modeling x[n−wi] ∼ CN (0Nrx , INrx) for wi ∈ W .
Then we can approximately model the effective noise vector
ṽ[n] = HWxW [n] + v[n] in (10) as a complex Gaussian
random vector with zero-mean and the covariance matrix of

E
[
ṽ[n]ṽH[n]

]
= HWE

[
xW [n]xH

W [n]
]
HH

W + σ2INrx

= H(n)
W
(
H(n)

W
)H + σ2INrx , (11)

where H(n)
W is a sub-matrix of HW that only contains the

weak CIR taps associating with non-zero transmitted vectors at
time slot n. Since H(n)

W
(
H(n)

W
)H

is a diagonal dominant matrix
for the spatially uncorrelated MIMO channel environment,
we further approximate the covariance of the effective noise as

E
[
ṽ[n]ṽH[n]

] ≈ diag
(
σ̃2

1 [n], . . . , σ̃2
Nrx

[n]
)
, (12)

where σ̃2
r [n] = �h(n)

W,r�2 + σ2, and (h(n)
W,r)

� is the r-th row

of H(n)
W . Our effective noise model can be made accurate by

selecting the weak CIR taps whose sum power is much lower
than the noise level, i.e., �h(n)

W,r�2 
 σ2 for r ∈ {1, . . . , Nrx}.
The selection method will be explained in the following
subsection. By applying the effective noise model, we rewrite
the quantized received vector in (5) as

y[n] = Q
(
Re
{
HDxD[n] + ṽ[n]

})

+jQ
(
Im
{
HDxD[n] + ṽ[n]

})
. (13)

As seen in (13), the quantized received signal, y[n], can be
effectively modeled as the quantized output of the extremely
sparse ISI channel with independent colored noise. It is also
noticeable that in the above model, the quantized received
signal for n ≥ Nd+LD is ignored, where LD = max�∈D �+1
is the maximum delay index of the dominant CIR taps.
Therefore, only the partial sequence Ỹ =

(
y[1], · · · ,y[Nd +

LD − 1]
)

is used in the soft-output detection, instead of the
full sequence Y =

(
y[1], · · · ,y[Nd + L− 1]

)
.

We also characterize the conditional probability mass func-
tion (PMF) of the constructed sparse ISI channel, which will
be harnessed as the sufficient statistic for the soft-output
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detection. From (13), the conditional PMF of observing y[n]
for given xD[n] is approximately computed as

P(y[n]|xD[n])

=
Nrx∏

r=1

P

(
l(yRe

r [n]) < Re
{
h�
D,rxD[n] + ṽr[n]

} ≤ u(yRe
r [n])

)

×P

(
l(yIm

r [n]) < Im
{
h�
D,rxD[n] + ṽr[n]

} ≤ u(yIm
r [n])

)

=
Nrx∏

r=1

[

Φ

(
u(yRe

r [n])−gRe
D,r[n]

√
(σ2 + �h(n)

W,r�2)/2

)

−Φ

(
l(yRe

r [n])−gRe
D,r[n]

√
(σ2+�h(n)

W,r�2)/2

)]

×
[

Φ

(
u(yIm

r [n])−gIm
D,r[n]

√
(σ2+�h(n)

W,r�2)/2

)

−Φ

(
l(yIm

r [n])−gIm
D,r[n]

√
(σ2+�h(n)

W,r�2)/2

)]

,

(14)

where h�
D,r is the r-th row of HD, gRe

D,r[n] = Re
{
h�
D,rxD[n]

}
,

gIm
D,r[n] = Im

{
h�
D,rxD[n]

}
, yRe

r [n] = Re{yr[n]}, yIm
r [n] =

Im{yr[n]}, and l(qp) = bp−1 and u(qp) = bp are the lower
and upper quantization boundaries associating with qp ∈ Q,
respectively. Since the conditional PMF in (14) is computed
based on the approximate model in (13), it differs from the
true conditional PMF that does not treat the ISI signals from
weak CIR taps as noise, given by

P(y[n]|xD [n],xW [n])

=
Nrx∏

r=1

[

Φ

(
u(yRe

r [n])− gRe
D,r[n]− gRe

W,r[n]
√

σ2/2

)

− Φ

(
l(yRe

r [n])− gRe
D,r[n]− gRe

W,r[n]
√

σ2/2

)]

×
[

Φ

(
u(yIm

r [n])− gIm
D,r[n]− gIm

W,r[n]
√

σ2/2

)

− Φ

(
l(yIm

r [n])− gIm
D,r[n]− gIm

W,r[n]
√

σ2/2

)]

, (15)

where h�
W,r is the r-th row of HW , gRe

W,r[n] =
Re
{
h�
W,rxW [n]

}
, and gIm

W,r[n]= Im
{
h�
W,rxW [n]

}
. The com-

parison between (14) and (15) reveals that the use of the
extremely sparse ISI channel in (13) causes a mismatch in
the conditional PMF, which can be interpreted as a modeling
error.

B. Dominant-Tap-Selection Algorithm

To reduce the modeling error in the extremely sparse ISI
channel, we develop a dominant-tap-selection algorithm that
minimizes the mismatch between the approximate conditional
PMF in (14) and the true conditional PMF in (15). One simple
solution to achieve this goal is to exhaustively search for the
best dominant CIR taps that minimize the Kullback-Leibler
(KL) divergence between two conditional PMFs, defined as

DKL(D) =
∑

y∈{QNrx+jQNrx}
P(y|xD) ln

(
P(y|xD)

P(y|xD ,xW)

)
,

(16)

for xD ∈ X |D| and xW ∈ X |W|. Unfortunately, computing
the KL divergence in (16) for all possible xD ∈ X |D| and
xW ∈ X |W| requires a prohibitive computational complexity
that increases with the size of the input sets (i.e., |X ||D|

and |X ||W|) and also requires the complicated computations
of the conditional PMFs. Therefore, to avoid this difficulty,
we focus on developing a computationally-efficient algorithm
that operates with a closed-form criterion.

We start by designing a closed-form criterion for the
dominant-tap selection. The key idea is to reduce the differ-
ence between the arguments of the true and approximate con-
ditional PMFs, instead of directly minimizing the difference
between the PMFs. Based on this idea, we adopt a normalized
mean-squared-error (NMSE) criterion measured between the
arguments of the true and approximate conditional PMFs. Let
φRe

p,r(xD,xW ;D) and φIm
p,r(xD ,xW ;D) be the arguments of

the true PMF in (15):

φRe
p,r(xD ,xW ;D) =

bp − Re
{
h�
D,rxD + h�

W,rxW
}

√
σ2/2

,

φIm
p,r(xD ,xW ;D) =

bp − Im
{
h�
D,rxD + h�

W,rxW
}

√
σ2/2

,

for r ∈ {1, . . . , Nrx} and p ∈ {0, . . . , 2B}. Similarly, let
φ̂Re

p,r(xD;D) and φ̂Im
p,r(xD;D) be the arguments of the approx-

imate PMF in (14):

φ̂Re
p,r(xD;D) =

bp − Re
{
h�
D,rxD

}

√
(σ2 + �hW,r�2)/2

,

φ̂Im
p,r(xD;D) =

bp − Im
{
h�
D,rxD

}

√
(σ2 + �hW,r�2)/2

,

for r ∈ {1, . . . , Nrx} and p ∈ {0, . . . , 2B}. Then the NMSE
between the above arguments is defined as

NMSE(D)

=
1
2

Nrx∑

r=1

2B−1∑

p=1

{
E
[|φRe

p,r(xD,xW ;D)− φ̂Re
p,r(xD;D)|2]

E
[|φ̂Re

p,r(xD;D)|2]

+
E
[|φIm

p,r(xD,xW ;D)− φ̂Im
p,r(xD;D)|2]

E
[|φ̂Im

p,r(xD;D)|2]
}

,

(17)

where the expectation is with respect to xD and xW . Note that
we use the NMSE instead of the MSE to incorporate different
MSEs equally contribute to the sum of them. To obtain a
closed-form expression for the NMSE criterion, we further
model xD and xW as complex Gaussian signals distributed
as CN (0|D|Ntx , I|D|Ntx) and CN (0|W|Ntx , I|W|Ntx), respec-
tively. Under the Gaussian modeling, we obtain the following
distributions:

Re
{
h�
D,rxD

}
, Im
{
h�
D,rxD

} ∼ N (0, PD,r(D)/2
)
,

Re
{
h�
W,rxW

}
, Im
{
h�
W,rxW

} ∼ N (0, PW,r(D)/2
)
,



2828 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 67, NO. 4, APRIL 2019

where PD,r(D) = �hD,r�2, and PW,r(D) = �hW,r�2. Using
this fact, we compute the expectation terms in (17) as

E
[|φRe

p,r(xD ,xW ;D)− φ̂Re
p,r(xD;D)|2]

=
ExD

[(
bp − Re

{
h�
D,rxD

})2]

σ2/2

(

1−
√

σ2

σ2 + PW,r(D)

)2

+
ExW

[
Re
{
h�
W,rxW

}2]

σ2/2

=
2b2

p + PD,r(D)
σ2

(

1−
√

σ2

σ2 + PW,r(D)

)2

+
PW,r(D)

σ2

= E
[|φIm

p,r(xD,xW ;D)− φ̂Im
p,r(xD;D)|2], (18)

and

E
[|φ̂Re

p,r(xD;D)|2] =
2b2

p + PD,r(D)
σ2 + PW,r(D)

= E
[|φ̂Im

p,r(xD;D)|2].
(19)

By applying (18) and (19) into (17), we finally obtain the
closed-form expression of the NMSE criterion:

NMSE(D)

=
Nrx∑

r=1

2B−1∑

p=1

σ2 + PW,r(D)
σ2

×
{(

1−
√

σ2

σ2 + PW,r(D)

)2
+

PW,r(D)
2b2

p + PD,r(D)

}

. (20)

Although this is not an optimal criterion, it effectively reduces
the difference between the approximate and true conditional
PMFs, because the difference between them strictly decreases
as the difference between their arguments decreases. Mean-
while, the use of the NMSE criterion in (20) significantly
reduces the computational complexity of the dominant-tap-
selection process, as it requires neither the marginalization
over all possible transmitted signals nor the computation of the
conditional PMFs. The NMSE criterion also takes into account
the effect of the quantization function (i.e., quantization bin
boundaries {bp}2B−1

p=1 ). For example, when σ2 � PW,r(D),
the quantization boundaries with b2

p contribute less to the
NMSE, because these boundaries produce high quantization
noises that make the effect of the weak CIR taps to be
insignificant.

By harnessing the NMSE criterion in (20), we pro-
pose a dominant-tap-selection algorithm that finds the best
dominant CIR taps with the minimum NMSE using a
greedy approach. The proposed algorithm is summarized
in Algorithm 1.
In Algorithm 1, we adopt two design parameters: 1) the
maximum number of dominant CIR taps, Dmax, and 2) an
NMSE threshold, εth. Using these two parameters, the pro-
posed algorithm stops if the NMSE in (20) falls below the
given threshold εth, or if the number of the dominant CIR
taps reaches to the maximum number Dmax, or if every
CIR tap is selected as the dominant taps (i.e., W = ∅).
As we will show, these two parameters effectively adjust the
performance-complexity tradeoff in the soft-output detection.

Algorithm 1 The proposed dominant-tap-selection algorithm

1: Initialize D∗ = ∅ and W∗ = S.
2: while NMSE(D∗) > εth and |D∗| < Dmax and W∗ 	= ∅

do
3: Find l∗ = argminl∈W∗ NMSE(D∗ ∪ {l}) from (20).
4: Update D∗ ← D∗ ∪ {l∗} and W∗ ←W∗ \ {l∗}.
5: end while

IV. SOFT-OUTPUT DETECTION METHODS FOR

EXTREMELY SPARSE ISI CHANNEL

In this section, based on the extremely sparse ISI chan-
nel in Section III, we present two computationally-efficient
yet near-optimal algorithms for the soft-output detection in
mmWave MIMO systems with low-precision ADCs.

A. Quantized BCJR (Q-BCJR)

We first develop a soft-output detection method called
quantized BCJR (Q-BCJR) by modifying the classical BCJR
algorithm in [25] and [26] to operate with the quantized
outputs over the extremely sparse ISI channel. The basic
idea of Q-BCJR is to use a forward-and-backward algorithm
based on a reduced trellis-diagram to compute the LLRs of
coded bits by optimally combining the quantized received
signals obtained from multiple receive antennas. Thanks to
the extreme sparsity of the channel, the trellis-diagram of
Q-BJCR has a reduced number of states that depend only on
the maximum delay of the dominant CIR taps. Particularly,
a state vector at time slot n is defined as

s[n] =
[
x�[n],x�[n− 1], . . . ,x�[n− LD + 2]

]�
, (21)

for n ∈ {0, . . . , Nd + LD − 1}. Recall that x[n] ∈ X for n∈
{1, . . . , Nd} and x[n] = 0Ntx for n /∈{1, . . . , Nd}. Using this
fact, the set of valid state vectors at time slot n is defined as

Sn =
{[

0�
Z1Ntx

, x̄�,0�
Z2Ntx

]� ∣∣
∣ x̄ ∈ XLD−Z1−Z2−1,

Z1 = max(n−Nd, 0), Z2 = max(−n + LD − 1, 0)
}
.

(22)

By the definition of the state vector, for two state vectors
s ∈ Sn and s′ ∈ Sn−1, the set of a state-vector pair (s′, s)
associating with the event {x[n] = xk} is defined as

Vn,k =
{
(s′, s)

∣
∣ s′∈Sn−1, s∈Sn,x[n] = xk

}

=
{
(s′, s)

∣
∣∣s =

[
x�

k , (s′)�1:(LD−2)Ntx

]�∈Sn, s′∈Sn−1

}
,

(23)

for k ∈ K when 1 ≤ n ≤ Nd and k = 0 when Nd + 1 ≤
n ≤ Nd + LD − 1, where (a)i:j = [ai, ai+1, · · · , aj ]� is a
subvector of a = [a1, a2, · · · , aN ]� for i ≤ j ≤ N . Note that
we define x0 = 0Ntx for notational consistency.

Using the above notations, in Q-BCJR, the marginal prob-
ability P(x[n] = xk, Ỹ) is factorized into multiple factors as
given in the following proposition:



JEON et al.: SOFT-OUTPUT DETECTION METHODS FOR SPARSE mmWAVE MIMO SYSTEMS WITH LOW-PRECISION ADCs 2829

Proposition 1: The marginal probability P(x[n] = xk, Ỹ)
for n ∈ {1, . . . , Nd} and k ∈ {1, . . . , 2M} is expressed as

P(x[n] = xk, Ỹ) =
∑

(s′,s)∈Vn,k

αn−1(s′)γn(s′, s)βn(s), (24)

where α0(s) = βNd+LD−1(s) = I{s = 0(LD−1)Ntx},
αn(s) =

∑

s′∈Sn−1

αn−1(s′)γn(s′, s), (25)

βn−1(s′) =
∑

s∈Sn

βn(s)γn(s′, s), (26)

γn(s′, s) = κn(s′, s)P
(
y[n]
∣∣s[n−1]=s′, s[n]=s

)
, (27)

κn(s′, s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2M

, for (s′, s) ∈Vn,k, n ∈{1, . . . , Nd},
1, for (s′, s) ∈Vn,k,

n ∈{Nd+1, . . . , Nd+LD−1},
0, otherwise,

for n ∈ {1, . . . , Nd + LD − 1}.
Proof: The proof is omitted as it is a simple extension

of the results in [25] and [26]. This proof is available in [38]
which is a complete version of this paper.

Proposition 1 shows that the marginal probability is deter-
mined by three factors, αn−1(s′), βn(s), and γn(s′, s). As can
be seen in (25) and (26), the first two factors αn−1(s′)
and βn(s) are efficiently computed in a recursive manner.
In addition, the remaining factor γn(s′, s) is directly computed
by the approximate model in (13) with (14) based on the
following relation:

P
(
y[n]
∣
∣s[n− 1] = s′, s[n] = s

)

= P

(
y[n]
∣
∣
∣
[
x�[n], · · · ,x�[n−LD+1]

]�=
[
(s)�1:Ntx

, (s′)�
]�

︸ ︷︷ ︸
=x̄n{s,s′}

)

= P

(
y[n]
∣
∣∣xD[n]=

[(
x̄n{s, s′}

)�
d1Ntx+1:(d1+1)Ntx

, · · · ,
(
x̄n{s, s′}

)�
d|Dn|Ntx+1:(d|Dn|+1)Ntx

]�)
. (28)

The computation of P
(
y[n]
∣
∣s[n − 1] = s′, s[n] = s

)

brings the key differences of Q-BCJR to the classical BCJR
algorithm [25], [26]. First, Q-BCJR considers the effect of
quantization at the ADCs, so the conditional PMF is char-
acterized in an integral form using the CDF of a normal
random variable. Second, Q-BCJR combines multiple obser-
vations obtained from receive antennas, so the conditional
PMF is characterized in a product form that computes the
joint probability of receiving the multiple observations. The
relation in (28) also shows that different pairs of (s′, s) ∈⋃

k∈K Vn,k may have the same conditional PMF, so it may not
be computed for every pair of (s′, s) ∈ ⋃k∈K Vn,k. This fact
contributes to a complexity reduction achieved by Q-BCJR,
which will be discussed in the sequel.

After computing the marginal probability using the
forward-backward algorithm, the LLR of the i-th coded bit
is produced by applying (24) into (9):

LQBCJR[i] = log

∑
k∈Kmi

(0) P(x[ni] = xk, Ỹ)
∑

k∈Kmi
(1) P(x[ni] = xk, Ỹ)

, (29)

Algorithm 2 Quantized BCJR (Q-BCJR) algorithm

1: Define Sn for n∈{0, 1, . . . , Nd+LD−1} from (22).
2: Define Vn,k for k ∈ K and n∈{1, . . . , Nd+LD−1} from

(23).
3: for n = 1 to Nd+LD−1 do
4: Compute γn(s′, s) for (s′, s) ∈ ⋃

k∈K Vn,k from
(27) and (28).

5: end for
6: Initialize α0(s) = βNd+LD−1(s) = I{s = 0(LD−1)Ntx}.
7: for n = 1 to Nd−1 do
8: Compute α′

n(s) =
∑

s′∈Sn−1
αn−1(s′)γn(s′, s) for s ∈

Sn.
9: Normalize αn(s) = α′

n(s)�
s∈Sn

α′
n(s) for s ∈ Sn.

10: end for
11: for n = Nd+LD−1 to 2 do
12: Compute β′

n−1(s
′) =

∑
s∈Sn

βn(s)γn(s′, s) for s′ ∈
Sn−1.

13: Normalize βn−1(s′) = β′
n−1(s

′)
�

s′∈Sn−1
β′

n−1(s
′) .

14: end for
15: for n = 1 to Nd do
16: Compute P(x[n] = xk, Ỹ) for k ∈ K from (24).
17: end for
18: for i = 1 to Icode do
19: Compute LQBCJR[i] from (29) with mi = i−M(ni−1)

and ni = 
 i
M �.

20: end for

for i ∈ {1, . . . , Icode}, where ni = 
 i
M � and mi = i −M

(ni− 1). In the general case of W 	= ∅, the above LLR is the
approximation of the true LLR in (6) due to the approximate
model in (13) and the use of the partial sequence Ỹ. In this
case, the tightness of the approximation is adjusted by the
determination of dominant and weak CIR taps, as discussed
in Section III-A. In addition, the approximation becomes tight
when the power of weak CIR taps is sufficiently lower than
the noise level. The most promising feature of Q-BCJR is
that in the case of W = ∅, the LLR in (29) becomes the
true LLR, so in this extreme case, Q-BCJR is the optimal
soft-output detection method for mmWave MIMO systems
with low-precision ADCs.

The proposed Q-BCJR is summarized in Algorithm 2.
Particularly, normalization steps are added in Step 9 and 13 to
prevent αn(s) and βn−1(s′) from having extremely-low values
when Nd is large. These additional steps do not affect the
resulting LLR in (29), because any product operation on the
marginal probability does not change the LLR values.

From Algorithm 2, we analyze the computational com-
plexity of Q-BCJR when Nd � LD. First of all, the com-
plexity order of Steps 3∼5 is O(∑Nd+LD−1

n=1 |X ||Dn|) ≈
O(Nd|X ||Dn|), because P(y[n]|s[n − 1] = s′, s[n] = s)
for (s′, s) ∈ ⋃k∈K Vn,k is determined from P(y[n]|xD [n])
for xD[n] ∈ X |Dn| by the relation in (28), where Dn =
{� : � ∈ D, 1 ≤ n − � ≤ Nd} is a subset of D
that only contains the delays of the dominant CIR taps
valid at time slot n. In addition, the complexity order of
Steps 7∼10 is O(∑Nd−1

n=1

∣
∣⋃

k∈K Vn,k

∣
∣) ≈ O(Nd|X |LD ),
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Fig. 3. The comparison between (a) the original factor graph and (b) the sparse factor graph constructed when the delay sets of dominant and weak CIR
taps are given by D = {0, 3} and W = {2, 4}, respectively.

because the product operation in Step 8 is computed for
every γn(s′, s) for (s′, s) ∈ ⋃k∈K Vn,k, while

∣
∣⋃

k∈K Vn,k

∣
∣ =

|X |LD for LD ≤ n ≤ Nd from (23). Similarly, the complexity
order of Steps 11∼14 is O(∑Nd+LD−2

n=2

∣
∣⋃

k∈K Vn,k

∣
∣) ≈

O(Nd|X |LD ). Since |Dn| ≤ LD, the complexity order of
Steps 7∼10 and Steps 11∼14 dominates the overall complex-
ity. Therefore, the complexity order of Q-BCJR is given by

CQBCJR = O(Nd|X |LD
)

= O(Nd2MLD
)
, (30)

when Nd � LD. Recall that M is a symbol-vector modulation
level, and LD = max�∈D �+1 is the maximum delay index of
the dominant CIR taps. If we do not treat the ISI signals from
weak CIR taps as noise (i.e., W = ∅), the complexity order
of Q-BCJR becomes O(Nd2ML). Therefore, our complexity
analysis shows that when the maximum delay index of the
dominant CIR taps is significantly less than that of the true
channel (i.e., LD 
 L), the proposed Q-BCJR achieves a
substantial reduction in the computational complexity pro-
vided by the extreme sparsity in the mmWave channels with
low-precision ADCs.

B. Quantized Belief-Propagation (Q-BP)

One drawback of Q-BJCR is that its computational
complexity is not affordable in practical systems when
the maximum delay of the dominant CIR taps is large
(i.e., LD � 1). To overcome this limitation, we also develop a
low-complexity soft-output detection method called quantized
belief-propagation (Q-BP) which requires a significantly lower
complexity than Q-BCJR does.

The key idea of Q-BP is to create a sparse factor graph based
on the extremely sparse ISI channel model in Section III. Then
it computes the LLRs in an iterative fashion by using the BP
algorithm based on this sparse factor graph. To present this
idea, we first explain how to create such the sparse factor graph
when dominant and weak CIR taps are given. An original
factor graph that describes the input-output relation of the
transmitted symbol vectors and the quantized received vectors

consists of Nd variable nodes and Nd + L − 1 check nodes.
Each variable node is associating with the transmitted symbol
vector at each time slot, and each check node is associating
with the quantized received vector at each time slot. A check
node is connected with a variable node by an edge, if the
quantized vector associating with the check node depends on
the symbol vector associating with the variable node by a
nonzero CIR tap. For example, in Fig. 3(a), the original factor
graph of a mmWave MIMO system when D = {0, 3} and
W = {2, 4} is illustrated, where circles are the variable nodes,
triangles are the check nodes, and solid and dotted lines are the
edges associating with the dominant CIR taps and the weak
CIR taps, respectively. The sparse factor graph of Q-BP is
constructed by ignoring the edges associating with the weak
CIR taps (dotted lines) among all the edges of the original
factor graph, as illustrated in Fig. 3(b). Thanks to the sparsity
in the mmWave channel, the constructed sparse factor graph
has a less number of edges than the original factor graph does.
It is also noticeable that the number of valid check nodes in
the sparse factor graph is Nd + LD −min�∈D �− 1, which is
less than that of the original factor graph.

By harnessing the sparse factor graph, Q-BP computes the
APP P(x[n] = xk|Ỹ) in an iterative fashion, in which variable
nodes and check nodes iteratively exchange their local beliefs,
called messages, through the edges of the sparse factor graph.
We explain how to determine the messages from the variable
nodes and the check nodes with details.

1) Message From Variable Node to Check Node: The n-th
variable node sends |K| messages that contain the extrinsic
information of the conditional PMF for the corresponding
symbol vector x[n]. These messages are passed to the (n+�)-
th check node for � ∈ D. By assuming that the transmission of
each possible symbol vector is equally likely, the k-th message
from the n-th variable node to the (n + �)-th check node,
namely T n+�

n (k), is determined as [39]:

T n+�
n (k) =

∏
m∈D\{�} Rn

n+m(k)
∑

j∈K
∏

m∈D\{�} Rn
n+m(j)

, (31)
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for � ∈ D and k ∈ K, where Rn
n+m(j) is the j-th message

from the (n + m)-th check node. The message of T n+�
n (k)

propagates the marginal probability of the event {x[n] = xk}
using the quantized observations except the quantized received
signal at time slot n + �. At the initial stage of the algo-
rithm, no information is available at each variable node;
thereby, all messages from the variable nodes are initialized as
T n+�

n (k) = 1
K for � ∈ D and k ∈ K.

2) Message From Check Node to Variable Node: The n-th
check node sends |K| messages that contain the a-posteriori
information of the (n − �)-th transmitted symbol vector
obtained from the quantized received signal at time slot n.
These messages are passed to the (n − �)-th variable node
for � ∈ Dn, where Dn = {� : � ∈ D, 1 ≤ n − � ≤ Nd} is a
subset of D that only contains the delays of the dominant CIR
taps valid at time slot n. By assuming that all the incoming
messages from the connected variable nodes are independent,
the k-th message from the n-th check node to the (n− �)-th
variable node, namely Rn−�

n (k), is given as [39]:

Rn−�
n (k) =

∑

{km∈K|m∈D(�)
n }

×P

(
y[n]
∣
∣
∣x[n−�]=xk,

{
x[n−m]=xkm

}
m∈D(�)

n

)

×
∏

m∈D(�)
n

T n
n−m(km), (32)

for � ∈ Dn and k ∈ K, whereD(�)
n = Dn\{�}. The conditional

PMF term in (32) is computed from (14) by applying xD[n]
that associates with the events {x[n − �] = xk} and {x[n −
m] = xkm}m∈Dn\{�}. The above message propagates the APP
of the event {x[n] = xk} based on the incoming messages
and its own observation y[n]. As can be seen in (32), when
determining the message of Rn−�

n (k), the incoming messages
from the connected variable nodes are utilized except the one
from the (n− �)-th variable node.

After iteratively exchanging the messages between the
check node and the variable node, each variable node is
assumed to obtain the marginal distribution of the transmit-
ted symbol vector that is sufficiently learned for the given
quantized observations. Then the LLR of the i-th coded bit is
obtained as

LQBP[i] = log

∑
k∈Kmi

(0)

∏
�∈D Rni

ni+�(k)
∑

k∈Kmi
(1)

∏
�∈D Rni

ni+�(k)
, (33)

for i ∈ {1, . . . , Icode}. One major drawback of Q-BP is that
when the sparse factor graph is not cycle free, the convergence
of the algorithm is not guaranteed, so it may fail to provide
the true LLRs. This drawback, however, does not have a
significant impact on the detection performance as discussed
in [28] and [29]. A simple intuition is that in most channel
realizations, there exists an edge in the cycle that associates
with a CIR tap having a relatively small power than others.
Such edge effectively cuts the cycle, so the effect of the cycle
becomes negligible.

The proposed Q-BP is summarized in Algorithm 3,
where Nit is the number of iterations that determines the
performance-complexity tradeoff achieved by Q-BP. Since the

Algorithm 3 Quantized Belief Propagation (Q-BP) algorithm

1: Initialize T n+�
n (k) = 1

|K| for k ∈ K, � ∈ D, and n ∈
{1, . . . , Nd}.

2: for it = 1 to Nit do
3: for n = 1 to Nd + LD − 1 do
4: Compute Rn−�

n (k) for k ∈ K and � ∈ Dn from (32)
and (14).

5: end for
6: for n = 1 to Nd do
7: Compute T n+�

n (k) for k ∈ K and � ∈ D from (31).
8: end for
9: end for

10: for i = 1 to Icode do
11: Compute LQBP[i] from (33) with mi = i−M(ni − 1)

and ni = 
 i
M �.

12: end for

structure of the factor graph may significantly vary according
to channel realizations, we simply adopt a flooding (parallel)
schedule as in [27]–[29] which does not depend on the factor
graph structure.

From Algorithm 3, we analyze the computational complex-
ity of Q-BP when Nd � LD . First of all, the complexity order
of Steps 3∼5 is

O
(

Nit

Nd+LD−1∑

n=1

∑

k∈K
|Dn||X ||Dn|−1

)
(a)≈ O(NitNd|D||X ||D|),

(34)

because Rn−�
n (k) determined from (32) requires |X ||Dn|−1

computations of the conditional PMF for n ∈ {1, . . . , Nd +
LD − 1}, � ∈ Dn, k ∈ K, and each iteration. The approxi-
mation of (a) in (34) holds because Dn = D for most cases
in 1 ≤ n ≤ Nd with Nd + LD − 1 ≈ Nd when Nd � LD.
Since the complexity order of Steps 3∼5 clearly dominates the
overall complexity, the complexity order of Q-BP is given by

CQBP = O(NitNd|D||X ||D|) = O(NitNd|D|2M|D|), (35)

when Nd � LD. The comparison between (30) and (35)
shows that the complexity order of Q-BP is only
Nit|D|2−M(LD−|D|) of that of Q-BCJR. Since in most channel
realizations, the number of the dominant CIR taps is smaller
than the maximum delay index of them, Q-BP achieves a sig-
nificant reduction in the computational complexity compared
to Q-BCJR.

Remark (The effect of channel sparsity): The
performance-complexity tradeoff achieved by the proposed
detection methods (Q-BP and QBCJR) improves as the
delay-domain sparsity level in mmWave channels increases,
because the computational complexity of both methods
reduces with the channel sparsity level as discussed in
Section IV. For this reason, the proposed methods are effective
solutions not only in mmWave channels, but also in other
high-frequency channels or line-of-sight (LOS) channels that
have a strong sparsity level. It is also noticeable that even for
non-sparse channels, the proposed methods can maintain a fair
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level of the FER performance at the cost of the computational
complexity.

V. SIMULATION RESULTS

In this section, using simulations, we evaluate the per-
formance of the soft-output detection methods proposed
in Section IV for mmWave MIMO systems with low-precision
ADCs. We also evaluate the performance-complexity tradeoff
achieved by the dominant-tap-selection algorithm proposed
in Section III-B.

A. Simulation Setting

In simulations, we adopt a B-bit uniform scalar quan-
tizer in which the set of quantization alphabets is set to be
Q = {−1, +1} and Q = {−1.125,−0.375, 0.375, 1.125} for
B = 1 and B = 2, respectively, such that bp = qp+qp+1

2 for
p ∈ {1, . . . , 2B − 1}. For a channel code, we adopt a 1/2-rate
LDPC code with Iinfo = 336 and Icode = 672 from the
IEEE 802.11ad standardization [40], along with a soft-input
belief-propagation channel decoder [41]. As a control vari-
able, we use the average signal-to-noise ratio (SNR) per bit
defined as

Eb

N0
=

E
[�x[n]�2]

σ2 log2 |X |
=

Ntx

Mσ2
. (36)

For the proposed dominant-tap-selection algorithm, we set the
NMSE threshold as εth = 0.1 unless otherwise specified.
For the proposed Q-BP, we set the number of iterations as
Nit = 3 which is numerically shown to be a value that makes
Algorithm 3 converged for most system settings. Since the
optimal design of the transmit digital BF is still an open
problem for the mmWave MIMO systems with low-precision
ADCs [37], we assume the trivial digital BF at the transmitter
(i.e., FBB

tx = INtx ) to avoid undesirable FER degradation
caused by the use of a suboptimal BF.

For imperfect CSIR case, we adopt a least-squares (LS)
channel estimation method with Tp pilot signals to esti-
mate the CIRs of the effective channel in (2). Let Xp =[
xp[1], . . . ,xp[Tp]

] ∈ C
Ntx×Tp be a pilot signal matrix, where

xp[n] ∈ C
Ntx is the n-th pilot signal vector, and Tp is the

length of the pilot signals such that Tp ≥ L(Ntx−1)+1. The
pilot signals are randomly chosen to satisfy the orthogonality
condition of XpXH

p =
√

TpINtx . According to the signal
model in Section II-B, the unquantized received signal at
the i-th receive RF chain during the pilot transmission is
expressed as r(i)

p = X̄phi + z(i)
p , for i ∈ {1, . . . , Nrx}, where

h�
i is the i-th row of the CIR matrix

[
H[0], · · · ,H[L − 1]

]
,

X̄p ∈ C
(Tp+L−1)×LNtx is a toeplitz-type matrix that consists

of the pilot signals, and z(i)
p ∈ C

Tp+L−1 is the noise vector at
the i-th receive RF chain. Then, by applying the LS estimation
method to the quantized signal, the estimate for hi is obtained
as ĥi = (X̄H

p X̄p)−1X̄H
py(r)

p , where y(i)
p = Q(Re{r(i)

p }) +
jQ(Im{r(i)

p }). Consequently, the estimate of the CIR matrix
is given by

[
ĥ1, · · · , ĥNrx

]�
.

For channel generation, we consider three different channel
models described below.

• 6-tap Exp-PDP channel: In this model, the CIR
taps of the mmWave channels are modeled by inde-
pendent Rayleigh fading CIRs that follow a 6-tap
exponentially-decaying power-delay profile with an
exponent 1.

• 28-GHz and 72-GHz NLOS channels: In these models,
28-GHz and 73-GHz NLOS channels are implemented
according to the measurement-based model in [16]. Para-
meters for the implementation are the same as those
for the numerical example in Section II-A. The channel
length L is chosen to be less than 336 to ensure that the
channel length is smaller than the data block length.

For performance comparison, we consider one optimal
detection method and three existing OFDM-based detection
methods described below.

• BCJR: This method is the optimal detection method
for conventional mmWave MIMO systems with
infinite-precision ADCs, which applies the original
BCJR algorithm to compute the exact LLRs in the time
domain.

• OFDM-Convex: This method performs joint-subcarrier
data equalization by solving a convex optimization prob-
lem using the FASTA algorithm proposed in [32].

• OFDM-Bussgang: This method performs per-subcarrier
data equalization by linearizing the quantized received
signal based on Bussgang’s theorem [42] under the
assumption of the Gaussian signaling.

• OFDM-MMSE: This method performs per-subcarrier data
equalization by ignoring the quantization effect at the
ADCs (i.e., by assuming y[n] = r[n]).

Particularly for the OFDM-based methods, we set the length
of cyclic prefix (CP) as L − 1, and use the normalized noise
power Nd+L−1

Nd
σ2 to reflect the power consumed by the CP.

B. FER Performance

Fig. 4 compares the FER performances of the proposed
and the existing soft-output detection methods under the 6-tap
Exp-PDP channel model with Ntx = 2, Nrx = 4, and binary
phase shift keying (BPSK). Fig. 4(a) shows that when perfect
CSIR is available, the proposed methods with 2-bit ADCs
perform very close to the optimal performance achieved by the
BCJR algorithm. This result demonstrates that the use of 2-bit
ADCs may not cause a significant FER loss compared to
infinite-bit ADC case, provided that a proper detection method
(e.g., Q-BCJR or Q-BP) is employed at the receiver. The
proposed methods also outperform the existing OFDM-based
methods for both one-bit and two-bit ADC cases. Fig. 4(b)
shows that when CSIR is imperfect, the performance gap
between the proposed methods and the BCJR algorithm is
further reduced, while the performance gain over the existing
OFDM-based methods becomes larger. The reason for this
result is that when treating the weak CIR taps as the additional
noise, this noise also acts like a compensation term for a
channel estimation error; thereby, the proposed methods are
more robust to the channel estimation error compared to
other methods. Among the existing OFDM-based methods,
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Fig. 4. The FER vs. Eb/N0 of the proposed Q-BCJR, the proposed Q-BP,
and the existing soft-output detection methods under the 6-tap Exp-PDP
channel model with Ntx = 2, Nrx = 4, and BPSK.

OFDM-Bussgang shows the best FER performance as it prop-
erly considers the effect of the quantization noise by using
Bussgang’s theorem. Although OFDM-Convex performs the
joint-subcarrier soft-output detection, it still suffers from the
severe FER degradation due to the lack of the post-equalization
signal-to-interference-plus-noise ratio information when com-
puting the LLRs, as reported in [32].

Fig. 5 compares the FER performances of the proposed and
the existing soft-output detection methods2 under the 28-GHz
and the 73-GHz NLOS channel models with Ntx = 1 and
Nrx = 8. When adopting 4-quadrature-amplitude-modulation
(4-QAM), the results are averaged only over the scenarios
that the proposed Q-BP requires an affordable level of the
computational complexity; thereby, in this case, the channels
that have a less than 6 dominant CIR taps are simulated.
Figs. 5(a) and (b) show that when employing one- or two-bit
ADCs under the 28-GHz NLOS channel, the proposed Q-BP
outperforms the existing OFDM-based methods regardless of
the modulation set. Since the fast fading characteristics of the
28-GHz and the 73-GHz NLOS channels are not significantly
different as shown in Fig. 2(a), the results in Fig. 5(c)
are similar to those in Fig. 5(a). The comparison between
Figs. 5(a) and (d) reveals that the FER gain achieved by the
proposed Q-BP becomes larger for the imperfect CSIR case
than the perfect CSIR case. This larger gain is obtained by

2In this simulation, the performances of Q-BCJR and the original BCJR
algorithm are not presented because their complexities are not affordable in
the considered channel model whose maximum delay index can be high.

the robustness of the Q-BP to the channel estimation error
as already discussed in Fig. 4. One noticeable observation is
that the proposed Q-BP with 2-bit ADCs even outperforms
OFDM-MMSE with infinite-resolution ADCs in low SNR
regime, by computing near-optimal LLR values at the expense
of the computational complexity. This gain, however, vanishes
as SNR increases, since Q-BP cannot overcome a fundamental
diversity loss caused by the use of low-precision ADCs.
Another interesting observation is that the performance gain of
the proposed Q-BP over the existing methods becomes larger
for the realistic mmWave channel model than that for the
short-delay channel model in Fig. 4. The reason for this result
is that when employing low-precision ADCs, the larger the
number of the CIR taps, the larger the inter-subcarrier interfer-
ence that degrades the performance of the frequency-domain
equalization.

C. Performance-Complexity Tradeoff

Fig. 6 compares the performance-complexity tradeoff
achieved by the proposed Q-BP and the existing OFDM-based
methods (OFDM-MMSE and OFDM-Bussgang) under the
28-GHz NLOS channel model with Ntx = 1, Nrx = 8,
BPSK, Eb/N0 = −7 dB, and 2-bit ADCs. For the Q-BP,
we also compare the tradeoff performances of two different
dominant-tap-selection algorithms: 1) the proposed algorithm
(Algorithm 1), and 2) a simple algorithm that selects the
min(Dmax, |S|) largest CIR taps with respect to the chan-
nel power �H[�]�2F. We consider the FER and the average
computational complexity order per time slot3 to evaluate
the performance and the complexity, respectively. For the
proposed dominant-tap-selection algorithm, we numerically
choose the number of the maximum dominant CIR taps,
Dmax, and the NMSE threshold, εth, that maximize the
tradeoff.

Fig 6 shows that the proposed Q-BP achieves a signifi-
cant FER reduction compared to the existing OFDM-based
methods, by increasing the computational complexity. It is
also shown that the performance-complexity tradeoff achieved
by the Q-BP is adjusted by the parameters of the
dominant-tap-selection algorithm. Among two different selec-
tion algorithms, the proposed algorithm provides a better
performance-complexity tradeoff than the algorithm that sim-
ply selects the largest CIR taps. This additional tradeoff gain
is not significant because the NMSE criterion of the proposed
algorithm is also minimized by selecting the largest CIR taps
when the power difference among the CIR taps is large.
Nevertheless, the proposed algorithm is still useful to improve
the tradeoff achieved by the proposed Q-BP, as the NMSE
criterion effectively reduces the modeling error of the Q-BP
even when the CIR taps have a similar power. It is also
noticeable that this gain vanishes as the complexity order
increases, because both dominant-tap-selection algorithms
may select all nonzero CIR taps when Dmax is sufficiently
large.

3This order is given by Nit|D|2M|D|, Nrx log2 Nd, and Nrx(log2 Nd+2)
for the proposed Q-BP, OFDM-MMSE, and OFDM-Bussgang, respectively.
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Fig. 5. The FER vs. Eb/N0 of the proposed Q-BP, and the existing OFDM-based detection methods under the 28-GHz and the 73-GHz NLOS channel
models with Ntx = 1 and Nrx = 8.

Fig. 6. The FER vs. the average complexity order per time slot of the
proposed Q-BP with different dominant-tap-selection algorithms and the
existing OFDM-based methods under the 28-GHz NLOS channel model with
Ntx = 1, Nrx = 8, Eb/N0 = −7 dB, and 2-bit ADCs.

VI. CONCLUSION

In this paper, we have studied a soft-output detection prob-
lem in mmWave MIMO systems with low-precision ADCs.
Our key strategy is to construct the extremely sparse ISI
channel model by jointly exploiting the delay-domain sparsity
in the mmWave channel and a high quantization noise caused
by low-precision ADCs. Based on this channel model, we have
developed two detection methods, referred to as Q-BCJR and
Q-BP, by applying the forward-and-backward algorithm and
the BP algorithm, respectively. In particular, Q-BCJR has
been shown to provide the near-optimal LLR values, while
Q-BP achieves a significant reduction in the computational

complexity compared to Q-BCJR. Simulation results have
shown that when employing one- or two-bit ADCs, both
Q-BCJR and Q-BP provide significant FER gains compared
to the existing OFDM-based detection methods.

An important direction for future research is to develop a
robust soft-output detection method that overcomes the effect
of a channel estimation error at the receiver. Another important
extension is to study the joint design of the soft-output
detection method and the channel decoder by exploiting both
the delay-domain sparsity of the mmWave channel and the
structure of the code construction. This extension would
further improve the performance of the mmWave systems with
low-precision ADCs.
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