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ON AN EQUATION CHARACTERIZING

MULTI–JENSEN–QUARTIC MAPPINGS AND ITS STABILITY

CHOONKIL PARK, ABASALT BODAGHI ∗ AND TIAN-ZHOU XU

(Communicated by J. Pečarić)

Abstract. In this paper, we introduce a new form of the multi-quartic mappings and then unify
the system of functional equations defining a multi-Jensen-quartic mapping to a single equation.
Applying a fixed point theorem, we study the generalized Hyers-Ulam stability of multi-Jensen-
quartic mappings. We present a few corollaries corresponding to some known stability outcomes
on the multi-quartic and the multi-Jensen-quartic functional equations.

1. Introduction

The first stability problem concerning of group homomorphisms was introduced
by Ulam [35] in 1940. The famous Ulam stability problem was partially solved by
Hyers [22] for linear functional equation of Banach spaces. Hyers’ theorem was gener-
alized in 1950 by Aoki [1] for additive mappings and in 1978 by Th. M. Rassias [32]
for linear mappings by considering an unbounded Cauchy difference. Subsequently, in
1982, J. M. Rassias [29] following the spirit of the approach of [28] and by replacing the
sum of two p-norms with the product of two p -norms obtained a result similar to that
of [32] for the stability of the linear mappings. A generalization of the Rassias theorem
was obtained by Găvruţa [21] by replacing the unbounded Cauchy difference by a gen-
eral control function in the spirit of Rassias approach. The terminology Hyers-Ulam-
Rassias stability originates from these historical backgrounds and this terminology is
also applied to the cases of other functional equations.

Let V be a commutative group, W be a linear space, and n � 2 be an integer.
Recall from [16] that a mapping f : Vn −→ W is called multi-additive if it is addi-
tive (satisfies Cauchy’s functional equation A(x + y) = A(x)+A(y)) in each variable.
Furthermore, f is said to be multi-quadratic if it is quadratic (satisfies the quadratic
functional equation Q(x + y) +Q(x− y) = 2Q(x) + 2Q(y)) in each variable [15]. In
[38], Zhao et al. showed that such mappings can be unified as an equation. Various
versions of multi-quadratic mappings which are recently studied can be found in [8]
and [33]. In [16] and [15], Ciepliński studied the generalized Hyers-Ulam stability of
multi-additive and multi-quadratic mappings in Banach spaces, respectively (see also
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[38]). The mentioned mapping f is also called a multi-cubic if it is cubic (satisfies
the equation C(2x+y)+C(2x−y) = 2C(x+y)+2C(x−y)+12C(x)) in each variable
[24]). This notion of mappings was introduced by Bodaghi and Shojaee in [11] for the
first time. They also studied Hyers-Ulam stability and hyperstability of such mappings
in that paper. For other forms of multi-cubic mappings and functional equations which
are recently studied, we refer to [19] and [26]. For other forms of cubic functional
equations and their stabilities refer to [5], [9], [23] and [31].

The quartic functional equation

Q(x+2y)+Q(x−2y)= 4Q(x+ y)+4Q(x− y)−6Q(x)+24Q(y). (1.1)

was introduced for the first time by Rassias [30]. The functional equation (1.1) was
generalized by Bodaghi and Kang in [6] and [25], respectively. Motivated by equation
(1.1), Bodaghi et al. [7] defined the multi-quartic mappings and provided a characteri-
zation of such mappings. In other words, they showed that every multi-quartic mapping
can be shown a single functional equation and vice versa. Moreover, they established
the generalized Hyers-Ulam stability for the multi-quartic functional equations [7].

Prager and Schwaiger [27] introduced the notion of multi-Jensen mappings f :
Vn −→W (V and W being vector spaces over the rational numbers) with the connec-
tion with generalized polynomials and obtained their general form. The aim of this
note was to study the stability of the multi-Jensen equation. After that, the stability of
multi-Jensen mappings in various normed spaces have been investigated by a number
of mathematicians (see [17], [18], [28], [36] and [37]).

In this paper, we firstly define new multi-quartic mappings and characterize them
as an equation. Then, we introduce the multi-Jensen-quarticmappings which are Jensen
in each of some k variables and is quartic in each of the other variables and then
present a characterization of such mappings. In other words, we reduce the system
of n equations defining the multi-Jensen-quartic mappings to obtain a single functional
equation. We also prove the generalized Hyers-Ulam stability for multi-Jensen-quartic
functional equations by using the fixed point method which was introduced and used
for the first time by Brzdȩk in [12] (see also [13]). For more applications of this ap-
proach for the stability of multi-Cauchy-Jensen,multi-additive-quadratic,multi-Jensen-
quadratic and multi-mixed additive-quadratic mappings in Banach spaces, we refer to
[2, 3, 4, 10, 20, 34].

2. Characterization of multi-quartic mappings

It is shown in [30] that if the mapping Q : V −→W satisfies (1.1), then it is even
and Q(x) = 2−4Q(2x) for all x ∈ V . This result lead us to the following elementary
consequence.

PROPOSITION 2.1. The mapping Q : V −→ W satisfies (1.1) if and only if it is
fulfilling in

16

[
Q

(
x+2y

2

)
+Q

(
x−2y

2

)]
= 4 [Q(x+ y)+Q(x− y)]−6Q(x)+24Q(y). (2.1)
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for all x,y ∈V .

Throughout this paper, N and Q stand for the set of all positive integers and ra-
tional numbers, respectively, and also N0 := N∪ {0},R+ := [0,∞),n ∈ N . For any
l ∈ N0,m ∈ N , t = (t1, . . . ,tm) ∈ {−2,2}m and x = (x1, . . . ,xm) ∈ Vm , we write lx :=
(lx1, . . . , lxm) and tx := (t1x1, . . . ,tmxm) , where lx stands, as usual, for the scalar prod-
uct of l on x in the linear space V .

Let n ∈ N with n � 2 and xn
i = (xi1,xi2, . . . ,xin) ∈ Vn , where i ∈ {1,2} . We

shall denote xn
i by xi if there is no risk of ambiguity. For x1,x2 ∈ Vn and pi ∈ N0

with 0 � pi � n , put N n
s =

{
(Ns+1,Ns+2, . . . ,Nn)| Nj ∈ {x1 j ± x2 j,x1 j,x2 j}

}
, where

j ∈ {1, . . . ,n} and i ∈ {1,2} . We denote N n
0 by N n . Consider the subset N n

(p1,p2)
of N n as follows:

N n
(p1,p2)

:=
{
Nn = (N1,N2, . . . ,Nn) ∈ N n| Card{Nj : Nj = xi j} = pi (i ∈ {1,2})} .

Let V and W be vector spaces over Q . We say the mapping f : Vn −→ W is
n-multi-quartic or multi-quartic if f is quartic in each variable (see equation (2.1)). In
this section, for such mappings, we use the following notations:

f
(
N n

(p1,p2)

)
:= ∑

Nn∈N n
(p1,p2)

f (Nn), (2.2)

f
(
N n

(p1,p2)
,z
)

:= ∑
Nn∈N n

(p1,p2)

f (Nn,z) (z ∈V ).

For each x1,x2 ∈Vn , we consider the equation

16n ∑
t∈{−2,2}n

f

(
x1 + tx2

2

)
=

n

∑
p2=0

n−p2

∑
p1=0

4n−p1−p2(−6)p124p2 f
(
N n

(p1,p2)

)
. (2.3)

By a mathematical computation, one can check that the mapping f (z1, . . .,zn)=a∏n
j=1 z4

j
satisfies (2.3) and so this equation is said to be multi-quartic functional equation. In this
section, we show that the mapping f : Vn −→W is multi-quartic if and only if it satis-
fying the multi-quartic functional equation (2.3).

In the sequel,

(
n
k

)
is the binomial coefficient defined for all n,k ∈ N with n � k

by n!/(k!(n− k)!) .
We say the mapping f : Vn −→ W satisfies (has) the m-power condition in the

j th variable if

f (z1, . . . ,z j−1,2z j,z j+1, . . . ,zn) = 2m f (z1, . . . ,z j−1,z j,z j+1, . . . ,zn), (z1, . . . ,zn) ∈Vn.

REMARK 2.2. It is easily verified that if f is a multi-quartic mapping, then it
satisfies 4-power condition in all variables. But the converse is not true. Here, by
means of an example we show that 4-power condition in all variables for a mapping f
does not imply that it is multi-quartic. Let (A ,‖·‖) be a Banach algebra. Fix the vector
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a0 in A (not necessarily unit). Define the mapping h : A n −→ A by h(a1, . . . ,an) =
∏n

j=1 ‖a j‖4a0 for (a1, . . . ,an) ∈ A n . It is easily verified that the mapping h satisfies
4-power condition in all variables but h is not multi-quartic even for n = 1, that is h
does not satisfy in equation (2.1).

Let 0 � q � n− 1. Put Kq = {qx := (0, . . . ,0,x j1 ,0, . . . ,0,x jq ,0, . . . ,0) ∈ Vn} ,
where 1 � j1 < .. . < jq � n . In other words, Kq is the set of all vectors in Vn that
exactly their q components are non-zero.

We wish to show that the mapping f : Vn −→ W satisfies equation (2.3) if and
only if it is multi-quartic. In order to do this, we need the next lemma.

LEMMA 2.3. If the mapping f : Vn −→ W satisfies equation (2.3) and has 4 -
power condition in all variables, then f (x) = 0 for any x ∈Vn with at least one com-
ponent which is equal to zero.

Proof. We argue by induction on q that for each qx ∈ Kq , f (qx) = 0 for 0 � q �
n−1. For q = 0, by putting x1 = x2 = (0, . . . ,0) in (2.3), we have

16n×2n f (0, . . . ,0)

=
n

∑
p2=0

n−p2

∑
p1=0

4n−p1−p2(−6)p124p2

(
n

n− p1− p2

)(
p1 + p2

p1

)
2n−p1−p2 f (0, . . . ,0).

(2.4)

One can easy to check that

(
n−q

n−q− p1− p2

)(
p1 + p2

p1

)
=
(

n−q
p2

)(
n−q− p2

p1

)
(2.5)

for 0 � q � n−1. Using (2.5) for q = 0, we compute the right side of (2.4) as follows:

n

∑
p2=0

n−p2

∑
p1=0

4n−p1−p2(−6)p124p2

(
n

n− p1− p2

)(
p1 + p2

p1

)
2n−p1−p2 f (0, . . . ,0)

=

[
n

∑
p2=0

(
n
p2

)
24p2

n−p2

∑
p1=0

(
n− p2

p1

)
8n−p1−p2(−6)p1

]
f (0, . . . ,0)

=

[
n

∑
p2=0

(
n
p2

)
24p2(8−6)n−p2

]
f (0, . . . ,0)

= (24+2)n f (0, . . . ,0) = 26n f (0, . . . ,0). (2.6)

It follows from relations (2.4) an (2.6) that f (0, . . . ,0) = 0. Assume that for each
q−1x ∈ Kq−1 , f (q−1x) = 0. We show that if qx ∈ Kq , then f (qx) = 0. By some
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suitable replacements in (3.1), we obtain

16n×2n f (qx)

=
n−q

∑
p2=0

n−q−p2

∑
p1=0

4n−p1−p2(−6)p124p2

(
n−q

n−q− p1− p2

)(
p1 + p2

p1

)
2n−p1−p2 f (2qx)

= 24q
n−q

∑
p2=0

n−q−p2

∑
p1=0

4n−p1−p2(−6)p124p2

(
n−q

n−q− p1− p2

)(
p1 + p2

p1

)
2n−p1−p2 f (qx)

= 27q

[
n−q

∑
p2=0

(
n−q
p2

)
24p2

n−q−p2

∑
p1=0

(
n−q− p2

p1

)
8n−q−p1−p2(−6)p1

]
f (qx)

= 27q

[
n−q

∑
p2=0

(
n−q
p2

)
24p2(8−6)n−q−p2

]
f (qx)

= 27q(24+2)n−q f (qx) = 27q×26n−q f (qx) (2.7)

Hence, f (qx) = 0. This shows that f (x) = 0 for any x ∈Vn with at least one compo-
nent which is equal to zero. �

We now prove the main result of this section.

THEOREM 2.4. If the mapping f : Vn −→ W is multi-quartic, then f satisfies
equation (2.3). The converse is true provided that f has 4 -power condition in each
variable.

Proof. Assume that f is a multi-quartic. We prove that f satisfies equation (2.3)
by induction on n . For n = 1, it is trivial that f satisfies equation (2.1). If (2.3) is valid
for some positive integer n > 1, then

16n+1 ∑
t∈{−2,2}n+1

f

(
xn+1
1 + txn+1

2

2

)

= 4×16n ∑
t∈{−2,2}n

f

(
xn
1 + txn

2

2
,x1,n+1 + x2,n+1

)

+4×16n ∑
t∈{−2,2}n

f

(
xn
1 + txn

2

2
,x1,n+1− x2,n+1

)

−6×16n ∑
t∈{−2,2}n

f

(
xn
1 + txn

2

2
,x1,n+1

)
+24×16n ∑

t∈{−2,2}n

f

(
xn
1 + txn

2

2
,x2,n+1

)

= 4
n

∑
p2=0

n−p2

∑
p1=0

∑
s∈{−1,1}

4n−p1−p2(−6)p124p2 f
(
N n

(p1,p2)
,x1,n+1 + sx2,n+1

)

−6
n

∑
p2=0

n−p2

∑
p1=0

4n−p1−p2(−6)p124p2 f
(
N n

(p1,p2),x1,n+1

)
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+24
n

∑
p2=0

n−p2

∑
p1=0

4n−p1−p2(−6)p124p2 f
(
N n

(p1,p2)
,x2,n+1

)

=
n+1

∑
p2=0

n+1−p2

∑
p1=0

4n+1−p1−p2(−6)p124p2 f
(
N n+1

(p1,p2)

)
.

This means that (2.3) holds for n+1.
Conversely, suppose that f satisfies equation (2.3). Fix j ∈ {1, . . . ,n} . Set

f ∗(x1 j,x2 j) : = f
(
x11, . . . ,x1 j−1,x1 j + x2 j,x1 j+1, . . . ,x1n

)
+ f

(
x11, . . . ,x1 j−1,x1 j − x2 j,x1 j+1, . . . ,x1n

)
,

and

f ∗(x2 j) : = f
(
x11, . . . ,x1 j−1,x2 j,x1 j+1, . . . ,x1n

)
.

Putting x2k = 0 for all k ∈ {1, . . . ,n} \ { j} in (2.3) and using Lemma 2.3, we get

16n×2n−1 f

(
x11, . . . ,x1 j−1,

x1 j +2x2 j

2
,x1 j+1, . . . ,x1n

)

+16n×2n−1 f

(
x11, . . . ,x1 j−1,

x1 j −2x2 j

2
,x1 j+1, . . . ,x1n

)

= 16n−1
n−1

∑
p1=0

(
n−1
p1

)
4n−p1(−6)p12n−p1−1 f ∗(x1 j,x2 j)

+16n−1
n

∑
p1=1

(
n−1
p1−1

)
4n−p1(−6)p12n−p1 f (x11, . . . ,x1n)

+16n−1
n

∑
p1=1

(
n−1
p1−1

)
4n−p1(−6)p1−12n−p1 f ∗(x2 j)

= 4×32n−1
n−1

∑
p1=0

(
n−1
p1

)
4n−1−p1(−3)p1 f ∗(x1 j,x2 j)

−6×32n−1
n−1

∑
p1=0

(
n−1
p1

)
4n−1−p1(−3)p1 f (x11, . . . ,x1n)

+24×32n−1
n−1

∑
p1=0

(
n−1
p1

)
4n−1−p1(−3)p1 f ∗(x2 j)

= 4×32n−1 f ∗(x1 j,x2 j)−6×32n−1 f (x11, . . . ,x1n)+24×32n−1 f ∗(x2 j).

Note that we have used the following relation in the above computations.

n−1

∑
p1=0

(
n−1
p1

)
4n−1−p1(−3)p1 = (4−3)n−1 = 1.

Therefore, the above relation implies that f is quartic in the j th variable. Since j
is arbitrary, we obtain the desired result. �
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3. Characterization of multi-Jensen-quartic mappings

Let V and W be linear spaces, n∈N and k∈ {0, . . . ,n} . A mapping f :Vn −→W
is called k -Jensen and n− k -quartic (briefly, multi-Jensen-quartic) if f is Jensen in
each of some k variables and is quartic in each of the other variables (see equation
(2.1)). In this note, we suppose for simplicity that f is Jensen in each of the first k
variables, but one can obtain analogous results without this assumption. Let us note
that for k = n (k = 0), the above definition leads to the so-called multi-Jensen (multi-
quartic) mappings; some basic facts on Jensen mappings can be found for instance in
[27].

From now on, we assume that V and W are vector spaces over Q . Moreover, we
identify x = (x1, . . . ,xn)∈Vn with (xk,xn−k)∈Vk×Vn−k , where xk := (x1, . . . ,xk) and
xn−k := (xk+1, . . . ,xn) , and we adopt the convention that (xn,x0) := xn := (x0,xn) . Put
xk
i = (xi1, . . . ,xik) ∈ Vk and xn−k

i = (xi,k+1, . . . ,xin) ∈ Vn−k , where i ∈ {1,2} . Recall
that

N n−k
(p1,p2)

:=
{
Nn = (Nk+1,Nk+2, . . . ,Nn) ∈ N n

k | Card{Nj : Nj = xi j} = pi (i ∈ {1,2})} .

We also use the following notation:

f
(
xk
i ,N

n−k
(p1,p2)

)
:= ∑

Nn∈N n−k
(p1,p2)

f (xk
i ,Nn) (i ∈ {1,2}).

In this section, we wish to show that the mapping f :Vn −→W is multi-Jensen-quartic
if and only if it satisfies the equation

24n−3k ∑
t∈{−2,2}n−k

f

(
xk
1 + xk

2

2
,
xn−k
1 + txn−k

2

2

)

= ∑
j1,..., jk∈{1,2}

n−k

∑
p2=0

n−k−p2

∑
p1=0

4n−k−p1−p2(−6)p124p2 f
(
x j11, . . . ,xlkk,N

n−k
(p1,p2)

)
(3.1)

for all xk
i = (xi1, . . . ,xik) ∈Vk and xn−k

i = (xi,k+1 . . . ,xin) ∈Vn−k , where i ∈ {1,2} .
Here, we reduce the system of n equations defining the multi Jensen-quartic map-

ping to obtain a single functional equation.

THEOREM 3.1. Let n ∈ N and k ∈ {0, . . . ,n} . If the mapping f : Vn −→ W
is multi-Jensen-quartic mapping, then it satisfies equation (3.1). The converse holds
provided that f has 4 -power condition in the last n− k variables.

Proof. (Necessity) Suppose that f is a multi-Jensen-quartic mapping. Since for
k∈ {0,n} our assertion follows from [28, Lemma 1.1] and Theorem 2.4, we can assume
that k ∈ {1, . . . ,n−1} . For any xn−k ∈Vn−k , define the mapping gxn−k : Vk −→W by
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gxn−k(xk) := f (xk,xn−k) for xk ∈ Vk . By assumption, gxn−k is k -Jensen, and hence
Lemma 1.1 from [28] implies that

2kgxn−k

(
xk
1 + xk

2

2

)
= ∑

j1, j2,..., jk∈{1,2}
gxn−k(x j11,x j22, . . . ,x jkk), xk

1,x
k
2 ∈Vk.

It now follows from the above equality that

2k f

(
xk
1 + xk

2

2
,xn−k

)
= ∑

j1, j2,..., jk∈{1,2}
f (x j11,x j22, . . . ,x jkk,x

n−k) (3.2)

for all xk
1,x

k
2 ∈Vk and xn−k ∈Vn−k . Similar to the above, for any xk ∈Vk , consider the

mapping hxk : Vn−k −→W defined via hxk(xn−k) := f (xk,xn−k), xn−k ∈Vn−k which is
n− k -quartic. It now Theorem 2.4 implies that

16n−k ∑
t∈{−2,2}n−k

hxk

(
xn−k
1 + txn−k

2

2

)

=
n−k

∑
p2=0

n−k−p2

∑
p1=0

4n−k−p1−p2(−6)p124p2hxk

(
N n−k

(p1,p2)

)
(3.3)

for all xn−k
1 ,xn−k

2 ∈Vn−k . By the definition of hxk , relation (3.3) is equivalent to

16n−k ∑
t∈{−2,2}n−k

f

(
xk,

xn−k
1 + txn−k

2

2

)

=
n−k

∑
p2=0

n−k−p2

∑
p1=0

4n−k−p1−p2(−6)p124p2 f
(
xk,N n−k

(p1,p2)

)
(3.4)

for all xn−k
1 ,xn−k

2 ∈Vn−k and xk ∈Vk . Plugging equality (3.2) into (3.4), we get

24n−3k ∑
t∈{−2,2}n−k

f

(
xk
1 + xk

2

2
,
xn−k
1 + txn−k

2

2

)

= ∑
t∈{−2,2}n−k

∑
j1, j2,..., jk∈{1,2}

f

(
x j11,x j22, . . . ,x jkk,

xn−k
1 + txn−k

2

2

)

= ∑
j1,..., jk∈{1,2}

n−k

∑
p2=0

n−k−p2

∑
p1=0

4n−k−p1−p2(−6)p124p2 f
(
x j11, . . . ,x jkk,N

n−k
(p1,p2)

)

for all xk
i = (xi1, . . . ,xik) ∈ Vk,xn−k

i = (xik+1 . . . ,xin) ∈ Vn−k and i ∈ {1,2} , which
proves that f satisfies equation (3.1).
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(Sufficiency) Assume that f satisfies equation (3.1). Putting xn−k
2 = 0 in (3.1) and

using the assumption, we obtain

24n−3k×2n−k f

(
xk
1 + xk

2

2
,xn−k

1

)

= ∑
j1, j2,..., jk∈{1,2}

n−k

∑
p1=0

(
n− k
p1

)
4n−k−p1 × (−6)p1 ×2n−k−p1

×16n−k f (x j11,x j22, . . . ,x jkk,2xn−k
1 )

= ∑
j1, j2,..., jk∈{1,2}

(8−6)n−k×16n−k f (x j11,x j22, . . . ,x jkk,x
n−k
1 )

= 25n−5k ∑
j1, j2,..., jk∈{1,2}

f (x j11,x j22, . . . ,x jkk,x
n−k
1 ).

Thus,

2k f

(
xk
1 + xk

2

2
,xn−k

1

)
= ∑

j1, j2,..., jk∈{1,2}
f (x j11,x j22, . . . ,x jkk,x

n−k
1 ) (3.5)

for all xk
1,x

k
2 ∈ Vn and xn−k

1 ∈ Vn−k . In view of [28, Lemma 1.1], we see that f is
Jensen in each of the k first variables. Furthermore, by putting xk

1 = xk
2 in (2.3), we

have

24n−3k ∑
t∈{−2,2}n−k

f

(
xk
1,

xn−k
1 + txn−k

2

2

)

= 2k
n−k

∑
p2=0

n−k−p2

∑
p1=0

4n−k−p1−p2(−6)p124p2 f
(
xk
1,N

n−k
(p1,p2)

)

and so

16n−k ∑
t∈{−2,2}n−k

f

(
xk
1,

xn−k
1 + txn−k

2

2

)

=
n−k

∑
p2=0

n−k−p2

∑
p1=0

4n−k−p1−p2(−6)p124p2 f
(
xk
1,N

n−k
(p1,p2)

)

for all xk
1 ∈ Vk and xn−k

1 ,xn−k
2 ∈ Vn−k . In light of Theorem 2.4, we see that f is a

multi-Jensen-quartic mapping. �

4. Stability results of (3.1)

In this section, we prove the generalized Hyers-Ulam stability of equation (3.1)
by a fixed point result (Theorem 4.1) in Banach spaces. Throughout, for two sets X
and Y , the set of all mappings from X to Y is denoted by YX . Here, we introduce the
oncoming three hypotheses:
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(A1) Y is a Banach space, S is a nonempty set, j ∈ N , g1, . . . ,g j : S −→ S and
L1, . . . ,Lj : S −→ R+ ,

(A2) T : YS −→ YS is an operator satisfying the inequality

‖T λ (x)−T μ(x)‖ �
j

∑
i=1

Li(x)‖λ (gi(x))− μ(gi(x))‖ , λ ,μ ∈ YS ,x ∈ S ,

(A3) Λ : RS
+ −→ RS

+ is an operator defined through

Λδ (x) :=
j

∑
i=1

Li(x)δ (gi(x)), δ ∈ RS
+ ,x ∈ S .

In the following, we present a result in fixed point theory [13, Theorem 1] which
plays a key tool in obtaining our aim in this paper.

THEOREM 4.1. Let hypotheses (A1)-(A3) hold and the function θ : S −→ R+
and the mapping φ : S −→ Y fulfill the following two conditions:

‖T φ(x)−φ(x)‖ � θ (x), θ ∗(x) :=
∞

∑
l=0

Λlθ (x) < ∞ (x ∈ S ).

Then, there exists a unique fixed point ψ of T such that

‖φ(x)−ψ(x)‖ � θ ∗(x) (x ∈ S ).

Moreover, ψ(x) = liml→∞ T lφ(x) for all x ∈ S .

Here and subsequently, for the mapping f : Vn −→W , we consider the difference
operator D(J,q) f : Vn×Vn −→W by

D(J,q) f (x1,x2) := 24n−3k ∑
t∈{−2,2}n−k

f

(
xk
1 + xk

2

2
,
xn−k
1 + txn−k

2

2

)

− ∑
j1,..., jk∈{1,2}

n−k

∑
p2=0

n−k−p2

∑
p1=0

4n−k−p1−p2(−6)p124p2

× f
(
x j11, . . . ,x jkk,N

n−k
(p1,p2)

)
for all xk

i = (xi1, . . . ,xik) ∈Vk and xn−k
i = (xi,k+1, . . . ,xin) ∈Vn−k .

We have the next stability result for the functional equation (3.1) which is our main
result in this section.

THEOREM 4.2. Let β ∈ {−1,1} be fixed, V be a linear space and W be a Ba-
nach space. Suppose that ψ : Vn×Vn −→ R+ is a mapping satisfying the equality

lim
l→∞

(
1

2(4n−3k)β

)l

ψ(2β lx1,2
β lx2) = 0 (4.1)
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for all x1 = (xk
1,x

n−k
1 ),x2 = (xk

2,x
n−k
2 ) ∈Vn and

Ψ(x) =:
1

2n−k+(4n−3k) β+1
2

∞

∑
l=0

(
1

2(4n−3k)β

)l

ψ
(
2β l+ β+1

2 x,0
)

< ∞ (4.2)

for all x ∈Vn . Assume also f : Vn −→W is a mapping satisfying the inequality

‖D(J,q) f (x1,x2)‖ � ψ(x1,x2) (4.3)

for all x1,x2 ∈ Vn and f (x) = 0 for any x ∈ Vn with at least one component which is
equal to zero, then there exists a unique solution F : Vn −→W of (3.1) such that

‖ f (x)−F (x)‖ � Ψ(x) (4.4)

for all x = (xk
1,x

n−k
1 ) ∈Vn .

Proof. Replacing x1 = (xk
1,x

n−k
1 ) and x2 = (xk

2,x
n−k
2 ) by 2x1 = 2(xk

1,x
n−k
1 ) and

(0,0) in (4.3) respectively, and using the assumptions, we have∥∥∥∥∥24n−3k ×2n−k f (x)−
n−k

∑
p1=0

(
n− k
p1

)
4n−k−p1 × (−6)p1 ×2n−k−p1 f (2x)

∥∥∥∥∥� ψ(2x,0),

(4.5)

where x = x1 = (xk
1,x

n−k
1 ) ∈Vn . Since

n−k

∑
p1=0

(
n− k
p1

)
8n−k−p1(−6)p1 = (8−6)n−k = 2n−k,

relation (4.5) shows that∥∥∥ f (2x)−24n−3k f (x)
∥∥∥ � 1

2n−k ψ(2x,0) (4.6)

for all x ∈Vn . Set

θ (x) :=
1

2n−k+(4n−3k) β+1
2

ψ
(
2

β+1
2 x,0

)
, andT θ (x) :=

1

2(4n−3k)β θ (2β x) (θ ∈WVn
).

Then, relation (4.6) can be modified as

‖ f (x)−T f (x)‖ � θ (x) (x ∈Vn). (4.7)

Define Λη(x) := 1
2(4n−3k)β η(2β x) for all η ∈ RVn

+ ,x ∈ Vn . We now see that Λ has the

form described in (A3) with S =Vn , g1(x) = 2β x and L1(x) = 1
2(4n−3k)β for all x∈Vn .

Furthermore, for each λ ,μ ∈WVn
and x ∈Vn , we get

‖T λ (x)−T μ(x)‖ =
∥∥∥∥ 1

2(4n−3k)β

[
λ (2β x)− μ(2βx)

]∥∥∥∥� L1(x)‖λ (g1(x))− μ(g1(x))‖ .
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The above relation shows that the hypothesis (A2) holds. By induction on l , one can
check that for any l ∈ N0 and x ∈Vn , we have

Λlθ (x) :=
(

1

2(4n−3k)β

)l

θ (2β lx) =
1

2n−k+(4n−3k) β+1
2

(
1

2(4n−3k)β

)l

ψ
(
2β l+ β+1

2 x,0
)

(4.8)

for all x∈Vn . The relations (4.2) and (4.8) necessitate that all assumptions of Theorem
4.1 are satisfied. Hence, there exists a unique mapping F : Vn −→W such that

F (x) = lim
l→∞

(T l f )(x) =
1

2(4n−3k)β F (2β x) (x ∈Vn),

and (4.4) holds. We shall to show that

‖D(J,q)(T
l f )(x1,x2)‖ �

(
1

2(4n−3k)β

)l

ψ(2β lx1,2
β lx2) (4.9)

for all x1,x2 ∈Vn and l ∈N0 . We argue by induction on l . The inequality (4.9) is valid
for l = 0 by (4.3). Assume that (4.9) is true for an l ∈ N0 . Then

‖D(J,q)(T
l+1 f )(x1,x2)‖

=
∥∥∥24n−3k ∑

t∈{−2,2}n−k

(T l+1 f )

(
xk
1 + xk

2

2
,
xn−k
1 + txn−k

2

2

)

−∑
j1,..., jk∈{1,2}

n−k

∑
p2=0

n−k−p2

∑
p1=0

4n−k−p1−p2(−6)p124p2(T l+1 f )
(
x j11, . . . ,xlkk,N

n−k
(p1,p2)

)∥∥∥
=

1

2(4n−3k)β

∥∥∥24n−3k ∑
t∈{−2,2}n−k

(T l f )

(
2β xk

1 + xk
2

2
,2β xn−k

1 + txn−k
2

2

)

−∑
j1,..., jk∈{1,2}

n−k

∑
p2=0

n−k−p2

∑
p1=0

4n−k−p1−p2(−6)p124p2(T l f )
(
2β x j11, . . . ,2

β xlkk,2
β N n−k

(p1,p2)

)∥∥∥
=

1

2(4n−3k)β

∥∥∥D(J,q)(T
l f )(2β x1,2

β x2)
∥∥∥�

(
1

2(4n−3k)β

)l+1

ψ(2β (l+1)x1,2
β (l+1)x2)

for all x1,x2 ∈Vn . Letting l →∞ in (4.9) and applying (4.1), we arrive at D(J,q)F (x1,x2)
= 0 for all x1,x2 ∈ Vn . This means that the mapping F satisfies (3.1), and hence the
proof is now complete. �

Let A be a nonempty set, (X ,d) a metric space, ψ ∈ RAn

+ , and F1,F2 operators
mapping a nonempty set D ⊂ XA into XAn

. We say that operator equation

F1ϕ(a1, . . . ,an) = F2ϕ(a1, . . . ,an) (4.10)

is ψ -hyperstable provided every ϕ0 ∈ D satisfying inequality

d(F1ϕ0(a1, . . . ,an),F2ϕ0(a1, . . . ,an)) � ψ(a1, . . . ,an), a1, . . . ,an ∈ A,
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fulfils (4.10); this definition is introduced in [14]. In other words, a functional equation
F is hyperstable if any mapping f satisfying the equation F approximately is a true
solution of F . Under some conditions the functional equation (3.1) can be hyperstable
as follows.

COROLLARY 4.3. Let δ > 0 . Suppose that pi j > 0 for i∈{1,2} and j∈{1, . . . ,n}
fulfill ∑2

i=1 ∑n
j=1 pi j �= 4n−3k . Let V be a normed space and W be a Banach space. If

f : Vn −→W is a mapping satisfying the inequality

‖D(J,q) f (x1,x2)‖ � δ
2

∏
i=1

n

∏
j=1

‖xi j‖pi j

for all x1,x2 ∈ Vn and f (x) = 0 for any x ∈ Vn with at least one component which is
equal to zero, then f is a unique solution of (3.1).

In the following corollary, we show that the functional equation (3.1) is stable.
Since the proof is routine, we include it without proof.

COROLLARY 4.4. Let δ > 0 and α ∈ R with α �= 4n− 3k . Let also V be a
normed space and W be a Banach space. If f : Vn −→W is a mapping satisfying the
inequality

‖D(J,q) f (x1,x2)‖ � δ
2

∑
i=1

n

∑
j=1

‖xi j‖α

for all x1,x2 ∈ Vn and f (x) = 0 for any x ∈ Vn with at least one component which is
equal to zero, then there exists a unique solution F : Vn −→W of (3.1) such that

‖ f (x)−F (x)‖ � 2α

2n−k|2α −24n−3k|δ
n

∑
j=1

‖x1 j‖α

for all x ∈Vn .

Putting k = 0 in Theorem 4.2, we obtain the upcoming result on the stability of
multi-quartic mappings.

COROLLARY 4.5. Let δ > 0 . Let also V be a normed space and W be a Banach
space. If f : Vn −→W is a mapping satisfying the inequality∥∥∥∥∥16n ∑

t∈{−2,2}n

f

(
x1 + tx2

2

)
−

n

∑
p2=0

n−p2

∑
p1=0

4n−p1−p2(−6)p124p2 f
(
N n

(p1,p2)

)∥∥∥∥∥� δ

for all x1,x2 ∈ Vn and f (x) = 0 for any x ∈ Vn with at least one component which is
equal to zero, then there exists a unique solution Q : Vn −→W of (2.3) such that

‖ f (x)−Q(x)‖ � δ
2n(24n−1)

for all x ∈Vn .
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