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Abstract: The transdermal delivery system of nutrients, cosmetics, and drugs is particularly at-
tractive for painless, noninvasive delivery and sustainable release. Recently, atmospheric pressure
plasma techniques have been of great interest to improve the drug absorption rate in transdermal
delivery. Currently, plasma-mediated changes in the lipid composition of the stratum corneum are
considered a possible mechanism to increase transdermal permeability. Nevertheless, its molecu-
lar and cellular mechanisms in transdermal delivery have been largely confined and still veiled.
Herein, we present the effects of cold plasma on transdermal transmission on porcine skin and the
cellular permeability of keratinocytes and further demonstrate the production of nitric oxide from
keratinocytes. Consequently, argon plasma irradiation for 60 s resulted in 2.5-fold higher transdermal
absorption of aniline blue dye on porcine skin compared to the nontreated control. In addition, the
plasma-treated keratinocytes showed an increased transmission of high-molecular-weight molecules
(70 and 150 kDa) with the production of nitric oxide. Therefore, these findings suggest a promot-
ing effect of low-temperature plasma on transdermal absorption, even for high-molecular-weight
molecules. Moreover, plasma-induced nitric oxide from keratinocytes is likely to regulate transdermal
permeability in the epidermal layer.

Keywords: atmospheric pressure plasma; transdermal permeability; transdermal delivery; nitric
oxide; plasma medicine

1. Introduction

The percutaneous transmission of nutrients, cosmetics, and drugs is a painless and
noninvasive delivery method wherein they are absorbed by crossing through the skin
layers to the systemic circulation [1,2]. In particular, transdermal drug delivery systems
using various types of skin patches [3,4] and other transdermal methods, such as ion
penetration [5,6] and ultrasound [7,8], have improved absorption rates for local and/or sys-
temic delivery of therapeutic agents through the skin layers. In addition, the atmospheric
pressure plasma technique is also of great interest to improve the drug absorption rate in
transdermal delivery [9].

In the past couple of decades, cold atmospheric pressure plasma opened up a new
frontier in medicine and healthcare as a term of plasma medicine [10–13]. Remarkably,
numerous studies have demonstrated biomedical applications for alleviating dermato-
logical problems, such as skin wounds and infections, that are relatively easy to process
with plasma [14–17]. In addition, some studies have focused on the effects of cold plasma
on the skin barrier, not as a disease treatment but as a drug-delivery technology. For
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instance, it was found that atmospheric plasma jet irradiation for 3 min promotes trans-
dermal delivery of hydrophilic rhodamine B dye on rat skin due to a reversible small pore
induced by the collision of charged particles [18]. Moreover, further investigations showed
a practical transdermal delivery of galantamine hydrobromide (368 Da) and lidocaine
(234 Da) used for Alzheimer’s disease treatment and local anesthetic, respectively [19,20].
Interestingly, plasma irradiation through atmospheric-pressure plasma jets or dielectric
barrier discharge exhibited an increased transdermal delivery of high-molecular-weight
lipophilic cyclosporine A (1203 Da), whereas there was no absorption without plasma
treatment [21]. Despite evident findings of improved transdermal delivery by plasma, its
molecular and cellular mechanism(s) are still elusive.

The stratum corneum is the outermost layer of the epidermis, which is an important
component of the skin barrier [22,23]. As the stratum corneum primarily prevents the
transdermal absorption of drugs, several studies have suggested increased permeability
due to changes in lipid composition in the plasma-treated stratum corneum layer [18,24].
In addition, one remarkable study most recently showed transcriptomic changes in cell
junction proteins, cytoskeletal proteins, and extracellular matrix proteins in the stratum
corneum of plasma-treated skin [25]. However, it is still unclear how these transcriptomic
changes can be induced in the epidermis layer.

The stratum corneum layer is composed of keratinized and flattened corneocytes that
are differentiated dead keratinocytes. In the lower stratum corneum, living keratinocytes
are connected through cell–cell junctions in the epidermal layer called the stratum granulo-
sum. In the present study, we attempted to investigate the transdermal permeability of our
plasma device on porcine skin and further determined the effect of drug delivery and the
production of nitric oxide in cultured keratinocytes, which is an important regulator of skin
barrier function and includes junctional proteins, cytoskeletal proteins, and extracellular
matrix proteins.

2. Material and Method
2.1. Plasma Device

For the present study, we installed an atmospheric-pressure plasma jet device. The
outer and inner diameters of the nozzle tube of the device were 3 mm and 2 mm, respec-
tively (Figure 1A). As shown in Figure 1B, dielectric barrier discharge (DBD) jet consists
of a high voltage applied hollow electrode, an alumina dielectric with 0.5 mm thickness,
and an external ground electrode with a width of 5 mm. Flow control units (RK1600R,
Kofloc, Japan) were independently connected to control argon and helium gas, and the flow
rate was maintained at 2 standard liters per minute (slm). The DC input source inverted
to AC power by push-pull type inverter. The applied AC voltage and discharge current
were measured using an oscilloscope (MDO3000, Tektronix, Beaverton, OR, USA), a high
voltage probe (P6015A, Tektronix, USA), and a current probe (P6022, Tektronix, USA) to
compare the electrical properties of argon and helium plasma jets. The emission spectra
of argon and helium plasma jets were measured by varying the wavelength range from
200 to 900 nm through an OES spectral analyzer (HR4000CG, Ocean Optics, Orlando, FL,
USA). The optic fiber was connected to the OES spectral analyzer and fixed at a distance of
5 mm from the plasma device nozzle.

2.2. Materials

Aniline blue cream was prepared from cetaphil, glycerin, petrolatum, dicaprylyl ether,
dimethicone, glyceryl stearate, cetyl alcohol, seed oil, PEG-30 stearate, tocopheryl acetate,
dimethiconol, acrylates/C10-30 alkyl acrylate crosspolymer, benzyl alcohol, phenoxyer-
hanol, prunus amygdalus duicis oil, prophylene glycol, disodium EDTA, carnomer, sodium
hydroxide, aniline blue (1 mg/mL), and purified water to create a cream with an aniline
blue concentration of 737.73 µg/g.
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Figure 1. Schematic diagram of the atmospheric pressure plasma jet device. (A) Atmospheric pressure plasma jet device
used in the present study. (B) Schematic diagram of an argon and helium plasma treatment system.

2.3. Permeability of Porcine Skin

Porcine skins were prepared in a size of 2.5 × 2.0 cm. They were divided into four
regions of 0.7 × 0.7 cm: no plasma treatment and high-intensity plasma treatment for
10, 30, and 60 s. After the plasma treatment, 1 g of aniline blue cream was applied to
the quartered area of porcine skin, and the reaming cream was washed with running
water after 5 min. Finally, the aniline blue remaining on the porcine skin after 10 h was
quantified by the ImageJ program. The captured picture was executed in the imageJ
program. It converted the completed the picture into 8 bit type. To designate the part to
be quantified, we used rectangular selection tool of the imageJ program. The rectangular
size remained constant for all measurements at each set. The measured values in each
set were compared by dividing them into the values of the untreated site (0 s). Finally,
statistical analysis was compared based on the experimental results of a total of three sets.
Additionally, temperature of porcine skin surface measured using thermal imager (DT
9885, CEM, Shenzhen, China), IR resolution is 384 × 288 pixels and temperature range is
from 20 ◦C to 150 ◦C. IR image acquisition that we measured in the experiment is 1 spot
temperature mode with no zoom.

2.4. Cell Culture

HaCaT cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supple-
mented with 10% fetal bovine serum (FBS) at 37 ◦C and 5% CO2 under previously reported
conditions [26].

2.5. Dextran Fluorescein

HaCaT cells (2 × 105) were cultured for 24 h and treated with our plasma device for
30 s in phenol red-free DMEM with 10% FBS. After washing with phosphate-buffered
saline (PBS), the cells were further incubated with DMEM containing fluorescein-dextran
of 70 or 150 kDa at 37 ◦C for 1 h. Consequently, the fluorescent dextran in the cells was
observed by fluorescence microscopy.

2.6. Measurement of Intracellular Nitric Oxide Level

Intracellular nitric oxide generation was assessed using a QuantiChromTM nitric
oxide assay kit (Bioassay Systems, USA). HaCaT cells (2 × 105) were plated on 35-mm
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dishes and cultured for 24 h. The cells were deprived of serum for 1 h and treated with our
plasma device at multiple time points in phenol red-free medium. After plasma irradiation,
cell samples were homogenized in PBS. After centrifugation at 12,000 rpm at 4 ◦C, the
supernatant was used for the nitric oxide assay, and the quantitative colorimetric changes
were determined at 540 nm.

2.7. Statistical Analysis

Data analysis was performed with Student’s t-test for comparisons between two
groups or ANOVA with Tukey’s hoc test for multiple groups (SPSS 12.0 K for Windows,
SPSS, Chicago, IL, USA) to determine the statistical significance (p value). Statistical
significance was considered for p values of <0.05 (*), <0.01 (**), or 0.001 (***).

3. Results and Discussion
3.1. Electrical Properties and Emission Spectra of Argon and Helium Plasma

To analyze the electrical properties, we first measured DC input voltage and DC
discharged current, the breakdown voltage of argon and helium gas were 6 V and 4 V,
respectively, and discharge currents as breakdown voltage were 0.29 A and 0.25 A at a
2 slm flow rate, respectively (Figure 2A). The DC input voltage conditions for transdermal
permeability experiment that length of plasma plume was the longest without plasma
arcing and burn in the porcine skin were 18 V and 12 V in argon and helium gas, respectively.
As shown in Figure 2B, we measured two cycle waveforms of the inverted AC applied
voltage and discharge current of the argon and helium plasma jet at DC input voltage 18 V
and 12 V, respectively, and their frequency were 47.28 kHz and 46.67 kHz, respectively.
The RMS (Root Mean Square) voltages of argon and helium plasma jets were 2.54 kV and
1.73 kV, respectively, and their RMS discharge currents were 11.01 mA and 6.21 mA at
a 2 slm flow rate, respectively. Additionally, the calculated AC power of the argon and
helium plasma jet were 4.85 W and 1.86 W, respectively, while DC power was 5.22 W and
3 W, respectively. As previously reported, this difference seems to be caused by argon being
relatively easy to ionize because the ionization threshold energies of argon and helium are
15.76 eV and 24.59 eV, respectively [27], even with the increased voltage, the generation of
radicals is much higher in argon than in helium plasma [28]. We examined various active
species that are observed in argon and helium plasma. The emission spectra of argon and
helium plasma indicate that OH (309 nm) and N2 (310 to 370 nm) were observed in both
argon and helium plasma, but NO (283 nm) and N2

+ first negative bands (391 nm) were
observed only in helium plasma (Figure 3). As the ionization threshold energy of N2 is
14.53 eV, N2 is likely to be ionized by helium plasma with a metastable energy level of
19.82 eV compared to that of argon plasma (11.5 eV) [29].

3.2. Argon and Helium Plasma Jet Irradiation Increases the Transdermal Permeability of
Porcine Skin

The plasma-induced transdermal absorption rate was determined on pig skin, which
is known to be most similar to human skin [30]. To optimize the most effective absorption
rate condition, we first investigated the transdermal permeability according to the exposure
duration of the atmospheric-pressure helium or argon plasma. As shown in Figure 4, the
helium or argon plasma was irradiated for 0, 10, 30, and 60 s in the quartered regions of
the porcine skin at a distance of 4 mm from the skin surface. Subsequently, a dye reagent
(aniline blue cream) was equivalently applied to the quartered porcine skin. After 10 h, the
transdermal permeability was analyzed by colorimetric changes depending on the absorbed
amount of aniline blue dye. As shown in Figure 4B, argon plasma remarkably facilitated
the transdermal absorption of aniline blue on porcine skin in an exposure time-dependent
manner. This consequently resulted in approximately 2.5-fold higher permeation after
argon plasma irradiation for 60 s. In addition, the time-dependent irradiation of helium
plasma also showed an increased absorption ratio of aniline blue dye and finally saturated
from the exposure time of 30 s (Figure 4C). When the plasma irradiation distance moved
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to 8 mm, there was no significant influence on the absorption rate after irradiation of the
argon and helium plasma (Figure 5). Taken together, argon and helium plasma exhibited
the most transdermal permeability of aniline blue dye on porcine skin when irradiated for
approximately 30 s at a plasma irradiation distance of 4 mm. In addition, argon plasma-
treated porcine skin showed higher transdermal permeability than helium plasma. To
further investigate the change in temperature by plasma irradiation, we measured the
skin temperature after plasma exposure for 10, 30, 60 s at distance of 4 mm. As shown
in Figure 6, the skin temperature after exposure of argon plasma for 0, 10, 30, and 60 s
was 21.4, 22, 4, 25.9 and 28.7, respectively, and helium plasma was 21.4, 22, 4, 25.9 and
28.7, respectively. The argon and helium plasma treatment for 60 s increased the surface
temperature up to approximately 7 ◦C and 4 ◦C, respectively.
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3.3. Argon Plasma Irradiation Facilitates the Permeability of 70 kDa and 150 kDa Molecules
in Keratinocytes

To investigate how to increase transdermal permeability by plasma, we further exam-
ined in vitro permeability in keratinocytes that were connected through cell–cell junctions
in the epidermal layer. As high-molecular-weight molecules over 1 kDa have difficulty
penetrating into the skin, we attempted to compare the penetration of 70 and 150 kDa
molecules in keratinocytes with/without argon plasma irradiation. For this purpose, cul-
tured HaCaT cells were first treated with our plasma device for 30 s or not. Subsequently,
they were incubated in the medium containing 70 or 150 kDa dextran conjugated with
fluorescein for 1 h. Thereafter, the cells were fixed with 4% paraformaldehyde, and the
fluorescence intensity inside the cells was observed using a fluorescence microscope. As
shown in Figure 7A, fluorescent signals of 70 and 150 kDa dextran were clearly observed in
argon plasma-treated keratinocytes, whereas these fluorescent signals were not observed
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in nontreated cells. Indeed, statistical analysis revealed that argon plasma irradiation
significantly increased the fluorescence intensity of 70 (22.0 ± 4.2) kDa (Figure 7B) and
150 (17.6 ± 3.6) kDa (Figure 7C) dextran in the cells compared to nontreated cells. There-
fore, these results suggest that argon plasma irradiation facilitates the penetration of over
1 kDa molecules that generally have difficulty permeating the skin due to their high
molecular weight.
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3.4. Argon Plasma Irradiation Induces the Production of Nitric Oxide in Keratinocytes

Generally, nitric oxide is a free radical with an unpaired electron, and it is well known
to regulate various epidermal functions, including epidermal proliferation, differentiation,
wound healing, and barrier permeability in the skin [31–33]. In fact, nitric oxide regu-
lates junctional, cytoskeletal, and extracellular matrix proteins. Hence, we believed that
nitric oxide was involved in plasma-mediated permeability as a transdermal absorption
donor. Therefore, we further investigated whether argon plasma irradiation induces the
production of nitric oxide in keratinocytes. Argon plasma was applied to HaCaT cells for
10, 30, and 60 s, followed by incubation for 10, 30, 60, and 120 min. As shown in Figure 8,
the exposure of plasma on the cells for 10, 30, and 60 s similarly caused the production
of nitric oxide up to approximately 80 µM. Nitric oxide was significantly induced from
60 min after irradiation. These findings suggest that plasma-induced nitric oxides from
keratinocytes are able to regulate the junctions between cells and the extracellular matrix
in the epidermal layer, which would make the epidermal barrier permeable.
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4. Conclusions

The epidermal transmission of nutrients, cosmetics, and drugs is a painless and non-
invasive delivery method that has the advantages of providing continuous and long-term
release as well as improving patient adaptability. Among current percutaneous transmis-
sion methods and technologies, cold plasma can easily irradiate the desired portion of the
skin without epidermal damage. Recently, several studies have provided the effect of cold
plasma on transdermal permeability. In the present study, an atmospheric-pressure plasma
jet device was fabricated to test the transdermal permeability, and its device effectively
showed improved permeability of aniline blue dye on porcine skin. Furthermore, we
showed a significant increase in the transmission of high-molecular-weight molecules
(70 and 150 kDa) with the production of nitric oxide in plasma-treated keratinocytes. Fur-
ther studies are warranted to clarify the molecular and cellular mechanism(s) underlying
plasma-induced nitric oxide and transdermal absorption in keratinocytes.
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