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We study the magnetic effect in a strongly interacting system with two conserved currents near
the quantum critical point (QCP). For this purpose, we introduce the hyper-scaling violation
geometry with the black hole. Considering the perturbation near the background geometry,
we compute the transport coefficients using holographic methods. We calculated the magneto-
transport for general QCP and discuss the special point (z, θ) = (3/2, 1), where the data of Dirac
material have previously been well described.
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1. Introduction

For a strongly correlated system, the particle nature is often absent so that theories based on quasi-
particles such as Landau–Fermi liquid theory fail. Strong correlation can happen even for weakly
interacting system when the Fermi surface can be tuned to be very small, because then sufficient
electron–hole pairs, which screen the Coulomb interaction, are not created due to the smallness of
the Fermi surface. Therefore, any Dirac fluid can be strongly correlated as far as it has a small Fermi
surface, which has already been shown in clean graphene [1,2] and in the surface of a topological
insulator with magnetic doping [3–5]. We need to find a new way to describe such a system. We
consider the quantum critical point (QCP), where the microscopic details in ultraviolet (UV) are
irrelevant and most of the information in UV is apprently lost in a low-energy probe in the sense of
coarse graining. This apparent loss of information is very similar to a black hole system, and this
similarity between a QCP and a black hole is important motivation for using holography to analyze
strongly correlated electron systems. A QCP can be characterized by (z, θ), which is defined by the
dispersion relation ω ∼ kz and the entropy density s ∼ T (d−θ)/z. We can use a geometry with the
same scaling symmetry with respect to (t, r, x) → (λzt, λ−1r, λx),

ds2 = r−θ

(
−r2zdt2 + dr2

r2 + r2d�x2
)

, (1)

which is called hyper-scaling-violation (HSV) geometry.
In our previous works [6–9] we described clean graphene and a topological insulator with magnetic

doping in some parameter regions using the holographic method. For the surface of the topological
insulator, we introduced just one current with an interaction to encode the magnetic doping [8,9]. We
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calculated the magneto-conductivity and investigated the phase transitions from weak localization
to weak anti-localization. As in the case of graphene, it turns out that we can have a better fit for
(z, θ) = (3/2, 1) than (1, 0).

For graphene, we need a two-current model [6,7]: when the electron and hole densities fluctuate
from their equilibrium states, the system is supposed to reduce the difference by creating or absorbing
an electron pair:

e− ↔ e− + h+ + e−, h+ ↔ h+ + h+ + e−. (2)

In this process, energy and momentum should be conserved. For graphene, however, the kinematically
available states are severely reduced [10] due to the geometry of the Dirac cone, and this constraint
makes the two currents Je and Jh independently conserved. Hence, we need two independent currents
to describe graphene. In Ref. [7], we analyzed the two-current model for hyperscaling violation
geometry (HSV), and found a theory with a QCP at (z, θ) = (3/2, 1) rather than (1, 0) as studied in
Ref. [8]. The value θ = 1 is important because the holographic background with a dual Fermi surface
has effective dimension deff = d −θ , and a system with a Fermi surface should have deff = 1 so that
θ = 1 can describe the character of the fermion in this aspect. Indeed, we found that (z, θ) = (3/2, 1)

can fit the data better and therefore qualified as a more proper critical exponent in both graphene and
a topological insulator.

In this paper, we study the holographic model with two currents and a particular interaction which
is shown to describe magnetically doped material [8,9]. We calculate all the transport coefficients and
demonstrate some typical behavior of the magneto-transports. Although we have no experimental
results for magnetically doped graphene, our work can be considered as predictions for the magnetic
effect for graphene or other materials which need two or more currents due to the presence of two
layers or two valleys.

2. The two-current model with magnetic impurity in hyperscaling violating
geometry

We start from a four-dimensional action with asymptotically hyperscaling geometry gμν , which
includes a dilaton field φ, a gauge field Aμ to complete the asymptotic hyperscaling violating geom-
etry, two extra gauge fields B(a)

μ which are dual to two conserved currents, and the axion fields χ1, χ2

to break the translational symmetry:

S =
∫

M
d4x(L0 + Lint),

L0 = √−g

(
R +

2∑
i=1

Vie
γiφ − 1

2
(∂φ)2 − 1

4
ZAF2 −

2∑
a

1

4
ZaG2

(a) − 1

2
Y

2∑
i

(∂χi)
2

)
,

Lint = −
∑

a,i=1,2

qχa

16
(∂χi)

2εμνρσ G(a)
μν G(a)

ρσ , (3)

where F = dA, G(a) = dBa. We use the ansatz

ZA = eλφ , Za = Z̄aeηφ , Y = e−ηφ , χi = βxi, (4)
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where β denotes the strength of momentum relaxation. The equations of motion for gauge fields and
gravity are given by

∂μ

(√−ggμνY
∑

i

∂νχi

)
+

∑
a,i=1,2

qχa

8
∂μ(ερσλγ G(a)

ρσ G(a)
λγ gμν∂νχi) = 0, (5)

∂μ

(√−gZAFμν
)

= 0, ∂μ

(√−gZaGμν

(a) + qχa

4

∑
i

(∂χi)
2εαβμνG(a)

αβ

)
= 0, (6)

Rμν = 1

2
√−g

gμνL0 + 1

2
∂μφ∂νφ + Y

2

∑
i

∂μχi∂νχi + 1

2
ZAFρ

μFνρ +
2∑
a

1

2
ZaGρ

(a)μG(a)
νρ

+
∑

a,i=1,2

qχa

16

1√−g
(∂μχi)(∂νχi)ε

ρσλγ G(a)
ρσ G(a)

λγ , (7)

�φ +
∑

i

Viγ eγφ − 1

4
Z ′

A(φ)F2 − 1

4

∑
a

Z ′
a(φ)G2

(a) − 1

2
Y ′(φ)

2∑
i

(∂χi)
2 = 0. (8)

The solution for the dilaton field is given by

φ(r) = ν ln r, with ν = √
(2 − θ)(2z − 2 − θ). (9)

By solving the equations of motion, we can get the gauge couplings and dilaton coupling ZA, Za,
and Y as follows:

ZA(φ) = eλφ = rθ−4, Za(φ) = Z̄aeηφ = Z̄ar2z−θ−2, Y (φ) = e−ηφ , (10)

where λ = (θ − 4)/ν, η = ν/(2 − θ).
Other exponents and potentials are given by

γ1 = θ

ν
, γ2 = θ + 2z − 6

ν
, V1 = z − θ + 1

2(z − 1)
q2

A, V2 = H 2(2z − θ − 2)

4(z − 2)
, (11)

where H is a constant magnetic field and qA = √
2(−1 + z)(2 + z − θ). Finally, we have the

following background solutions:

A = a(r)dt, Ba = ba(r)dt − 1

2
Hydx + 1

2
Hxdy, (12)

χ = (βx, βy), (13)

ds2 = r−θ

(
− r2zf (r)dt2 + dr2

r2f (r)
+ r2(dx2 + dy2)

)
, (14)

f (r) = 1 − mrθ−z−2 − β2

(θ − 2)(z − 2)
rθ−2z + (Z̄1q2

1 + Z̄2q2
2)(θ − z)r2θ−2z−2

2(θ − 2)

+ (Z̄1 + Z̄2)H 2r2z−6

4(z − 2)(3z − θ − 4)
− c2β

2H (qχ1q1 + qχ2q2)

r4+2z−3θ
+

c3β
4H 2(

qχ1
Z̄1

+ qχ2
Z̄2

)

r6+2z−4θ
,

a(r) = −qA

2 + z − θ
(r2+z−θ

H
− r2+z−θ ), ba(r) = μa − qarθ−z − c4qχaβ

2H

Z̄arz−2θ+2
, (15)
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Fig. 1. Schematic figure of our geometry. The region inside the black hole is colored gray, and there is a
domain wall (r = rDW) somewhere between the AdS boundary and the black hole horizon at rH.

where a = 1, 2 and c2, c3, and c4 are given by

c2 = (z − θ)

(θ − 2)(2θ − z − 2)
, c3 = 1

2(2 − θ)(4 + z − 3θ)
, c4 = 1

2θ − z − 2
. (16)

This HSV solution should be embedded into asymptotically anti-de Sitter (AdS) spacetime so that
it is just the infrared part of the total domain-wall solution. Here, we only conceptually embedded
but did not write down the explicit solution in the entire region, since it is not important for the
computation of the DC transports [11]; see Fig. 1.

We can define the conserved charge from the equations of motion for the gauge fields Ba as the
constants of integration,

Qa = √−gZaGtr
(a) + qχa

4

∑
i

(∂χi)
2εαβtrG(a)

αβ

= Z̄aqa(z − θ) = (z − θ)

(
μaZ̄arz−θ

H
+ qχaβ

2r−2+θ
H

2 + z − 2θ

)
. (17)

The entropy density and the Hawking temperature are given by

s = 4πr2−θ
H , (18)

4πT = (z + 2 − θ)rz
H
− β2rθ−z

H

2 − θ
− r2θ−2−z

H

2(2 − θ)

∑
a=1,2

1

Z̄a
(�aH − Qa)

2 − Z̄
H 2r3z−6

H

4(2 − z)
, (19)

where �a = qχaβ
2rθ−2

H
and Z̄ = ∑

a=1,2 Z̄a.

3. Conserved currents and DC transports

We consider the following perturbations to compute the transport coefficients based on the idea of
linear response theory [11]:

δgti = hti(r) + tf3i(r), δgri = hri(r), δBai = b̃ai − tfai, δχi = ϕi(r). (20)

We take the functions fi(r) as

f1i = −E1i + ζib1(r), f2i = −E2i + ζib2(r), f3i = −ζiU (r) (21)

to make the linearized Einstein equations time independent. Here, Eai are the external electric fields
and ζi is thermal gradient, defined as ζi = −(∇iT/T ). In the final expression for each conserved
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current, we will set E1i = E2i = Ei. Since all the transports can be computed at the event horizon, we
need to find the regularity condition at the horizon. We take the Eddington–Finkelstein coordinates
(v, r) where the background metric is regular at the horizon,

ds2 = −Udt2 − 2
√

UV dvdr + Wd�x2, (22)

where v = t + ∫
dr

√
V/U . In these coordinates, the metric perturabation is given by

δgμνdxμdxν = htxdvdx +
(

hrx −
√

V

U
htx

)
drdx. (23)

To guarantee the regularity of the metric with perturbation at the horizon, we require the last term to
vanish at the horizon so that

hri ∼
√

V

U
hti. (24)

The gauge fields can be reexpressed in the Eddington–Finkelstein coordinates to get the regularity
condition at the event horizon:

δBai ∼ b̃ai + Eaiv − Eai

∫
dr

√
V

U
. (25)

Then, the full gauge field has the regular form of δBai ∼ Eaiv + · · · in the Eddington–Finkelstein
coordinates by requiring

b̃′
ai ∼

√
V

U
Eai. (26)

We can define the radially conserved currents by

J μ
a = √−gZaGμr

(a) + qχa

4

∑
i

(∂χi)
2εαβμrG(a)

αβ ,

Qi = U 2
√

UV

(
hti

U

)′
−
∑

a=1,2

baJai, (27)

where the index a = 1, 2 denotes the two currents which are dual to the two gauge fields Ba, and
i = x, y is the index of directions. Since Ja and Qi are the conserved quantities along the radial
direction, they can be evaluated at arbitrary values. Hence, it is enough to compute them at the
horizon [11].

Finally, we can express the boundary current in terms of the external sources and transport
coefficients:

Jai =
∑

bj

(σab)ijEbj +
∑

j

(αa)ijTζj,

Qi =
∑

aj

(ᾱa)ijTEaj +
∑

j

κ̄ijTζj. (28)

Before we express the transport coefficients explicitly, it will be useful to define the following
functions to simplify the expressions:

F = WYβ2 + (Z1 + Z2)H
2 −

∑
a=1,2

1

Za

(
Qa�aH − �2

aH 2),
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G =
∑

a=1,2

(Qa − �aH ), (29)

where �a = qχaβ
2/W . One can define the total electric current as Ji = ∑

a Jai and identify the
external electric field as Eai = Ei. Then, each transport coefficient based on this total current and
electric field is given by

σij = ∂Ji

∂Ej
=
∑
ab

(σab)ij

= δij
Z
(F + G2/Z

) (F − ZH 2
)

F2 + H 2G2 + εij

(
� + ZHG (2F + G2/Z − ZH 2

)
F2 + H 2G2

)
, (30)

αij = 1

T

∂Ji

∂ζj
=
∑

a

(αa)ij

= δij
sG (F − ZH 2

)
F2 + H 2G2 + εij

sH
(G2 + ZF)

F2 + H 2G2 , (31)

κ̄ij = δij
s2TF

F2 + H 2G2 + εij
s2THG

F2 + H 2G2 , (32)

where Z = Z1 +Z2 and � = �1 +�2. Notice that ᾱij = αij. The resisitivity is defined as the inverse
of the conductivity matrix:

ρii = σii

σ 2
ii + σ 2

ij

= Rii/D,

ρij = σij

σ 2
ii + σ 2

ij

= Rij/D, (33)

where

Rii = (G2 + ZF)(F − ZH 2),

Rij = (F2 + H 2G2)� + HG(G2 + 2ZF − Z2H 2),

D = (ZF + G2)2 + (F2 + G2H 2)�2 + H (Z2H − 2G�)(Z2H 2 − 2ZF − G2). (34)

The thermal conductivity κ is defined by the response of the temperature gradient Tζi to the heat
current Qi in the absense of the electric currents Jai. Setting Jai = 0 in Eq. (28), we can write Ebj in
terms of ζj to substitute into the expression for the heat current in Eq. (28). Then, we can get

κ = κ̄ − T (ᾱ1(α1σ22 − α2δ) + ᾱ2(α2σ11 − α1δ)) (σ11σ22 − δ2)−1, (35)

where δ = σ12 = σ21. Notice that this expression is very similar to that in Ref. [6], but it is 2 × 2
matrix multiplication, which is different from the simple scalar multiplication in Ref. [6].

The Seebeck coefficient S and the Nernst signal N are given by

S = −(�−1 · A)xx,

N = −(�−1 · A)yx, (36)
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(a) (b) (c)

Fig. 2. Magnetotransport for z = 3/2, θ = 1 without magnetic impurities. We choose the parameters as
Z̄1 = Z̄2 = 1, qχ1 = 0, qχ2 = 0, gn = 3, and β = 1.5.

(a) (b) (c)

Fig. 3. Magnetotransport for z = 3/2, θ = 1 with magnetic impurities. We choose the parameters as Z̄1 =
Z̄2 = 1, qχ1 = 1, qχ2 = 2, gn = 3, and β = 1.5.

where

� =
(

σ11 δ

δ σ22

)
, A =

(
α1

α2

)
. (37)

Here, � and A are 4 × 4 and 4 × 2 matrices respectively.
As discussed in the introduction, we need the two currents as independently conserved currents,

identified with Je and Jh. The total electric current �J and the total number current �Jn are defined by
�J = ∑

a
�Ja ≡ �Je + �Jh and �Jn = �Je − �Jh respectively. Their corresponding densities are related by

Q1 = qen1 and Q2 = −qen2, with the charge of the electron qe = −1. The total electric charge
density and the total number density are defined by Q = Q1 + Q2 and Qn = −Q1 + Q2, and we can
connect each density with the proportional constant gn where Qn = gnQ. We have simple expressions
for the case in the absence of an external magnetic field [7]:

σxx = Z

(
1 + Q2

Q2
0

)
, κxx = κ̄xx

1 + (1 + g2
n)(

Q2

Q2
0
)
, (38)

where Q2
0 = WYZβ2.

In Figs. 2 and 3, we show the typical behaviors of each magnetotransport when z = 1.5, θ = 1,
and Q1 = Q2 = 0, our region of interest. Notice that κxy = 0 when there is no conserved electric
charge.

As one can see from the figures, there is no significant difference between a single-current model
and a two-current model in the qualitative sense compared to the results in Ref. [9]. But, as in
Refs. [6,7], the two-current model can give a physical implication if there is experimental data to
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(a) (b)

Fig. 4. Magnetotransport for z = 3/2, θ = 1 with magnetic impurities. We choose the parameters as Z̄1 =
Z̄2 = 1, qχ1 = 1, qχ2 = 2, Q = 2, and β = 1.5.

compare with this model. Unfortunately, there are no relevant experiments to be conducted, so we
leave our results as a qualitative prediction for experiments with graphene with magnetic doping.

Finally, we set Q �= 0 to see the effect of gn which corresponds to the two-current effect (see Fig. 4).
Due to the presence of the charge, we have the asymmetric feature in κxx, and this asymmetry is
enhanced by gn. For larger gn, we have the non-analytic behavior that comes from Eq. (19). But, we
would like to leave the analysis of this non-analyticity to future work.

4. Conclusion

We have investigated the two-current model with magnetic doping in the presence of a magnetic
field, based on Refs. [6–9]. From this model, we calculated all the transport coefficients. Although
we do not expect a qualitative difference between the single-current and two-current models, the
presence of two currents is definitely necessary to describe the quantitative data fitting for materials
involving a system of two independent electrons that are very weakly coupled, like graphene [6,7]
or other multi-valley or multi-layer systems, which will be studied in a future.
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