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Named data networking (NDN) is a future network architecture that replaces IP-oriented communication with content-oriented
communication and has new features such as cache, multiple paths, and multiple sources. Services such as video streaming, to
which NDN can be applied in the future, can cause congestion if data is concentrated on one of the nodes during high demand. To
solve this problem, sending rate control methods such as TCP congestion control have been proposed, but they do not adequately
reflect the characteristics of NDN. -erefore, we use reinforcement learning and deep learning to propose a congestion control
method that takes advantage of multipath features. -e intelligent forwarding strategy for congestion control using Q-learning
and long short-term memory in NDN proposed in this paper is divided into two phases. -e first phase uses an LSTM model to
train a pending interest table (PIT) entry rate that can be used as an indicator to detect congestion by knowing the amount of data
returned. In the second phase, it is forwarded to an alternative path that is not congestive via Q-learning based on the PIT entry
rate predicted by the trained LSTMmodel.-e simulation results show that the proposedmethod increases the data reception rate
by 6.5% and 19.5% and decreases the packet drop rate by 7.3% and 17.2% compared to an adaptive SRTT-based forwarding
strategy (ASF) and BestRoute.

1. Introduction

-e rapid development of the Internet has led to a significant
increase in the amount of content transmitted every year.
However, these changes have been difficult to adapt to because
the current Internet architecture depends on IP addresses and
is designed for end-to-end communication. -is drawback
causes problems such as transport efficiency and security.

Information-centric networking (ICN) was proposed as
a solution to the problem caused by the rapid increase of
content. -e goal was to change the communication para-
digm from a content-oriented model to the IP-based model
[1]. Named data networking (NDN), one of the most well-
known ICN architectures, is attracting attention as a hotspot
for research [2–4].

NDN is a future network architecture that alters the
current IP-based Internet as the Internet environment

changes, replacing IP addresses with named content for
communication. Compared with traditional TCP/IP, it has
the following new features in the transmissionmethod. First,
NDN communication is a consumer-driven pull mode and
is connectionless. -e consumer sends an interest packet to
request the content, and the producer with the requested
content returns the matched data. -e second is a multi-
source feature. NDN has a content store (CS), where the
returned content can be temporarily stored in the inter-
mediate nodes in a network. -erefore, the consumer can
receive the requested data from multiple sources, including
the CS of the intermediate node and the producer with the
original data. -ird, NDN has multipath features, so it
supports dynamic multipath forwarding. -e NDN node
provides multiple paths from the consumer to sources via a
forwarding information base (FIB) that stores the interface
information where the packet can go to next. It then decides
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how to use the path provided through a forwarding strategy.
Although this change solves the limitations of the current
Internet to some extent, if NDN is applied to a service such
as video streaming, congestion may occur at a node, where
data is concentrated when people are crowded during a
certain period. -erefore, congestion control is one of the
major research tasks of NDN.

Congestion control of NDN has been proposed by ap-
plying the TCP/IP method. TCP/IP congestion control
detects congestion via the retransmission timeout (RTO)
and adjusts the sending rate via an additive increase/mul-
tiplicative decrease (AIMD) window-based mechanism.
However, congestion detection through RTO is not a reliable
indicator in NDN, where different round-trip times (RTTs)
are measured for each source as it has a multisource feature.
Furthermore, the window control method targeting a single
path of TCP/IP is not suitable for NDN due to its charac-
teristics of multiple sources andmultiple paths.-e reason is
that when a consumer receives data from two sources
through different paths, if one path is congested and the
consumer reduces the window size, the throughput of the
other path that is not congested also decreases. As such, the
direct application of existing solutions does not adequately
consider the characteristics of NDN, so network congestion
control methods must also change. -erefore, it is necessary
to propose a new congestion control method for NDN.

In this paper, we propose an intelligent forwarding
strategy for congestion control using Q-learning and LSTM
in named data networking (IFS-QLSTM) using a dynamic
forwarding method to utilize multiple paths. First, the IFS-
QLSTM uses the LSTMmodel to train the number of entries
that change due to packets added to the pending interest
table (PIT) in the NDN node (we use the term PITentry rate
interchangeably in the rest of the paper). Second, the PIT
entry rate predicted by the trained LSTM model is used for
the reinforcement learning to judge the congested node. -e
node is then bypassed and the packet is forwarded.

-e rest of this paper is organized as follows. Section 2
explains the background of NDN and related research.
Section 3 describes an intelligent forwarding strategy for
congestion control using Q-learning and LSTM in NDN.
Section 4 presents the performance evaluation and analysis
of the results through simulation. Finally, Section 5 con-
cludes the paper.

2. Related Works

In recent years, NDN has been studied as a future network
architecture that will replace the current Internet. One of the
core technologies of NDN architecture is congestion control.
We survey related studies in two aspects: (1) studies on
control of the interest sending rate for congestion control
and (2) studies on adaptive forwarding strategy [5–7].

Researches on the interest sending rate for congestion
control include a receiver-based window control method
and a hop-by-hop interest sending rate control method. In
[8], the authors describe a receiver-based window control
scheme that controls the interest sending rate by adjusting
the congestion window using a TCP-like mechanism in the

receiver of RTT. Similarly, both ICTP and CCTCP use a
method of adjusting the congestion window based on RTT
[9, 10]. However, the NDN caches data through the CS
added to the router, which causes the RTT to change ir-
regularly. In addition, when a consumer requests data from
multiple sources and one source is congested, the consumer
reduces the window size. -is means that the amount of
transmission to the source where congestion does not occur
is also reduced. -erefore, the traditional receiver-based
window control congestion control method is not suitable
for NDN. In [11], the authors demonstrate a representative
hop-by-hop method that detects congestion in intermediate
nodes and adjusts the interest sending rate using interest
shaping. Wang et al. [12] proposed a method that improves
[11] by adding NACK feedback to inform the downstream
nodes of congestion.

A forwarding strategy can dynamically select one or
more interfaces in the FIB to forward the interest packet.-e
BestRoute strategy forwards the interest packet using the
path available at the lowest routing cost [13]. In [14], the
authors propose a forwarding strategy based on calculating
the weight value of the number of pending interests cor-
responding to each output interface of FIB. In [15], the
authors design adaptive forwarding to retrieve data through
optimally performing paths, quickly detect, and recover
from packet transmission problems. In [16], the authors
propose an adaptive SRTT-based forwarding strategy (ASF).
-e ASF periodically measures the SRTTof an adjacent node
at each node, arranges the transmittable nodes based on this,
selects the node with the lowest SRTT, and transmits the
interest packet. If a problem such as a timeout occurs, the
node in which the problem occurs is penalized and sent to
the end of the sequence.

In this paper, we design an intelligent forwarding
strategy for congestion control using Q-learning and LSTM
in NDN. In the first phase, we predict the change in the PIT
entry rate in the next time step through time series pre-
diction based on a pretrained LSTM model. In the second
phase, based on the predicted PIT entry rate, an appropriate
alternative route is selected through Q-learning in conges-
tion situations.

3. Proposed Method: IFS-QLSTM

3.1. Basic NDN Forwarding Mechanism. -e NDN node is
composed of three elements: PIT, CS, and FIB. -e PIT
records where the interest packet originated from when it
came into the node and tells where to return the data packet
when it comes in. CS is a place to temporarily store data and
is a feature of the NDN nodes. FIB is a place where nodes
that can go to each prefix are recorded, and when an interest
packet comes in, it searches for the prefix and informs the
path to go next.

Figure 1 illustrates the forwarding process of NDN.
When an interest packet arrives, the NDNnode first searches
for the CS and then returns it to the incoming interface if
there is matching data. If not, it goes to PIT and lookup. If
duplicated data is already requested in the PIT, the path on
which the interest packet came in is added. However, if not,
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it is recorded in the PITand sent to the FIB. Finally, in FIB, if
there is a node that can search for the name of a received
packet and transmit it, it transmits it to the optimal path
according to the forwarding strategy. However, if there is no
transmittable node, the packet is discarded. Next, when a
data packet arrives at the NDN node, it first searches the PIT
and checks whether there is a request for the received data. If
there is a request, it returns through the recorded reverse
path, and if there is no request, the incoming data packet is
discarded. Data that comes in before being transmitted over
the reverse path is retrieved from the CS, and if there is no
cached data, it is stored in the CS so that it can quickly
respond to the next request.

3.2. Proposed System Model. -e system model of an in-
telligent forwarding strategy for congestion control using
Q-learning and LSTM in named data networking is shown
in Figure 2. When the NDN node receives the interest
packet, it checks whether there is a matching name in CS and
PIT, and if not, the FIB searches the outgoing interface and
forwards it to the interface chosen by the forwarding
strategy. As shown in Figure 2, the IFS-QLSTM proceeds in
the same way up to the PIT but shows the difference in the
forwarding strategy to bypass the congested nodes. First, the
PIT entry rate of neighboring nodes is predicted through
pretrained LSTM using the PIT entry rate of the nodes
obtained from the data packet. After that, congestion is
detected using the predicted value as the state of Q-learning,
and an appropriate alternative path is selected as the action
and forwarded.

3.3. Pretrained LSTM. NDN’s PIT is a place to record the
incoming interface of the received interest packet, so it can
predict the amount of returned data. Since it changes with
time, it can also be viewed as time-series data. -us, if we
train using the LSTM model, a deep learning that is widely
used for predicting time series data, we can predict the new
PITentry rate in the next time interval. Based on this data, it
is possible to know the arrival rate of data packets, and the
congestion can then be forecast in a timely manner.

In advance, the PITentry rate for each node is measured
and normalized to use as an input to the LSTMmodel.-en,
as shown in Figure 3, we train the LSTM model to predict
time t+ n+1 by inputting time t through t+ n. Finally, the
trained model is saved and used to predict the next time step
PIT entry rate of the neighboring nodes.

3.4. Q-Learning Structure

3.4.1. State. Reinforcement learning agents must be given
enough information to accurately know their current state.
However, in the case of the Q-learning used in this paper, if
you use too much state to generate the q-table consisting of
states and actions, it may cause problems with the q-table by
becoming too complicated. -erefore, it has to choose an
appropriate state variable that can represent the current
state. In this paper, it shows the two following state variables:
First, it is necessary to know where to make a decision, so the
current node that has received the interest packet is set as the
state. Second, to know the congestion condition of the nodes
that can be transmitted by the current node, the predicted
value of the PITentry rate of the transmittable nodes using a
pretrained LSTM model is set as the state. Based on these
two states, it is possible to know where the agent is currently
located and the congestion condition of the neighboring
nodes.

3.4.2. Action. Since the IFS-QLSTM is a method of trans-
mission by selecting an appropriate path for a congestion
condition, when the NDN node receives an interest packet,
one of the neighboring nodes that can be transmitted is
selected as an action.

3.4.3. Reward. Since the reward is an indicator of the di-
rection of training, the definition of reward is important in
reinforcement learning. -erefore, to train in the desired
direction, it is necessary to define a reward suitable for the
training direction. -us, the reward is defined as follows:
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Figure 2: System model of the IFS-QLSTM.
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reward � α · throughputn − β · packet lossn − c · RTTn,

(1)

where N represents a node, and α, β, and c are the weight
values for controlling the throughput, packet loss, and RTT,
respectively. -roughput represents the number of packets
processed per second by node N, and packet loss represents
the number of packets discarded per second by node N. RTT
represents the time when a packet is transmitted and re-
ceived by node N. We thought that if we set only the packet
loss as a reward, it may be trained not to consider packet
transmission time or throughput, although congestion paths
were well avoided. -erefore, we designed the reward in the
direction of increasing packet throughput and reducing
packet loss and RTT while avoiding congested paths.

3.4.4. Q Value Update. In this paper, the Q value was
updated every second. -e update formula of the Q value is
the general Q-learning update formula as shown in Equation
(2). Q(s, a) represents the Q value when action A is per-
formed in state S. -e value of r is the reward when action A
is taken in state S. -e discount factor, c, is a number be-
tween 0 and 1 which has the effect of valuing rewards re-
ceived earlier as higher than those received later.

Q(s, a)←Q(s, a) + α r + cmax
a′

Q s′, a′( 􏼁 − Q(s, a)􏼠 􏼡.

(2)

3.5. Q-Learning-Based Forwarding Strategy. Figure 4 shows
the Q-learning packet transmission process when an interest
packet is received by the NDN node. When the interest
packet arrives, the NDN node first checks the CS and PITfor
a matching name; if a matching name does not exist, it looks
up the name in the FIB. If there is a matching name in the
FIB, the PIT entry rate of the nodes corresponding to the
matching name (transmittable nodes from the current node)
is predicted using the pretrained LSTM. If not, the interest
packet is discarded. After that, it is forwarded to the most
optimal path through Q-learning. Specifically, the predicted
PIT entry rate and the current node are used as the state of
Q-learning to obtain the Q values of the transmittable nodes

from the q table. Next, a random value between 0 and 1 is
selected, and if it is less than the current epsilon value, the
reinforcement learning agent selects the exploration
method. -e exploration method selects a random node
among the remaining nodes except for the node with the
highest Q value and forwards the interest packet. -e reason
for the exploration is that as the path that was not good in the
past may improve, always making the optimal decision may
not be good for reinforcement learning training, it is a
method used to gain various experiences. Next, if the ran-
dom value is greater than the epsilon value, the exploitation
method is selected. -is method selects the node with the
largest Q value among the transmittable nodes in the q table
and forwards the interest packet. In this way, exploration
and exploitation are performed according to the epsilon
value, but if the exploration is excessive, the performance is
reduced, so the epsilon value is set to decrease over time.

4. Simulation and Analysis

4.1. Simulation Environment. In this section, we imple-
mented by using the open-source ndnSIM [17, 18], an NS-3
based simulator that was developed for NDN. We then
evaluated the performance of the IFS-QLSTM through
simulation results. Two evaluation metric criteria were se-
lected to quantitatively evaluate the effectiveness of our
method. -e first criterion was the rate of InData as an
indicator for evaluating the utilization of the bottleneck links
and alternate links. InData represents the amount of in-
coming data in the node and guarantees that this amount of
data packets was actually transmitted during the congestion.
-e second criterion is the packet drop rate. If the packet
drop rate of IFS-QLSTM is low, it can be seen that IFS-
QLSTM effectively mitigates packet dropping.

-e topology used in the experiment is shown in Fig-
ure 5. In the topology, the consumer (Node0) forwards an
interest packet, and the producer (Node8) returns data
matching the requested interest packet. -e link bandwidth
and delay in this topology are set to 10Mbps and 10ms,
respectively. In our experiment, we cause congestion by
setting a specific link bandwidth as low as 1 Mbps according
to the requirements of various congestion scenarios.

Next, the Q-learning parameters of the IFS-QLSTM are
as follows. First, a random variable (between 0.0 and 1.0)
was assigned for comparison with epsilon. -e epsilon
value, which determines exploration and exploitation,
decreased with time until it reached 0.01. -e discount
factor, which is the weight to control the future com-
pensation compared to the current compensation, was set
to 0.9. In the case of LSTM, Adam was used as the opti-
mizer, and the learning rate was set to 0.001. We chose
BestRoute and ASF because BestRoute is a basic NDN
forwarding method used as a comparison algorithm in
many papers, ASF is a more advanced forwarding algo-
rithm, and the main reason is that both methods are
verified algorithms. -erefore, we simulated them and
compared them with the IFS-QLSTM.

LSTM

t + n + 1

t t + 1 t + 2 … t + n

LSTMLSTM LSTM LSTM

Figure 3: Pretrained LSTM
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4.2. Performance Analysis

4.2.1. Low-Level Congestion. Wedesigned a 3x3 grid topology
as shown in Figure 5. N5-N8 in Figure 6(a), N1-N2 and N4-N5
in Figure 6(b), and N1-N4, N4-N5, and N5-N8 in Figure 6(c)
have a bandwidth of 1Mbps, while the rest of the link bandwidth
was connected at 10Mbps. -e link delay is commonly set to

10ms. -erefore, as shown in Figures 6(a)–6(c), there are paths
without bottleneck links: N0-N3-N6-N7-N8.

-e graph in Figure 7 shows the average of the data packets
received per second from the consumer in the three cases of
Figures 6(a)–6(c). -e IFS-QLSTM showed almost similar
performance to that of ASF and a 17.3% higher data receiving
rate than the BestRoute.-e graph in Figure 8 is the average of
the total packet drops in Figures 6(a)–6(c). Since there are
35,750 packets transmitted, ASF, BestRoute, and the IFS-
QLSTM show packet drop rates of 0.07%, 15.9%, and 0.09%,
respectively. Like the data receiving rate, the packet drop rate is
similar to ASF and is 15.81% lower than BestRoute.

In detail, looking at the data rates in Figures 6(a)–6(c),
you can see how each method transmits the packet. In the
case of ASF, the SRTT of the adjacent nodes is measured
periodically, so it quickly detects bottleneck links, finds
alternate links, and sends packets to show a high InData rate.
In the case of BestRoute, an alternative route is selected only
when the FIB is updated, but because the update is not
performed frequently or is not performed at the optimal
time, packets are transmitted through the bottleneck link to
show a low InData rate. Finally, the proposed method has a
slightly lower initial InData rate because it transmits even
paths with a low Q value due to exploration at the beginning.
However, through reward, the model trains the PIT entry
rate that does not cause the packet drop and the appropriate

Node 0
(consumer) Node 1 Node 2

Node 3 Node 4 Node 5

Node 6 Node 7 Node 8
(producer)

Figure 5: Topology used in the experiment.
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amount of transmission according to the PIT entry rate for
each node. -rough this, the packet is properly divided into
a bottleneck path and an alternate path and transmitted.
-erefore, it shows an InData rate similar to ASF. In ad-
dition, looking at the packet drop rate in Figure 6, BestRoute
cannot find an alternative path, resulting in high packet
drops on the bottleneck link. On the other hand, in the ASF
and IFS-QLSTM, a packet drop occurs briefly at the be-
ginning, and a packet drop does not occur after finding an
alternative path.

4.2.2. High-Level Congestion. We designed a 3x3 grid to-
pology as shown in Figure 5. N5-N8 and N7-N8 in Figure 9(a),
N1-N2, N4-N5, andN7-N8 in Figure 9(b), andN1-N2, N3-N6,
N4-N5, and N4-N7 in Figure 9(c) have a bandwidth of 1Mbps,
while the rest of the link bandwidth was connected at 10Mbps.
-e link delay is commonly set to 10ms.-erefore, as shown in
Figures 9(a)–9(c), the bottleneck links exist no matter which
path from the consumer to producer is selected.

-e graph in Figure 10 shows the average of the data
packets received per second from the consumer in the three
cases of Figures 9(a)–9(c). IFS-QLSTM showed 15.3% and
21.1% higher data rates than ASF and BestRoute. -e graph
in Figure 11 is the average of the total packet drops in
Figures 9(a)–9(c). Since there are 35,750 packets transmit-
ted, ASF, BestRoute, and the IFS-QLSTM show packet drop

rates of 14.7%, 18.8%, and 0.16%, respectively. In the case of
this experiment, IFS-QLSTM shows overall higher perfor-
mance than ASF and BestRoute.

In detail, by looking at the InData rate and the packet
drop rate in Figures 9(a)–9(c), you can see how each method
transmitted the packet and where it was dropped. In the case
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Figure 11: Continued.
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of ASF, unlike previous cases, it shows poor performance.
-e reason is that if the adjacent nodes have the same
SRTT, the path is not updated in time, and thus packets are
transmitted over the bottleneck link. -erefore, it shows a
low InData rate. Unlike the previous case, many packet
drop rates occur in the bottleneck link because the alter-
native path cannot be found properly. In the case of
BestRoute, as before, due to the slow FIB update, a low
InData rate and a high packet drop rate are shown. In the
case of IFS-QLSTM, as described above, since an alternative
path is selected and transmitted according to the PIT entry
rate of the neighboring node, the stable packet transmission
is shown even in the bottleneck link. -erefore, by
achieving a high InData rate and low packet drop rate, we
prove that the performance is more effective than those of
ASF and BestRoute.

5. Conclusions

In this paper, we propose IFS-QLSTM, an intelligent for-
warding strategy for congestion control using Q-learning
and LSTM in named data networking.-e proposed method
first trains the LSTM model using the PIT entry rate which
can be used as a congestion detection indicator by knowing
the amount of data to be returned in the future. After this
step, Q-learning detects the congestion of the adjacent node
through the PIT entry rate predicted by the trained LSTM
model and forwards it to the appropriate path. As a result of
the simulation, it was verified that IFS-QLSTM has a high
data rate and low packet drop compared to BestRoute and
ASF by selecting the bottleneck link and the alternative link
well and transmitting the packet. -erefore, it is shown that
the proposed method is efficient and reliable. -is suggests
that there is potential for it to be used as an effective
congestion control algorithm for applications to which NDN
will be applied in the future.

Future work will focus on evaluating our approach in
various topologies and linking it with window-based
congestion control algorithms. -is approach will lead to
improving the congestion control performance of IFS-
QLSTM.
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