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Abstract
We consider fuzzy sets and generalized triangular norms on positive elements of
order commutative C∗-algebras to study the concept of C∗-algebra valued normed
algebras with uncertainty. Using n-expansively super-homogeneous and
(n, k)-contractively sub-homogeneous control functions, we make stochastic
(�,ϒ ,�)-derivations stable and get a better estimated error. We present some
numerical examples of control functions and approximations to illustrate the
applicability of the main results.
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1 Introduction
In this paper, we define some new control functions with uncertainty named n-expansively
super-homogeneous and (n, k)-contractively sub-homogeneous mappings. These control
functions help us to make stochastic derivations stable. Also, we can get a better approxi-
mation for these stochastic derivations.

We consider the positive cone of an order commutative C∗-algebra and generalize the
concept of triangular norm and fuzzy sets on it; we refer the reader to [1–3] for more
details. Also, we define C∗-algebra valued normed algebras using generalized triangular
norms and fuzzy sets.

Definition 1 Let A be an order commutative C∗-algebra and A+ be the positive cone of
A. Let U �= ∅. A C∗-algebra valued fuzzy set (in short, C∗-AVF set) C on U is a function
C : U −→A+. For each u in U , C(u) represents the degree (in A+) to which u satisfies A+.

We put 0 = infA+ and 1 = supA+. Now, we define a class of generalized t-norms (trian-
gular norm) on A+.
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Definition 2 A t-norm on A+ is an operation � : A+ ×A+ →A+ satisfying the following
conditions:

(a) t � 1 = t for every t ∈A+ (boundary condition);
(b) t � s = s � t for every (t, s) ∈ (A+)2 (commutativity);
(c) t � (s � p) = (t � s) � p for every (t, s, p) ∈ (A+)3 (associativity);
(d) t � t′ands � s′ 
⇒ t � s � t′ � s′ for every (t, t′, s, s′) ∈ (A+)4 (monotonicity).

Now suppose that, for t, s ∈ A+ and sequences {tn} and {sn} converging to t and s, we
have

lim
n

(tn � sn) = t � s.

Then � on A+ is continuous (in short, CTN).

Definition 3 Assume that a decreasing mapping F : A+ → A+ satisfies F (0) = 1 and
F (1) = 0. Then F is called a negation on A+.

Example 1 Let

diag Mn
(
[0, 1]

)
=

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

t1
. . .

tn

⎤

⎥
⎥
⎦ = diag[t1, . . . , tn], t1, . . . , tn ∈ [0, 1]

⎫
⎪⎪⎬

⎪⎪⎭
.

We denote diag[t1, . . . , tn] � diag[s1, . . . , sn] if and only if ti ≤ si for all i = 1, . . . , n; also,
1 = diag[1, . . . , 1] and 0 = diag[0, . . . , 0]. Now, we know that if A = diag Mn([0, 1]), then
diag Mn([0, 1]) = A+. Define �P : diag Mn([0, 1]) × diag Mn([0, 1]) → diag Mn([0, 1]) such
that

diag[t1, . . . , tn] �P diag[s1, . . . , sn] = diag[t1.s1, . . . , tn.sn].

Then �P is a t-norm (product t-norm). Also note that �P is a CTN.

Example 2 Let diag Mn([0, 1]) = A+. Define �M : diag Mn([0, 1]) × diag Mn([0, 1]) →
diag Mn([0, 1]) such that

diag[t1, . . . , tn] �M diag[s1, . . . , sn] = diag
[
min(t1, s1), . . . , min(tn, sn)

]
.

Then �M is a t-norm (minimum t-norm). Also note that �M is a CTN.

Definition 4 The triple (T ,N ,�) is called a C∗-AVF normed space (in short, C∗AVFN-
space) if T is a vector space over C, � is a CTN on A+, and N is a C∗AVF-set on T ×
[0, +∞) such that, for each t, s ∈ T and τ ,ς in [0, +∞), we have

(a) N (t, 0) = 0;
(b) N (t, τ ) = 1 for all τ > 0 if and only if t = 0;
(c) N (αt, τ ) = N (t, τ

|α| ) for all α �= 0;
(d) N (t + s, τ + ς ) �N (t, τ ) �N (s,ς );
(e) N (t, ·) : [0,∞) →A+ is left continuous;
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(f ) limt→∞ N (t, τ ) = 1.
Also, N is called a C∗-AVF norm.

Let (T ,N ,�) be a C∗-AVFN-space. For τ > 0, define the open ball O(t,�)(τ ) as

O(t,�)(τ ) =
{

s ∈ T : N (t – s, τ ) �F (�)
}

,

in which t ∈ T is the center and � ∈ A+ \ {0, 1} is the radius. We say that A ⊆ T is open
if for each t ∈ A, there exist τ > 0 and � ∈ A+ \ {0, 1} such that O(t,�)(τ ) ⊆ A. We denote
the family of all open subsets of T by τN and so τN is the C∗-AVF topology induced by the
C∗-AVF norm N .

Example 3 Consider a normed space (T ,‖ · ‖). Let � = �M and define the fuzzy set N on
T × (0,∞) as

N (t, τ ) = diag

[
hτ

hτ + m‖t‖ , exp

(
–

‖t‖
τ

)]

for all τ , h, m ∈ R
+. Then (T ,N ,�M) is a C∗-AVFN-space.

Example 4 Let (T ,‖ · ‖) be a normed space,

u � v =
(
u1v1, min{u2, v2}

)

for all u = (u1, u2), v = (v1, v2) ∈A+, and define the fuzzy set N on T × (0,∞) as

N (s, ζ ) = diag

[
ζ

ζ + ‖s‖ ,
ζ

ζ + ‖s‖
]

, ∀ζ ∈R
+.

Then (T ,N ,�) is a C∗-AVFN-space.

Lemma 1 ([4]) Let (T ,N ,�) be a C∗-AVFN-space. Then N (t, τ ) is nondecreasing with
respect to τ for all t ∈ T .

Definition 5 Let {tn}n∈N be a sequence C∗-AVFN-space (T ,N ,�). If

∀ε ∈A+ \ {0} and τ > 0,∃n0 ∈N such that ∀m ≥ n ≥ n0,N (tm – tn, τ ) �F (ε),

then {tn}n∈N is a Cauchy sequence. Also {tn}n∈N is convergent to t ∈ T (tn
N−→ t) if N (tn –

t, τ ) → 1 whenever n → +∞ for every τ > 0. When all Cauchy sequences are convergent
in a C∗AVFN-space, the space is complete. A complete C∗AVFN-space is called a C∗AVF
Banach space (in short, C∗AVFB-space).

Definition 6 A C∗-AVFN algebra (T ,N ,�,�′) is a C∗-AVFN-space (T ,N ,�) satisfying
(g) N (wz, τζ ) �N (w, τ ) �′ N (z, ζ ) for every w, z ∈ T and τ , ζ > 0 in which �′ is a CTN.

Consider a normed algebra (T ,‖ · ‖). Define a C∗-AVFN algebra (T ,N ,�M,�M), in
which

N (w, ζ ) = diag

[
ζ

ζ + ‖w‖ , exp

(
–

‖w‖
ζ

)]



Saadati et al. Advances in Difference Equations        (2021) 2021:153 Page 4 of 17

for all ζ > 0 if and only if

‖wz‖ ≤ ‖w‖‖z‖ + ζ‖w‖ + τ‖z‖ (w, z ∈ T ; τ , ζ > 0),

for which we name the standard C∗-AVFN algebra.

Definition 7 Consider a complete C∗AVF-algebra (V ,N ,�,�′). An involution on V is a
mapping v → v∗ from V into V with

(i) v∗∗ = v for v ∈ V ;
(ii) (ϒv + �w)∗ = ϒv∗ + �w∗;

(iii) (vw)∗ = w∗v∗ for v, w ∈ V .
If, in addition, N (v∗v,�ϒ) = N (v,�)�′N (v,ϒ) for v ∈ V and �,ϒ > 0, then V is a C∗AVF
C∗-algebra.

Novotný and Hrivnák [5] considered (�,ϒ ,�)-derivations on Lie algebras. Let B be a
Lie C∗-algebra. We say that a C-linear mapping D : B → B is a Lie derivation on B if
D : B → B satisfies that

D[t, s] =
[
D(t), s

]
+
[
t,D(s)

]
(1.1)

for all t, s ∈ B [6, 7]. Also the C-linear mapping H : B → B is a Lie (�,ϒ ,�)-derivation on
B if there exist �,ϒ ,� ∈C such that

�H[t, s] = ϒ
[
H(t), s

]
+ �

[
t,H(s)

]
(1.2)

for all t, s ∈ B. A C∗AVF C∗-algebra B with a Lie product [t, s] = ts – st is said to be a C∗AVF
Lie C∗-algebra. Assume that B is a C∗AVF Lie C∗-algebra. A C-linear mapping H : B → B
is said to be a C∗AVF Lie derivation on B if H : B → B satisfies (1.1). A C-linear mapping
H : B → B is said to be a C∗AVF Lie (�,ϒ ,�)-derivation on B if there exist �,ϒ ,� ∈ C

satisfying (1.2).
Consider a probability measure space (�,�, ξ ) and Borel measurable spaces (T ,BT ) and

(S,BS), where T and S are C∗AVFB-spaces. If for � : � × T → S we have {γ : �(γ , t) ∈
R} ∈ � for every t in T and R ∈BS , we say that � is a random operator. If �(γ ,αt1 +βt2) =
α�(γ , t1) + β�(γ , t2) almost everywhere for t1, t2 in T and scalers α,β , then � is a linear
random operator, also if we can find an M(γ ) > 0 such that

ν
(
�(γ , t1) – �(γ , t2), M(γ )τ

) ≥ ν(t1 – t2, τ )

almost everywhere for t1, t2 in T and τ > 0, then � is a bounded random operator.

2 Cauchy–Jensen random operator
In this paper, let G = [0,∞] and G◦ = (0,∞).

Theorem 1 ([8, 9]) Let S be a set with the complete G-valued metric δ, and let a self-
mapping � on S satisfy

δ(�s,�t) ≤ κδ(t, s), κ < 1 is a Lipschitz constant.
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Let s ∈ S. Then we have two options
(I) δ(�ms,�m+1s) = ∞,∀m ∈ N or
(II) we can find m0 ∈N such that

(1) δ(�ms,�m+1s) < ∞,∀m ≥ m0;
(2) the fixed point t∗ of � is the convergent point of the sequence {�ms};
(3) in the set V = {t ∈ S | δ(�m0 s, t) < ∞}, t∗ is the unique fixed point of �;
(4) (1 – κ)δ(t, t∗) ≤ δ(t,�t) for every s ∈ V .

In this paper, assume that (B,N ,�M,�M) is a C∗-AVF Lie C∗-algebra. Also, we use the
random operator g : � ×B → B:

�νg(γ , t1, . . . , tn) :=
n∑

i=1

g

(

γ ,νti +
1

n – 1

n∑

j=1,j �=i

νtj

)

– 2ν

n∑

i=1

g(γ , ti),

��,ϒ ,�g(γ , t, s) := �g[γ , t, s] – ϒ
[
g(γ , t), s

]
– �

[
t, g(γ , s)

]

for all t1, . . . , tn ∈ B,γ ∈ �, all ν ∈ � for some set � ∈ DC and �,ϒ ,� ∈ C. Denote

DC = {� ⊆C|g : � −→ B is additive, bounded and continuous}.

For more details, see [10–13]. Also, T1
1/n0

:= {eiθ ; 0 ≤ θ ≤ 2π/n0} ∈ DC.

Lemma 2 ([14]) A random operator g : � × T → S satisfies the equation

g
(

γ , t1 +
1
2

(t2 + t3)
)

+ g
(

γ , t2 +
1
2

(t1 + t3)
)

+ g
(

γ , t3 +
1
2

(t1 + t2)
)

(2.1)

= 2
(
g(γ , t1) + g(γ , t2) + g(γ , t3)

)

for all t1, t2, t3 ∈ T ,γ ∈ � if and only if g is additive.

If we set t3 = 0 in (2.1), then we get that the Cauchy–Jensen random operator

g
(

γ ,
1
2

(t1 + t2)
)

+ g
(

γ , t1 +
t2

2

)
+ g

(
γ ,

t1

2
+ t2

)
= 2

(
g(γ , t1) + g(γ , t2)

)

is equivalent to g(γ , t1 + t2) = g(γ , t1) + g(γ , t2) for all t1, t2 ∈ T ,γ ∈ �.

Lemma 3 ([15]) A random operator g : � × T → S satisfies �νg = 0 for all t1, . . . , tn ∈
T ,γ ∈ � if and only if g is additive.

Lemma 4 ([10]) Let g : � × B → B be an additive random operator such that g(γ ,νt) =
νg(γ , t) for all ν ∈ �,γ ∈ � where the bounded set � is in DC. Then the random operator g
is C-linear.

3 Hyers–Ulam–Rassias stability
In this section, we present some stability results. In real phenomena, the concept of sta-
bility also appears in mechanical applications as a consequence of real equilibrium prob-
lems. Related stability problems take part in mathematical models from mechanics when
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equilibrium equations are imposed (see [16, 17]). The stability results have numerous ap-
plications in the study of stability of porous medium problems (see [18]). For further ap-
plications, we refer to [19–21].

Definition 8 Let n ∈ N. A C∗AVF mapping R : Bn × (0,∞) → A+ is called a C∗AVF n-
expansively super-homogeneous function if there is a fixed number � ∈ (0, 1) such that

R
((

μ–1t1, . . . ,μ–1tn
)
, τ

) �R
(

(t1, . . . , tn),
μnτ

�n

)
, (3.1)

lim
ς→∞R

(
(t1, . . . , tn),ς

)
= 1 (3.2)

for all ti ∈ B(1 ≤ i ≤ n), 1 < μ ∈N, and τ ∈ G◦.

Example 5 Consider a real function r : R →R defined as r(t) = |t|4. Define

R
(
(t1, t2, t3), τ

)
= diag

[
τ

τ +
∑3

j=1 r(tj)
, exp

(
–
∑3

j=1 r(tj)
τ

)]

for all t1, t2, t3 ∈ R and τ ∈ G◦. Put � = 1
3√2

. Then R is a 3-expansively super-homogeneous
function.

Theorem 2 Consider a C∗-AVF expansively super-homogeneous function ϕ :
Bn × (0,∞) → A+ and a C∗VAF 2-expansively super-homogeneous function ψ : B2 ×
(0,∞) →A+ with a fixed number � such that a random operator g : � ×B → B satisfies

N
(
�ηg(γ , t1, . . . , tn), t

) � ϕ
(
(t1, . . . , tn), τ

)
, (3.3)

N
(
��,ϒ ,�g(γ , t, s), τ

) � ψ
(
(t, s), τ

)
(3.4)

for all t1, . . . , tn, t, s ∈ B,γ ∈ �, η ∈ �, τ ∈ G◦ and some �,ϒ ,� ∈ C, where � ∈ DC is
bounded. Then we can find a unique C∗VAF Lie (�,ϒ ,�)-derivation H : � ×B → B which
satisfies �νg = 0 and the inequality

N
(
g(γ , z) – H(γ , z),ς

) � ϕ

(( n-times
︷ ︸︸ ︷
z, . . . , z

)
,

(2nn – 2n�n)ς
�n

)
(3.5)

for all z ∈ B,γ ∈ � and ς ∈ G◦.

Proof Consider M := {k : � ×B → B, k(� , 0) = 0,∀� ∈ �} and define

δ(k, h) := inf

{
P ∈ �◦ : N

(
k(� , w) – h(� , w), τ

) � ϕ

(
(w, . . . , w),

τ

P

)
,

∀� ∈ �, w ∈ B, τ ∈ G◦
}

.

In [22], Miheţ and Radu showed that (M, δ) is a complete G-valued metric space (see [23]).
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Define a linear mapping � : M → M as

(�k)(� , w) = 2k
(

� ,
w
2

)
, ∀k ∈ M and w ∈ B� ∈ �.

Let k, h ∈ M and consider a sequence of positive real numbers Pm with limm→∞ Pm = δ(k, h)
and δ(k, h) ≤ Pm. Fix m and, for convenience, let Pm = P. Then

N
(
k(� , w) – h(� , w),ς

) � ϕ

(
(w, . . . , w),

ς

P

)

for all w ∈ B,� ∈ � and ς ∈ �◦. Now we have

N
(
(�k)(� , w) – (�h)(� , w),ς

)
= N

(
2k

(
� ,

w
2

)
– 2h

(
� ,

w
2

)
,ς

)

= N
(

k
(

� ,
w
2

)
– h

(
� ,

w
2

)
,
ς

2

)

� ϕ

((
w
2

, . . . ,
w
2

)
,

ς

2P

)

� ϕ

(
(w, . . . , w),

2n–1ς

�nP

)

for all w ∈ B and ς ∈ G◦,� ∈ �, and so δ(�k,�h) ≤ �n

2n–1 P = �n

2n–1 Pm for any k, h ∈ M. Now
let m → ∞, and we get δ(�k,�h) ≤ �n

2n–1 δ(k, h) for any k, h ∈ M.
Let g be as in the statement of the theorem. Putting t1, . . . , tn = w and η = 1 in (3.3), we

obtain

N
(
g(γ , 2w) – 2g(γ , w), τ

) � φ
(
(w, . . . , w), nτ

)

for all w ∈ B, γ ∈ � and τ ∈ G◦. Thus

N
(

2g
(

γ ,
w
2

)
– g(γ , w), τ

)
� ϕ

((
w
2

, . . . ,
w
2

)
, nτ

)

� ϕ

(
(w, . . . , w),

2nnτ

�n

)

for all w ∈ B,γ ∈ � and τ ∈ G◦. Hence δ(�g, g) ≤ �n

2nn . Now Theorem 1 guarantees that
{�ng} converges to a unique fixed point H ∈ M of � such that H(γ , 2w) = 2H(γ , w), i.e.,

H(γ , w) = lim
m→∞ 2mg

(
γ ,

w
2m

)
(3.6)

for all w ∈ B,γ ∈ �. Also (see Theorem 1)

δ(g,H) ≤ 1
1 – �n

2n–1

δ(g,�g) ≤ �n

2nn – 2n�n ,

i.e., (3.5) holds for all t ∈ B and τ ∈ G◦. From the property of H, we get that

N
(
�ηH(γ , t1, . . . , tn), τ

)
= lim

m→∞N
(

�ηg
(

γ ,
t1

2m , . . . ,
tn

2m

)
,

τ

2m

)
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� lim
m→∞ϕ

((
t1

2m , . . . ,
tn

2m

)
,

τ

2m

)
= 1

holds for all t1, . . . , tn ∈ B,γ ∈ �, η ∈ �, and τ ∈ G◦. Thus �ηH(γ , t1, . . . , tn) = 0 for all
t1, . . . , tn ∈ B,γ ∈ � and all η ∈ �. If we put η = 1 in the above equality, then Lemma 3
implies that H is additive. Putting t1 = t and t2 = · · · = tn = 0 in the above equality, we get
H(γ ,ηt) = ηH(γ , t) and Lemma 4 implies that H ∈ M is C-linear. Also (3.1) and (3.4) imply
that

N
(
��,ϒ ,�H(γ , t, s), τ

)
= lim

m→∞N
(

��,ϒ ,�g
(

γ ,
t

2m ,
s

2m

)
,

τ

2m

)

� lim
m→∞ψ

((
t

2m ,
s

2m

)
,

τ

2m

)

� lim
m→∞ψ

(
(t, s),

22mτ

�22m

)

= lim
m→∞ψ

(
(t, s),

2mτ

�2

)

= 1

for all t, s ∈ B, some �,ϒ ,� ∈C and τ ∈ G◦. Then, for some �,ϒ ,� ∈C,

�H[γ , t, s] = ϒ
[
H(γ , t), s

]
+ �

[
t,H(γ , s)

]

for all t, s ∈ B,γ ∈ �. So the random operator H ∈ M is a C∗VAF Lie (�,ϒ ,�)-derivation
on the C∗VAF Lie C∗-algebra B and (3.5) holds. �

Example 6 Let a random operator g : � ×B → B satisfy

N
(
�ηg(γ , t1, . . . , t4), t

) � diag

[
τ

τ +
∑4

j=1 ‖tj‖5
, exp

(
–
∑4

j=1 ‖tj‖5

τ

)]
, (3.7)

N
(
��,ϒ ,�g(γ , t1, t2), τ

) � diag

[
τ

τ +
∑2

j=1 ‖tj‖5
, exp

(
–
∑2

j=1 ‖tj‖5

τ

)]
(3.8)

for all t1, . . . , t4 ∈ B,γ ∈ �, η ∈ �, τ ∈ G◦ and some �,ϒ ,� ∈C, where � ∈ DC is bounded.
Then we can find a unique C∗VAF Lie (�,ϒ ,�)-derivation H : � ×B → B which satisfies
�νg = 0 and the inequality

N
(
g(γ , z) – H(γ , z), τ

) � diag

[
30τ

30τ + ‖z‖5 , exp

(
–

‖z‖5

30τ

)]
(3.9)

for all z ∈ B,γ ∈ � and τ ∈ G◦.
Define

ϕ
(
(t1, t2, t3, t4), τ

)
= diag

[
τ

τ +
∑4

j=1 ‖tj‖5
, exp

(
–
∑4

j=1 ‖tj‖5

τ

)]



Saadati et al. Advances in Difference Equations        (2021) 2021:153 Page 9 of 17

and

ψ
(
(t1, t2), τ

)
= diag

[
τ

τ +
∑2

j=1 ‖tj‖5
, exp

(
–
∑2

j=1 ‖tj‖5

τ

)]

for all t1, t2, t3 ∈ B and τ ∈ G◦. Put � = 1
4√2

. Then ϕ and ψ are 4-expansively super-
homogeneous function and 2-expansively super-homogeneous function, respectively.
Now, applying Theorem 2, we get (3.9).

Definition 9 Let n, k ∈ N. A C∗AVF map O : Bn × (0,∞) → A+ is called a C∗AVF (n, k)-
contractively sub-homogeneous if there exists a fixed number � with 0 < � < 1 such that

O(μt1, . . . ,μtn, τ ) �O
(

(t1, . . . , tn),
τ

�kμ
1
k

)
,

lim
ς→∞O(t1, . . . , tn,ς ) = 1

for all t1, . . . , tn ∈ B, 1 < μ ∈N and τ ∈ G◦.

Example 7 Consider a real function r : R →R defined as r(t) = |t| 1
4 . Define

O
(
(t1, t2, t3), τ

)
= diag

[
τ

τ +
∑3

j=1 r(tj)
, exp

(
–
∑3

j=1 r(tj)
τ

)]

for all t1, t2, t3 ∈ R and τ ∈ G◦. Put � = 1
8√2

. Then O is a (3, 2)-contractively sub-
homogeneous function.

Theorem 3 Consider a C∗AVF (n+2,k)-contractively sub-homogeneous function ϕ : Bn+2 ×
(0,∞) →A+ with a fixed number � such that a random operator g : � ×B → B holds

N
(
�ηg(γ , t1, . . . , tn) + ��,ϒ ,�g(γ , t, s), τ

) � ϕ
(
(t1, . . . , tn, t, s), τ

)
(3.10)

for all t1, . . . , tn, t, s ∈ B,γ ∈ �, all η ∈ � in which � ∈ DC is a bounded set, �,ϒ ,� ∈ C

and τ ∈ G◦. Then there is a unique C∗VAF Lie (�,ϒ ,�)-derivation H : � × B → B which
satisfies �νg = 0 and the inequality

N
(
g(γ , w) – H(γ , w), τ

) � ϕ

(( n-times
︷ ︸︸ ︷
w, . . . , w, 0, 0

)
,

2n( k√2k–1 – �k)
k√2k–1

τ

)
(3.11)

for all w ∈ B,γ ∈ � and τ ∈ G◦.

Proof Putting t1, . . . , tn = t and η = 1 in (3.10), we get

N
(
ng(γ , 2t) – 2ng(γ , t), τ

) � ϕ
(
(t, . . . , t, 0, 0)τ

)
(3.12)

for all t ∈ B,γ ∈ � and τ ∈ G◦. Let M := {f : � ×B → B, f (� , 0) = 0∀� ∈ �}. We introduce
a function on M as

δ(f , h) := inf

{
u > 0 : N

(
f (γ , t) – h(γ , t), τ

)
) � ϕ

(
(t, . . . , t, 0, 0),

τ

u

)
,
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∀t ∈ B,γ ∈ � and τ ∈ G◦
}

.

In [22], Miheţ and Radu showed that (B, δ) is a complete �-valued metric space (see [23]).
Define � : M → M as

(�f )(γ , t) =
1
2

f (γ , 2t) for all f ∈ E and t ∈ B.

Now, we have

N
(
(�f )(� , w) – (�h)(� , w),ς

)
= N

(
1
2

f (γ , 2t) –
1
2

h(γ , 2t),ς
)

= N
(
f (γ , 2t) – h(γ , 2t), 2ς

)

� ϕ

(
(2w, . . . , 2w, 0, 0),

2ς

u

)

� ϕ

(
(w, . . . , w, 0, 0),

21– 1
k ς

�ku

)

for all w ∈ B and ς ∈ G◦,� ∈ �, and so δ(�f ,�h) ≤ �k

21– 1
k
δ(f , h) for any f , h ∈ E. Let g be as

in the statement of the theorem. Using (3.12) we get

N
(

1
2

g(γ , 2t) – g(γ , t), τ
)

� ϕ
(
(t, . . . , t, 0, 0), 2nτ

)

for all t ∈ B,γ ∈ � and τ ∈ G◦. Then δ(�g, g) ≤ 1
2n . Applying Theorem 1, we get that {�mg}

converges to a unique fixed point H ∈ M of � such that H(γ , 2t) = 2H(γ , t), i.e.,

H(γ , t) = lim
m→∞

1
2m g

(
γ , 2mt

)
(3.13)

for all t ∈ B. Also

δ(g,H) ≤ 1
1 – �k

21– 1
k

δ(g,�g) ≤ 1
2n(1 – �k

21– 1
k

)
=

k√2k–1

2n( k√2k–1 – �k)
,

i.e., (3.5) is true for every t ∈ B. Then (3.11) is true. Using Theorem 2, we can complete
the proof. �

Example 8 Let a random operator g : � ×B → B satisfy

N
(
�ηg(γ , t1, t2) + ��,ϒ ,�g(γ , t3, t4), τ

)
(3.14)

� diag

[
τ

τ +
∑4

j=1 ‖tj‖ 1
6

, exp

(
–
∑4

j=1 ‖tj‖ 1
6

τ

)]

for all t1, . . . , t4 ∈ B,γ ∈ �, all η ∈ � in which � ∈ DC is a bounded set, �,ϒ ,� ∈ C and
τ ∈ G◦. Then there is a unique C∗VAF Lie (�,ϒ ,�)-derivation H : � × B → B which
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satisfies �νg = 0 and the inequality

N
(
g(γ , w) – H(γ , w), τ

)
(3.15)

� diag

[
8( 6√32 – 1)τ

8( 6√32 – 1)τ + 2 6√32‖w‖ 1
6

, exp

(
–

6√32‖w‖ 1
6

4( 6√32 – 1)τ

)]

for all w ∈ B,γ ∈ � and τ ∈ G◦.
Define

ϕ
(
(t1, t2, t3, t4), τ

)
=
[

τ

τ +
∑4

j=1 ‖tj‖ 1
6

, exp

(
–
∑4

j=1 ‖tj‖ 1
6

τ

)]

for all t1, t2, t3, t4 ∈ R and τ ∈ G◦. Put � = 1
18√2

. Then ϕ is a (4, 3)-contractively sub-
homogeneous function. Now, applying Theorem 3, we get (3.15).

4 C∗-ternary algebra stochastic homomorphism
A C-linear random operator η : � × T → S is said to be a C∗-ternary algebra stochastic
homomorphism (C∗-tash) if

η
(
γ , [t, s, p]

)
=
[
η(γ , t),η(γ , s),η(γ , p)

]

for all t, s, p ∈ T and γ ∈ � (see [6, 24]).
Consider a random operator g : � × T → S and define

�ξ g(γ , t1, . . . , tp, s1, . . . , sd) := 2g

(

γ ,
∑p

j=1 ξ tj

2
+

d∑

j=1

ξ sj

)

–
p∑

j=1

ξg(γ , tj) – 2
d∑

j=1

ξg(γ , sj)

for all ξ ∈ T
1 := {λ ∈C : |λ| = 1} and all t1, . . . , tp, s1, . . . , sd ∈ T and γ ∈ �.

It is easy to show that a random operator g : � × T → S satisfies

�ξ g(γ , t1, . . . , tp, s1, . . . , sd) = 0

for all ξ ∈ T
1, t1, . . . , tp, s1, . . . , sd ∈ T and γ ∈ � if and only if

g(γ , ξ t + λs) = ξg(γ , t) + λg(γ , s)

for all ξ ,λ ∈ T
1, t, s ∈ T and γ ∈ �.

Theorem 4 Consider q and σ such that q < 1 and σ < 3. Let ϕ : Tp+d × (0,∞) → A+

(d ≥ 2) and ψ : T3 × (0,∞) →A+ be a C∗-AVF control function satisfying

ϕ
(
a(t1, . . . , tp, s1, . . . , sd), τ

)
= ϕ

(
(t1, . . . , tp, s1, . . . , sd),

τ

aq

)
, (4.1)

ψ
(
a(t, s, p), τ

)
= ψ

(
(t, s, p),

τ

aσ

)
(4.2)
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and

lim
μ→∞ϕ

(
(t1, . . . , tp, s1, . . . , sd),μ

)
= lim

μ→∞ψ
(
(t, s, p),μ

)
= 1 (4.3)

for all t1, . . . , tp, s1, . . . , sd, t, s, p ∈ T , a > 0, and τ ,ν ∈ G◦. Suppose that g : � × T → S is a
random operator with g(γ , 0) = 0 satisfying

N
(
�ηg(γ , t1, . . . , tp, s1, . . . , sd), τ

) � ϕ
(
(t1, . . . , tp, s1, . . . , sd), τ

)
(4.4)

and

N
(
g
(
γ , [t, s, p]

)
–
[
g(γ , t), g(γ , s), g(γ , p)

]
, τ

) � ψ
(
(t, s, p), τ

)
(4.5)

for all η ∈ T
1 and all t1, . . . , tp, s1, . . . , sd, t, s, p ∈ T and γ ∈ � and τ ∈ G◦. Then there exists

a unique C∗-tash H : � × T → S such that

N
(
g(γ , t) – H(γ , t), τ

) � ϕ
((

n+d-times
︷ ︸︸ ︷
0, . . . , 0, t, . . . , t

)
, 2τ

(
d – dq)) (4.6)

for all t ∈ T ,γ ∈ � and τ ∈ G◦.

Proof Let 0 < q < 1 and 0 < σ < 3 (the other cases are similar).
Putting η = 1, t1 = · · · = tp = 0 and s1 = · · · = sd = t in (4.4), we get

N
(
2g(γ , dt) – 2dg(γ , t), τ

) � ϕ
((

p
︷ ︸︸ ︷
0, . . . , 0,

d
︷ ︸︸ ︷
t, . . . , t

)
, τ

)
(4.7)

for all t ∈ T ,γ ∈ � and τ ∈ G◦. Replacing t by dnt in (4.7), we get

N
(

1
dn+1 g

(
γ , dn+1t

)
–

1
dn g

(
γ , dnt

)
, τ

)
� ϕ

((
p

︷ ︸︸ ︷
0, . . . , 0,

d
︷ ︸︸ ︷
t, . . . , t

)
, 2dτd(1–q)n)

for all t ∈ T ,γ ∈ �, all nonnegative integers n and τ ∈ G◦. Therefore,

N
(

1
dn+m g

(
γ , dn+mt

)
–

1
dm g

(
γ , dmt

)
, τ

)
(4.8)

� ϕ

(
(

p
︷ ︸︸ ︷
0, . . . , 0,

d
︷ ︸︸ ︷
t, . . . , t

)
,

2dτ
∑m+n

k=m d(q–1)k

)

for all t ∈ T , n, m ∈ N and τ ∈ G◦, and it follows that { 1
dn g(γ , dnt)} is a Cauchy sequence

for every t ∈ A. The completeness of B implies that { 1
dn g(γ , dnt)} converges. Thus we can

define the random operator H : � × T → S by

H(γ , t) := lim
n→∞

1
dn g

(
γ , dnt

)
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for all t ∈ T ,γ ∈ �. Putting m = 0 and letting n → ∞ in (4.8), we get (4.6). We conclude
from (4.1), (4.3), and (4.4) that

N
(

2H

(

γ ,
∑p

j=1 ηtj

2
+

d∑

j=1

ηsj

)

–
p∑

j=1

ηH(γ , tj) – 2
d∑

j=1

ηH(γ , sj), τ

)

= lim
n→∞N (

1
dn

(

2g

(

γ , dn

∑p
j=1 ηtj

2
+ dn

d∑

j=1

ηsj

)

–
p∑

j=1

ηg
(
γ , dntj

)
– 2

d∑

j=1

ηg
(
γ , dnsj

)
, τ

)

� lim
n→∞ϕ

((
dn(t1, . . . , tp, s1, . . . , sd)

)
, dnτ

)

= lim
n→∞ϕ

(
(t1, . . . , tp, s1, . . . , sd),

dn

dnq τ

)

= 1

for all η ∈ T
1, t1, . . . , tp, s1, . . . , sd ∈ T , γ ∈ �, and τ ∈ G◦. Hence

2H

(

γ ,
∑p

j=1 ηtj

2
+

d∑

j=1

ηsj

)

=
p∑

j=1

ηH(γ , tj) + 2
d∑

j=1

ηH(γ , sj)

for all η ∈ T
1 and all t1, . . . , tp, s1, . . . , sd ∈ T . Thus H(λt + ηs) = λH(γ , t) + ηH(γ , s) for all

λ,η ∈ T
1 and all t, s ∈ T .

Therefore, from Lemma 4 the random operator H : � × T → S is C-linear.
We conclude from (4.2), (4.3), and (4.5) that

N
(
H
(
γ , [t, s, p]

)
–
[
H(γ , t),H(γ , s),H(γ , p)

]
, τ

)

= lim
n→∞N

(
1

d3n

(
g
(
γ ,

[
dnt, dns, dnp

])
–
[
g
(
γ , dnt

)
, g
(
γ , dns

)
, g
(
γ , dnp

)])
, τ

)

= lim
n→∞N

(
g
(
γ ,

[
dnt, dns, dnp

])
–
[
g
(
γ , dnt

)
, g
(
γ , dns

)
, g
(
γ , dnp

)]
, d3nτ

)

� lim
n→∞ψ

((
dnt, dns, dnp

)
, d3nτ

)

= lim
n→∞ψ

(
(t, s, p),

d3n

dnσ
τ

)
= 1

for all t, s, p ∈ T ,γ ∈ �, and τ ∈ G◦. Thus

H
(
γ , [t, s, p]

)
=
[
H(γ , t),H(γ , s),H(γ , p)

]

for all t, s, p ∈ T and γ ∈ �.
Consider another generalized Cauchy–Jensen additive random operator K : � × T → S

satisfying (4.6). Then we have

N
(
H(γ , t) – K(γ , t), τ

)
= lim

n→∞N
(

1
dn

(
g
(
γ , dnt

)
– K

(
γ , dnt

))
, τ

)
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= lim
n→∞N

(
g
(
γ , dnt

)
– K

(
γ , dnt

)
, dnτ

)

� lim
n→∞ϕ

((
p

︷ ︸︸ ︷
0, . . . , 0,

d
︷ ︸︸ ︷
dnt, . . . , dnt

)
, 2τdn(d – dq))

= lim
n→∞ϕ

(
(

p
︷ ︸︸ ︷
0, . . . , 0,

d
︷ ︸︸ ︷
t, . . . , t

)
,
(

2τdn(d – dq)
dnq

))

= 1

for all t ∈ T ,γ ∈ � and τ ∈ G◦. Then H(γ , t) = K(γ , t) for all t ∈ T . Thus the random
operator H : � × T → S is a unique C∗-tash satisfying (4.6), as desired. �

Theorem 5 Let q < 1 and σ < 2. Let g : � × T → S be a random operator satisfying (4.1),
(4.2), (4.3), (4.4), and (4.5). If there exist a real number λ > 1(0 < λ < 1) and an element
t0 ∈ T such that limn→∞ 1

λn g(γ ,λnt0) = e′(limn→∞ λng(γ , t0
λn ) = e′) (identity element), then

the random operator g : � × T → S is a C∗-tash.

Proof Applying Theorem 4, we get that there exists a unique C∗-tash H : � × T → S sat-
isfying (4.6). Now,

H(γ , t) = lim
n→∞

1
λn g

(
γ ,λnt

)
,

(
H(γ , t) = lim

n→∞λng
(

γ ,
t
λn

))
(4.9)

for all t ∈ T and all real numbers λ > 1(0 < λ < 1). Therefore, from the assumption we get
that H(γ , t0) = e′. Let λ > 1 and limn→∞ 1

λn g(γ ,λnt0) = e′. It follows from (4.5) and (4.9)
that

N
([
H(γ , t),H(γ , s),H(γ , p)

]
–
[
H(γ , t),H(γ , s), g(γ , p)

]
, τ

)

= N
(
H[γ , t, s, p] –

[
H(γ , t),H(γ , s),H(γ , p)

]
, τ

)

= lim
n→∞N

(
1

λ2n

(
g
([

γ ,λnt,λns, p
])

–
[
g
(
γ ,λnt

)
, g
(
λns

)
, g(γ , z)

])
, τ

)

= lim
n→∞N

(
g
([

γ ,λnt,λns, p
])

–
[
g
(
γ ,λnt

)
, g
(
γ ,λns

)
, g(γ , p)

]
,λ2nτ

)

� lim
n→∞ψ

((
λt ,λs,λp),λ2nτ

)

= lim
n→∞ψ

(
(t, s, p),

λ2n

λ2nσ
τ

)

= 1

for all t ∈ T ,γ ∈ � and τ ∈ G◦. Thus [H(γ , t),H(γ , s),H(γ , p)] = [H(γ , t),H(γ , s), g(γ , p)]
for all t, s, p ∈ T . Letting t = s = t0 in the last equality, we get g(γ , t) = H(γ , p) for all p ∈
T .

Similarly, one can show that H(γ , t) = g(γ , t) for all t ∈ T when 0 < λ < 1 and
limn→∞ λng(γ , t0

λn ) = e′. Therefore, the random operator g : � × T → S is a C∗-tash. �

Theorem 6 Let q > 1 and σ > 3. Let g : � × T → S be a random operator satisfying (4.4)
and (4.5). If there exist a real number 0 < λ < 1 (λ > 1) and an element t0 ∈ T such that
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limn→∞ 1
λn g(γ ,λnt0) = e′(limn→∞ λng(γ , t0

λn ) = e′), then the random operator g : � × T → S
is a C∗-tash.

Proof The proof is similar to the proof of Theorem 5, and so we omit it. �

Example 9 Consider q and σ such that q < 1 and σ < 3. Suppose that g : � × T → S is a
random operator with g(γ , 0) = 0 satisfying

N
(
�ηg(γ , t1, . . . , tp, s1, . . . , sd), τ

)
(4.10)

� diag

[
τ

τ + (
∑p

j=1 ‖tj‖q +
∑d

j=1 ‖sj‖q)
, exp

(
–
∑p

j=1 ‖tj‖q +
∑d

j=1 ‖sj‖q

τ

)]

and

N
(
g
(
γ , [t, s, p]

)
–
[
g(γ , t), g(γ , s), g(γ , p)

]
, τ

)
(4.11)

� diag

[
τ

τ (‖t‖q + ‖s‖q)
, exp

(
–

‖t‖q + ‖s‖q

τ

)]

for all η ∈ T
1 and all t1, . . . , tp, s1, . . . , sd, t, s, p ∈ T and γ ∈ � and τ ∈ G◦. Then there exists

a unique C∗-tash H : � × T → S such that

N
(
g(γ , t) – H(γ , t), τ

) � diag

[
2τ (d – dq)

2τ (d – dq) + (d‖t‖q)
, exp

(
–

d‖t‖q

2τ (d – dq)

)]
(4.12)

for all t ∈ T ,γ ∈ � and τ ∈ G◦.
To see this, put

ϕ
(
(t1, . . . , tp, s1, . . . , sd), τ

)
(4.13)

= diag

[
τ

τ + (
∑p

j=1 ‖tj‖q +
∑d

j=1 ‖sj‖q)
, exp

(
–
∑p

j=1 ‖tj‖q +
∑d

j=1 ‖sj‖q

τ

)]

and

ψ
(
(t, s, p), τ

)
= diag

[
τ

τ (‖t‖q + ‖s‖q)
, exp

(
–

‖t‖q + ‖s‖q

τ

)]
(4.14)

for all t1, . . . , tp, s1, . . . , sd, t, s, p ∈ T and γ ∈ � and τ ∈ G◦. Now, applying Theorem 4, we
get (4.12).

Example 10 Let q < 1 and σ < 2. Let g : � × T → S be a random operator satisfying
(4.10), (4.11). If there exist a real number λ > 1(0 < λ < 1) and an element t0 ∈ T such
that limn→∞ 1

λn g(γ ,λnt0) = e′(limn→∞ λng(γ , t0
λn ) = e′) (identity element), then the random

operator g : � × T → S is a C∗-tash.
Define control functions ϕ and ψ as in (4.13) and (4.14). Theorem 5 guarantees the

result.
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5 Conclusion
In this paper we defined a new generalization of uncertain normed spaces by replacing
the classical range by C∗-AV fuzzy sets and using triangular norms defined on the posi-
tive section of an order commutative C∗-algebra, named C∗-AVF-spaces. Also, by a super
C∗-AVF controller, we considered Hyers–Ulam–Rassias stability of stochastic (�,ϒ ,�)-
derivations on C∗-AVF Lie C∗-algebras.
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Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 22 November 2020 Accepted: 10 February 2021

References
1. Glück, J.: A note on lattice ordered C∗-algebras and Perron–Frobenius theory. Math. Nachr. 291, 1727–1732 (2018)
2. Green, M.D.: The lattice structure of C∗-algebras and their duals. Math. Proc. Camb. Philos. Soc. 81, 245–248 (1977)
3. Hussain, S.: Fixed point and common fixed point theorems on ordered cone b-metric space over Banach algebra.

J. Nonlinear Sci. Appl. 13, 22–33 (2020)
4. Saadati, R.: A note on “Some results on the IF-normed space”. Chaos Solitons Fractals 41, 206–213 (2009)
5. Novotný, P., Hrivnák, J.J.: (α,β ,γ )-derivations of Lie algebras and corresponding invariant functions. J. Geom. Phys.

58(2), 208–217 (2008)
6. Cho, Y., Saadati, R., Yang, Y.: Random C∗-ternary algebras and application. J. Inequal. Appl. 2015, Article ID 26 (2015)
7. Park, C.: Lie ∗-homomorphisms between Lie C∗-algebras and Lie ∗-derivations on Lie C∗-algebras. J. Math. Anal. Appl.

293, 419–434 (2004)
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