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Abstract
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1 Introduction
The importance of studying delay differential equations DDEs is not limited to the theo-
retical side only, but the applications of this type of equations extend to many branches
of applied science. In fact, the neutral DDEs arise in the examination of vibrating masses
attached to an elastic bar, in the solution of variational problems with time delays, and in
problems concerning electric networks containing lossless transmission lines (as in high
speed computers), see [1, 2].

The great development in the study of asymptotic behavior of DDEs is easily noted in
many works in recent times. Some of these works that are concerned with improving the
oscillation criteria of DDEs are [3–6]. In addition, many improved methods and interesting
results can be found in studies [7–23], which study the oscillatory behavior of the NDDEs
of different order.

In this work, we discuss the oscillation properties of the second-order NDDE with dis-
tributed deviating arguments

(
r(t)

(
(x + p · x ◦ τ )′(t)

)α)′ + �[q · f ◦ x ◦ g; a, b](t) = 0, (1.1)
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where t ≥ t0 and

�[F ; a, b](t) def=
∫ b

a
F(t, s) ds.

Throughout this work, we assume that

ℵ(t) def= (x + p · x ◦ τ )(t)

and the following hypotheses hold:
(H1) α is a ratio of odd natural numbers, r ∈ C([t0,∞), (0,∞)), and

∫ ∞

t0

r–1/α(s) ds = ∞. (1.2)

(H2) p ∈ C([t0,∞)), q ∈ C([t0,∞) × [a, b]), 0 ≤ p(t) < 1, and q(t, s) > 0 is not zero on any
half line [t∗,∞) × [a, b] for all t∗ ≥ t0.

(H3) τ ∈ C([t0,∞),R), g ∈ C([t0,∞) × [a, b],R), τ (t) ≤ t, limt→∞ τ (t) = ∞, g(t, s) ≤ t,
limt→∞ g(t, s) = ∞ for s ∈ [a, b], and g is strictly increasing with respect to t and s
for all s ∈ (a, b).

(H4) f ∈ C((–∞,∞)) and f (x)/xα ≥ κ for x �= 0, where κ is a positive constant.
For a solution of (1.1), we mean a function x ∈ C([tx,∞)), tx ≥ t0, which has the property

ℵ(t) and r(t)(ℵ′(t))α are continuously differentiable for t ∈ [tx,∞) and satisfies (1.1) on
[tx,∞). We focus only on the solutions of (1.1) which satisfy sup{|x(t)| : tx ≤ t} > 0 for
t ≥ tx. A solution x of (1.1) is called nonoscillatory if it is either eventually positive or
eventually negative; otherwise it is called oscillatory.

In the next part of the introduction, we provide some related work that contributed to
the development of the study of oscillatory behavior of NDDEs.

In 1985, Grammatikopoulos et al. [7] studied the asymptotic behavior of NDDE

(
x(t) + p(t)x(t – τ0)

)′′ + q(t)x(t – g0) = 0. (1.3)

They proved that all solutions of (1.3) are oscillatory if p(t) ∈ [0, 1] and

∫ ∞

t0

q(v)
(
1 – p(v – g0)

)
dv = ∞.

However, Erbe et al. [8] established the oscillation condition when q(t) ≥ q0 > 0, p(t) ∈
[p1, p2] and p(t) is not eventually negative. Posteriorly, Grace and Lalli [9] studied the os-
cillation of the NDDE

(r(t)
(
x(t) + p(t)x(t – τ0)′

)′ + q(t)f
(
x(t – g0)

)
= 0,

under the condition
∫ ∞

t0

(
ρ(s)q(s)

(
1 – p(s – g0)

)
–

r(s – g0)(ρ ′(s))2

4κρ(s)

)
ds = ∞,

where ρ ∈ C1([t0,∞), (0,∞)).
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In the previous decade, under the hypothesis τ ◦ g = g ◦ τ , Han et al. [10] presented the
oscillation criteria for the NDDE

(
r(t)

(
x(t) + p(t)x

(
τ (t)

))′)′ + q(t)x
(
g(t)

)
) = 0.

In 2012, by using the Riccati transformation technique, Liu et al. [11] and Wu et al. [12]
obtained the oscillation conditions for the NDDE

(
r(t)

∣∣w′(t)
∣∣α–1w′(t)

)′ + q(t)
∣∣x

(
g(t)

)∣∣β–1x
(
g(t)

)
= 0,

where w(t) := x(t) + p(t)x(τ (t)), α ≥ β , r′(t) > 0, and g ′(t) > 0. Based on establishing new
comparison theorems that compare the second-order equation with a first-order DDE,
Baculikova and Dzurina [13] studied the NDDE

(
r(t)

((
x(t) + p(t)x

(
τ (t)

))′)α)′ + q(t)xβ
(
g(t)

)
= 0, (1.4)

under the conditions

0 ≤ p(t) ≤ p0 < ∞, τ ′(t) ≥ τ0, and τ ◦ g = g ◦ τ .

Of interesting works recently, Moaaz et al. in [14, 15] studied the oscillatory properties
of (1.4) and improved the results in [13].

For NDDE with distributed deviating arguments (1.1), Candan [16] studied the sufficient
conditions for the oscillation of solutions.

In this work, we are creating an improved relationship between the corresponding func-
tion ℵ and its first derivative. This new relationship helps us to get sharp criteria for testing
the oscillation. Based on the Riccati transformation and comparison principles, we obtain
new and different criteria for the oscillation of solutions of (1.1). The results obtained in
this paper improve and extend the relevant previous results as illustrated by examples.

To prove our main results, we need the following auxiliary lemmas. The proof of the
first lemma is similar to that of [13, Lemma 3] and hence we omit it.

Lemma 1.1 If x is a positive solution of (1.1) on [t0,∞), then there exists t1 ≥ t0 such that

ℵ(t) > 0, ℵ′(t) > 0,
(
r(t)

(ℵ′(t)
)α)′ ≤ 0 (1.5)

for t ≥ t1.

Lemma 1.2 ([14, Lemma 1.2]) Suppose that F(s) = As – Bs(α+1)/α , where A, B > 0 are con-
stants. Then F attains its maximum value on R at s∗ = (αA�((α + 1)B))α and

max
x∈r

F = F
(
s∗) =

αα

(α + 1)α+1
Aα+1

Bα
.

Remark 1.1 All functional inequalities are assumed to hold eventually, that is, they are
satisfied for all t > t1, where t1 is large enough.
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2 Main results
For convenience, we denote the class of all eventually positive solutions by S+. Moreover,
we assume the following notations: β def= (α + 1)α+1, ga(t) def= g(t, a),

�(t) def= �
[
q · (1 – p ◦ g)α ; a, b

]
(t),

μ(t) def=
∫ t

t1

r–1/α(θ ) dθ ,

μ̃(t) def= μ(t) +
κ

α

∫ t

t1

μ(θ )μα
(
g(θ , a)

)
�(θ ) dθ ,

μ̂(t) def= exp

(
–α

∫ t

ga(t)

dθ

μ̃(θ )r1/α(θ )

)
,

and F+(t) def= max{0, F(t)}, where t1 ≥ t0.
The following theorem gives a criterion for the oscillation of (1.1), depending on the

comparison with a first-order DDE.

Theorem 2.1 Every solution of (1.1) is oscillatory if the first-order DDE

φ′(t) + κ�(t)μ̃α
(
ga(t)

)
φ
(
ga(t)

)
= 0 (2.1)

is oscillatory.

Proof Assume the contrary that there is a nonoscillatory solution x of (1.1). Then we can
assume x ∈ S+, and so x(t), x(τ (t)), and x(g(t, s)) are positive for t ≥ t1 ≥ t0 and s ∈ [a, b]. It
follows from Lemma 1.1 that (1.5) holds. Using the fact that r(t)(ℵ′(t))α is a nonincreasing
function, we get

∫ t

t1

(
r(θ )(ℵ′(θ ))α

r(θ )

)1/α

dθ ≥ μ(t)
(
r(t)

(ℵ′(t)
)α)1/α ,

and hence

ℵ(t) ≥ μ(t)
(
r(t)

(ℵ′(t)
)α)1/α . (2.2)

It follows from (1.1) and (H1) that

(
r(t)

(ℵ′(t)
)α)′ ≤ –κ

∫ b

a
q(t, s)xα

(
g(t, s)

)
ds. (2.3)

From the definition of ℵ, we have

x
(
g(t, s)

)
= ℵ(

g(t, s)
)

– p
(
g(t, s)

)
x
(
τ
(
g(t, s)

))

≥ ℵ(
g(t, s)

)
– p

(
g(t, s)

)ℵ(
τ
(
g(t, s)

))

≥ ℵ(
g(t, s)

)(
1 – p

(
g(t, s)

))
,



Moaaz et al. Boundary Value Problems         (2021) 2021:35 Page 5 of 15

which with (2.3) gives

(
r(t)

(ℵ′(t)
)α)′ ≤ –κ

∫ b

a
q(t, s)ℵα

(
g(t, s)

)[
1 – p

(
g(t, s)

)]α ds

≤ –κℵα
(
ga(t)

)∫ b

a
q(t, s)

[
1 – p

(
g(t, s)

)]α ds

≤ –κ�(t)ℵα
(
ga(t)

)
, (2.4)

which is a direct result of the facts that ℵ′(t) > 0 and ∂sg(t, s) > 0. Combining

μ
d
dt

(
r1/αℵ′)α = μα

(
r1/αℵ′)α–1(r1/αℵ′)′

and

d
dt

(ℵ – μr1/αℵ′) = ℵ′ – μ′r1/αℵ′ – μ
(
r1/αℵ′)′ = –μ

(
r1/αℵ′)′,

we get

d
dt

(ℵ – μr1/αℵ′) = –
1
α

μ
(
r1/αℵ′)1–α d

dt
(
r1/αℵ′)α .

Thus, from (2.4), we find

d
dt

(ℵ(t) – μ(t)r1/α(t)ℵ′(t)
) ≥ κ

α
μ(t)

(
r1/α(t)ℵ′(t)

)1–α
�(t)ℵα

(
ga(t)

)
. (2.5)

Integrating (2.5) from t1 → t, we have

ℵ(t) ≥ μ(t)r1/α(t)ℵ′(t) +
κ

α

∫ t

t1

μ(θ )�(θ )
(
r1/α(θ )ℵ′(θ )

)1–αℵα
(
g(θ , a)

)
dθ . (2.6)

Now, we set φ(t) := r(t)(ℵ′(t))α . Then, from (2.2) and (2.6), we obtain

ℵ(t) ≥ μ(t)φ1/α(t) +
κ

α

∫ t

t1

μ(θ )�(θ )φ(1–α)/α(θ )μα
(
g(θ , a)

)
φ
(
g(θ , a)

)
dθ

≥ μ(t)φ1/α(t) +
κ

α

∫ t

t1

μ(θ )�(θ )φ(1–α)/α(θ )μα
(
g(θ , a)

)
φ(θ ) dθ

≥ φ1/α(t)
(

μ(t) +
κ

α

∫ t

t1

μ(θ )μα
(
g(θ , a)

)
�(θ ) dθ

)

≥ μ̃(t)φ1/α(t). (2.7)

Combining (2.4) and (2.7), we have that φ is a positive solution of the first-order DD in-
equality

φ′(t) + κ�(t)μ̃α
(
ga(t)

)
φ
(
ga(t)

) ≤ 0.

From [24, Theorem 1], DDE (2.1) also has a positive solution, which is a contradiction.
This contradiction completes the proof. �
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Applying a well-known condition [25, Theorem 2.1.1] for oscillation of first-order DDE
(2.1), we get immediately the following criteria for oscillation of (1.1).

Corollary 2.1 Every solution of (1.1) is oscillatory if one of the following conditions is sat-
isfied:

lim inf
t→∞

∫ t

ga(t)
μ̃α

(
ga(θ )

)
�(θ ) dθ >

1
κe

(2.8)

or

lim sup
t→∞

∫ t

ga(t)
μ̃α

(
ga(θ )

)
�(θ ) dθ >

1
κ

and ∂tg(t, s) ≥ 0. (2.9)

The next theorem gives another criterion for the oscillation of (1.1), depending on the
Riccati transformation technique.

Theorem 2.2 Every solution of (1.1) is oscillatory if there is a positive function ρ ∈
C1([t0,∞)) satisfying

lim sup
t→∞

∫ t

t1

(
κρ(θ )μ̂(θ )�(θ ) –

r(θ )(ρ ′
+(θ ))α+1

βρα(θ )

)
dθ = ∞, (2.10)

where t1 is sufficiently large.

Proof Assume the contrary that there is a nonoscillatory solution x of (1.1). Then we can
assume x ∈ S+, and so x(t), x(τ (t)), and x(g(t, s)) are positive for t ≥ t1 ≥ t0 and s ∈ [a, b]. It
follows from Lemma 1.1 that (1.5) holds. Now, we set

w def= ρr
(ℵ′

ℵ
)α

. (2.11)

Thus, we note that w(t) > 0 for t ≥ t1. By differentiating w, we get

w′ = ρ ′r
(ℵ′

ℵ
)α

+ ρ
(rℵ′)′

ℵα
– αρr

(ℵ′

ℵ
)α+1

=
ρ ′

ρ
w + ρ

(rℵ′)′

ℵα
– αρ–1/αr–1/αw1+1/α . (2.12)

Next, as in the proof of Theorem 2.1, we obtain (2.4) and (2.7). Then, from (2.7), we obtain
ℵ(t) ≥ μ̃(t)r1/α(t)ℵ′(t) for t ≥ t1. Then, applying the Grönwall inequality, we find

ℵ(
ga(t)

) ≥ ℵ(t) exp

[
–

∫ t

ga(t)
μ̃–1(θ )r–1/α(θ ) dθ

]
= μ̂1/α(t)ℵ(t),

which with (2.4) gives

(
r(t)

(ℵ′(t)
)α)′ ≤ –κ�(t)

(ℵ(ga(t))
ℵ(t)

)α

ℵα(t) ≤ –κ�(t)μ̂(t)ℵα(t). (2.13)
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Combining (2.12) and (2.13), we arrive at

w′ ≤ ρ ′
+

ρ
w – κρ�μ̂(t) – αρ–1/αr–1/αw1+1/α . (2.14)

Using Lemma 1.2 with A = ρ ′
+/ρ and B = α(ρr)–1/α , we get

w′ ≤ –κρ�μ̂ +
1
β

r
(
ρ ′

+
)α+1

ρ–α . (2.15)

Integrating (2.15) from t1 → t, we find

w(t1) ≥
∫ t

t1

(
κρ(θ )�(θ )μ̂(θ ) –

1
β

r(θ )
(
ρ ′

+(θ )α+1)ρ–α(θ )
)

dθ ,

which contradicts (2.10). This contradiction completes the proof. �

It is easy to see that Corollary 2.1 cannot be applied in the case where

∫ t

ga(t)
μ̃α

(
ga(θ )

)
�(θ ) dθ ≤ 1

κe
. (2.16)

However, if x ∈ S+ and (2.16) holds, then we can get a sharp estimate of z(g(t))/z(t). Thus,
we can obtain a sharp criteria for the oscillation of (1.1).

Lemma 2.1 Assume that x ∈ S+ and

lim inf
t→∞

∫ t

ga(t)
μ̃α

(
ga(θ )

)
�(θ ) dθ ≥ δ (2.17)

for some δ > 0. Then

r(ga(t))
r(t)

(ℵ′(ga(t))
ℵ′(t)

)α

≥ ϑn(δ) (2.18)

for every n ≥ 0, where

ϑm(δ) def=

⎧
⎨

⎩
1 if m = 0;

exp
(
δϑm–1(δ)

)
if m > 0.

(2.19)

Proof The proof of the first lemma is similar to that of [26, Lemma 1], and hence we omit
it. �

Theorem 2.3 Assume that (2.17) holds for some δ < 0. Every solution of (1.1) is oscillatory
if there is a positive function ρ ∈ C1([t0,∞)) satisfying

lim sup
t→∞

∫ t

t1

(
κρ(θ )�(θ ) –

(ρ ′
+(θ ))α+1r(ga(θ ))

βϑm(δ)ρα(θ )(g ′
a(θ ))α

)
= ∞, (2.20)

for some m ≥ 0, where ϑm(δ) is defined as (2.19).
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Proof Assume the contrary that there is a nonoscillatory solution x of (1.1). Then we can
assume x ∈ S+, and so x(t), x(τ (t)), and x(g(t, s)) are positive for t ≥ t1 ≥ t0 and s ∈ [a, b]. It
follows from Lemma 1.1 that (1.5) holds. As in the proof of Theorem 2.1, we obtain (2.4).
Now, we set

ω
def= ρr

( ℵ′

ℵ(ga)

)α

.

Thus, we note that ω(t) > 0 for t ≥ t1. By differentiating ω and using (2.4), we obtain

ω′ = ρ ′r
( ℵ′

ℵ(ga)

)α

+ ρ
(r(ℵ′)α)′

ℵα(ga)
– αρr

(ℵ′)α

ℵα+1(ga)
ℵ′(ga)g ′

a

≤ ρ ′

ρ
ω – κρ� – αρr

(ℵ′)α

ℵα+1(ga)
ℵ′(ga)g ′

a.

Thus, it follows from Lemma 2.1 that

ω′ ≤ ρ ′

ρ
ω – κρ� – αρ

r1+1/αϑ1/α
n (δ)

r1/α(ga)

( ℵ′

ℵα+1(ga)

)α+1

g ′
a

≤ ρ ′
+

ρ
ω – κρ� – α

ϑ1/α
n (δ)g ′

a
ρ1/αr1/α(ga)

ω1+1/α . (2.21)

Using Lemma 1.2 with A = ρ ′
+/ρ and B = αϑ1/α

m (δ)/(ρr(g))1/α , we get

ω′ ≤ –κρ� +
(ρ ′

+)α+1r(ga)
βϑm(δ)ρα(g ′

a)α
. (2.22)

Integrating (2.22) from t1 → t, we find

ω(t1) ≥
∫ t

t1

(
κρ(θ )�(θ ) –

(ρ ′
+(θ ))α+1r(ga(θ ))

βϑm(δ)ρα(θ )(g ′
a(θ ))α

)
dθ ,

which contradicts (2.20). This contradiction completes the proof. �

3 Further results
It is easy to notice that (2.7) is a sharper estimate than (2.2) for the relationship between
ℵ and ℵ′. By repeating the same steps that improved (2.2), we obtain iterative criteria that
can be applied even when the other criteria fail.

Lemma 3.1 Assume that x ∈ S+. Then

ℵ(t) ≥ Uk(t)r1/α(t)ℵ′(t) (3.1)

for k = 0, 1, . . . , where U0(t) := μ̃(t) and

Uk+1(t) :=
∫ t

t1

(
1

r(s)
exp

(∫ t

s
κ�(θ )Uα

n
(
ga(θ )

)
dθ

))1/α

ds. (3.2)
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Proof Assume that x ∈ S+. Then x(t), x(τ (t)), and x(g(t, s)) are positive for t ≥ t1 ≥ t0 and
s ∈ [a, b]. It follows from Lemma 1.1 that (1.5) holds. By induction, we will prove (3.1).

Now, as in the proof of Theorem 2.1, we obtain (2.4) and (2.7). From (2.7), we obtain

ℵ ≥ μ̃(t)r1/αℵ′ = U0r1/αℵ′.

Next, for k = n, we suppose that ℵ ≥ Unr1/αℵ′. Hence, we get

ℵ(ga) ≥ Un(ga)r1/α(ga)ℵ′(ga) ≥ Un(ga)r1/αℵ′,

which with (2.4) gives

κ�(t)ℵα
(
ga(t)

)(
r(t)

(ℵ′(t)
)α)′ + κ�(t)Uα

n
(
ga(t)

)
r(t)

(ℵ′(t)
)α ≤ 0. (3.3)

Letting H := r(ℵ′)α , (3.3) reduces to

H ′(t) + κ�(t)Uα
n
(
ga(t)

)
H(t) ≤ 0. (3.4)

Applying the Grönwall inequality in (3.4), we find

H(s) ≥ H(t) exp

(∫ t

s
κ�(θ )Uα

n
(
ga(θ )

)
dθ

)

for t ≥ s ≥ t1, and so

ℵ′(s) ≥ r1/α(t)ℵ′(t)
(

1
r(s)

exp

(∫ t

s
κ�(θ )Uα

n
(
ga(θ )

)
dθ

))1/α

. (3.5)

Integrating (3.5) from t1 → t, we see that

ℵ(t) ≥ r1/α(t)ℵ′(t)
∫ t

t1

(
1

r(s)
exp

(∫ t

s
κ�(θ )Uα

n
(
ga(θ )

)
dθ

))1/α

ds

= Un+1(t)r1/α(t)ℵ′(t).

This completes the proof. �

Theorem 3.1 Assume that Uk are defined as in Lemma 3.1. Every solution of (1.1) is oscil-
latory if

∫ ∞

t0

�(θ )Uk(θ ) dθ = ∞ (3.6)

for some k = 0, 1, . . . .

Proof Assume the contrary that there is a nonoscillatory solution x of (1.1). Then we can
assume x ∈ S+, and so x(t), x(τ (t)), and x(g(t, s)) are positive for t ≥ t1 ≥ t0 and s ∈ [a, b]. It
follows from Lemma 1.1 and 3.1 that (1.5) and (3.1) hold. As in the proof of Theorem 2.1,
we obtain (2.4).
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Now, we define w as in (2.11) with ρ ≡ 1. Proceeding as in the proof of Theorem 2.2 and
substituting (2.7) with (3.1), we arrive at

w′(t) + κ�(t)Uk(t) + αr–1/α(t)w1+1/α(t) ≤ 0 (3.7)

or

w′(t) + κ�(t)Uk(t) ≤ 0. (3.8)

Integrating (3.8) from t1 → t, we get

w(t) ≤ w(t1) – κ

∫ t

t1

�(θ )Uk(θ ) dθ .

Therefore, w(t) → –∞ as t → ∞, which is a contradiction. This contradiction completes
the proof. �

Theorem 3.2 Assume that Uk are defined as in Lemma 3.1. Every solution of (1.1) is oscil-
latory if

lim inf
t→∞

1
G(t)

∫ ∞

t
r–1/α(θ )G1+1/α(θ ) dθ >

1
β1/α , (3.9)

where

G(t) def=
∫ ∞

t
�(θ )Uk(θ ) dθ .

Proof Assume the contrary that there is a nonoscillatory solution x of (1.1). Then we can
assume x ∈ S+, and so x(t), x(τ (t)), and x(g(t, s)) are positive for t ≥ t1 ≥ t0 and s ∈ [a, b].
By the same procedure as in the proof of Theorem 3.1, we arrive at (3.7). Then, integrating
(3.7) from t → v, we find

∫ v

t
�(θ )Uk(θ ) dθ + α

∫ v

t
r–1/α(θ )w1+1/α(θ ) dθ ≤ w(t) – w(v).

Letting v → ∞, we get

G(t) + α

∫ ∞

t
r–1/α(θ )w1+1/α(θ ) dθ ≤ w(t), (3.10)

or equivalently,

1 + α

∫ ∞

t
r–1/α(θ )G1+1/α(θ )

(
w(θ )
G(θ )

)1+1/α

dθ ≤ w(t)
G(t)

. (3.11)

If we set � = inft≥t1 (w(t)/G(t)), then we note that � ≥ 1. However, from (3.9) and (3.11), we
get

� ≥ 1 + α

(
�

α + 1

) α+1
α

. (3.12)
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Therefore, relationship (3.12) can be modeled on the form

�

α + 1
≥ 1

α + 1
+

α

α + 1

(
�

α + 1

) α+1
α

,

which contradicts the possible values of � and α. This contradiction completes the
proof. �

For the following theorem, we need to define the sequence {φn(t)}∞n=0 as

φn(t) def= φ0(t) + α

∫ ∞

t
r–1/α(θ )φ1+1/α

n–1 (θ ) dθ , n = 1, 2, 3, . . . , (3.13)

and

φ0(t) def= G(t)

for all t ≥ t1 ≥ t0, where G is defined as in Theorem 3.2.

Lemma 3.2 Assume that x ∈ S+ and w is defined as in (2.11) with ρ ≡ 1. Then w(t) ≥ φn(t).
In addition, there is a function φ ∈ C([t1,∞), (0,∞)) such that limn→∞ φn(t) = φ(t) and

φ(t) = φ0(t) + α

∫ ∞

t
r–1/α(θ )φ1+1/α(θ ) dθ . (3.14)

Proof Assume that x ∈ S+. Then x(t), x(τ (t)), and x(g(t, s)) are positive for t ≥ t1 ≥ t0 and
s ∈ [a, b]. By the same procedure as in the proof of Theorem 3.2, we arrive at (3.10), and
hence

φ0(t) = G(t) ≤ w(t).

Thus, from the definition of φn(t), we note that w(t) ≥ φn(t) for all n > 1 and t ≥ t1. Since
{φn(t)}∞n=0 is an increasing sequence and bounded from above, φn(t) converges to φ(t). By
using Lebesgue’s monotone convergence theorem, if we take the limit of (3.13) as n → ∞,
then we obtain that (3.14) hold. The proof is complete. �

Theorem 3.3 Assume that Uk are defined as in Lemma 3.1. Every solution of (1.1) is oscil-
latory if

lim sup
t→∞

φn(t)
(∫ t

t0

r– 1
α (s) ds

)α

> 1 (3.15)

for some positive integers n.

Proof Assume the contrary that there is a nonoscillatory solution x of (1.1). Then we can
assume x ∈ S+, and so x(t), x(τ (t)), and x(g(t, s)) are positive for t ≥ t1 ≥ t0 and s ∈ [a, b].
Now, we define w as in (2.11) with ρ ≡ 1. From the fact that (r(s)(ℵ′(s))α)′ ≤ 0, we have

ℵ(t) = ℵ(t1) +
∫ t

t1

1
r1/α(θ )

(
r(θ )

(ℵ′(θ )
)α)1/α dθ
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≥ (
r(t)

(ℵ′(t)
)α)1/α

∫ t

t1

1
r1/α(θ )

dθ ,

which with (2.11) gives

w(t) = r(t)
(ℵ′(t)

)αℵ–α(t)

≤ r(t)
(ℵ′(t)

)α

(
(
r(t)

(ℵ′(t)
)α)1/α

∫ t

t1

1
r1/α(θ )

dθ

)–α

=
(∫ t

t1

1
r1/α(θ )

dθ

)–α

.

Thus,

w(t)
(∫ t

t0

1
r1/α(θ )

dθ

)α

≤
(∫ t

t0
r–1/α(θ ) dθ

∫ t
t1

r–1/α(θ ) dθ

)α

≤ 1

for t ≥ t1. Taking into account Lemma 3.2, we get a contradiction with (3.15). This con-
tradiction completes the proof. �

4 Examples
In this section, we apply our main results to some special cases of (1.1) and also compare
our results with the previous related results.

Example 4.1 Consider the second-order NDDE

(((
x(t) + p0x ◦ τ

)′)α)′ + �

[
q0

tα+1 · (x ◦ g)α ; a, 1
]

= 0, (4.1)

where p0 ∈ [0, 1), q0 > 0, δ ∈ [0, 1), τ (t) = ηt, η ∈ (0, 1), and g(t, s) = st for s ∈ [a, 1]. Obvi-
ously, we see that

b = 1, r(t) ≡ 1, p(t) ≡ p0, q(t, s) ≡ q0/tα+1 and

f (x) ≡ xα , with constant κ = 1.

Therefore, it is easy to verify that

�(t) =
q0

tα+1 (1 – a)(1 – p0)α , μ(t) = t, μ̃(t) = (1 + λ)t,

μ̂(t) = a1/(1+λ), and G(t) =
λaα/(1+λ)

aα

1
tα

,

where

λ
def=

1
α

aα(1 – a)(1 – p0)αq0.
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Next, to apply Corollary 2.1, we must first check either condition (2.9) or (2.8). By substi-
tution and a simple computation, we obtain

lim inf
t→∞

∫ t

ga(t)
μ̃α

(
ga(θ )

)
�(θ ) dθ = αλ(1 + λ)αlim inf

t→∞

∫ t

at

1
θ

dθ

= αλ(1 + λ)α ln
1
a

.

Thus, by using Corollary 2.1, (4.1) is oscillatory if

αλ(1 + λ)α ln
1
a

>
1
e

.

On the other hand, condition (3.9) with k = 1 reduces to

lim inf
t→∞

1
G(t)

∫ ∞

t
r–1/α(θ )G1+1/α(θ ) dθ =

(
λ

α

aα+α/(1+λ)

α

)1/α

lim inf
t→∞ tα

∫ ∞

t

1
θα+1 dθ

=
1
α

(
λ

α

aα+α/(1+λ)

α

)1/α

>
1

β1/α .

From Theorem 3.2, equation (4.1) is oscillatory if

λaα+α/(1+λ) >
αα+2

β
.

Example 4.2 Consider the second-order NDDE

(((
x(t) + (1 – δ)x(ηt)

)′)α)′ +
q0

tα+1 xα(λt) = 0, (4.2)

where δ ∈ (0, 1], q0 > 0, and η,λ ∈ (0, 1). Obviously, we see that

a = 0, b = 1, r(t) ≡ 1, p(t) ≡ 1 – γ , q(t, s) ≡ q0/tα+1, τ (t) ≡ ηt,

g(t, s) ≡ λt and f (x) ≡ xα , with constant κ = 1.

Therefore, it is easy to verify that

�(t) = δαq0
1

tα+1 , μ(t) = t, U0(t) =
(

1 +
1
α

λαδαq0

)
t

and

U1(t) = λα/(1+ 1
α λαδαq0).

From Theorem 3.2, equation (4.1) is oscillatory if

q0δ
αλα/(1+ 1

α λαδαq0) >
αα+1

β
. (4.3)
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Remark 4.1 Consider the special case of (4.2) where δ = 1, α = 1/3, and λ = 0.9. The os-
cillation criteria in [13, Corollary 2] and [17, Corollary 2.1] reduce to q0 > 3.61643 and
q0 > 1.92916, respectively. However, (4.3) reduces to q0 > 0.16131. So, our results improve
and extend some of the previous results.

5 Conclusion
The oscillation theory of DDEs has many applications in applied sciences. Thus, study-
ing the oscillation of the solutions of these equations has practical importance besides the
theoretical importance. In this study, we obtained different oscillation criteria with differ-
ent techniques. These new criteria enable us to test the oscillation of a class of NDDEs
with continuous delay. Our results extended to recently published works [14, 15], and also
improved [13, 17].

Modeling by fractional-order differential equations has more advantages than by classi-
cal integer-order ones as it considers the effects of existence of time memory or long-range
space interactions. So, it would be interesting to extend the results of this paper to the
fractional delay differential equations. Moreover, it is interesting to study the periodicity
behavior of solutions of the studied equation as an extension of the works [19, 23].
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