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Abstract: Drill and blast is the most cost-effective excavation method for underground construction,
however, vibration and noise, induced by blasting, have been consistently reported as problems.
Cut blasting has been widely employed to reduce the blast-induced problems during underground
excavation. We propose that the large hole boring method using the state-of-the-art MSP (Multi-
setting smart-investigation of the ground and pre-large hole boring) machine (“MSP method”) can
efficiently improve vibration reduction. The MSP machine will be used to create 382 mm diameter
empty holes at the tunnel cut area for this purpose. This study assessed the efficiency of the MSP
method in reducing blast-induced vibration in five blasting patterns using a cylinder-cut, which is a
traditional cut blasting method. The controlled blasting patterns using the MSP method demonstrated
up to 72% reduction in blast-induced vibration, compared to the base case, Pattern B, where only
cylinder-cut and smooth blasting method were applied. Therefore, the MSP method proves to be a
promising alternative for blasting in sensitive urban areas where non-vibration excavation techniques
were initially considered. Geological characteristics of 50 m beyond the excavation face can be
acquired through the proposed real-time boring data monitoring system together with a borehole
alignment tracking and ground exploration system. The obtained geological information will be a
great help in preparing alternative designs, and scheduling of construction equipment and labour
during the tunnel construction.
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1. Introduction

Drill and blast is widely well-known as the most economical and efficient method to
excavate rocks for the construction of underground structures; however, this method has
consistently caused problems of vibration and noise due to a large amount of explosives
in sensitive urban environments [1–5]. The key factor for tunnel blasting in urban areas
is producing maximum blasting efficiency while controlling the blast-induced vibration,
and a blasting design was carried out considering the tunnel support pattern and distance
from safety facilities [6]. However, there is a limitation in minimizing the blast-induced
vibration by reducing the charge per delay and advance per round. Additionally, use of
a low-vibration explosive not only delays the construction period but also increases the
blasting cost.

Formation of free faces is the most effective way to reduce blast-induced vibration [7,8];
however, tunnels generally have only one free face compared to open-pit mines. Cut
blasting is generally performed to create an additional free face, and is the most effective
and one of the most commonly utilized methods for reducing blast-induced vibration [9].
V-cut and cylinder-cut, which are traditional cut blasting methods, are mainly adopted to
achieve this; however, initial blast-induced vibration is maximized due to concentrated
charging of explosives on the cut area to create an additional free face [10]. For this reason,
it is difficult to control the vibration within an allowable standard near safety facilities, and
various tunnel blasting methods have been developed [11–13].
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Large empty holes over 250 mm in diameter have been used to reduce the blast-
induced vibration as a type of cut blasting at a tunnel site in Korea. Furthermore, having a
large free face is more effective for improving blasting efficiency [14]; however, there is a
limit for boring a large hole because the boring time increases, which leads to an increase
of the construction period. A large hole with a 362 mm diameter has been reported to show
a 25–30% vibration reduction effect compared to the conventional blasting method [15],
and the effect of vibration reduction compared with V-cut was up to 79% for 2 holes [16].

However, existing outdated boring machines are not usually used because there are
many critical drawbacks, such as numerous components, complex preliminary work, long
installing/uninstalling and construction times, and smoke problems caused by diesel
engines in the tunnel. Recently, an enhaced boring machine which greatly reduces the
preparation and construction times was developed with a 382 mm hammer bit for increas-
ing the blasting efficiency. The advantages of this method are that it not only creates a
large free face but also secures the geological information beyond the tunnel face using a
real-time boring data monitoring system mounted on the boring machine, and a borehole
alignment tracking and ground exploration system [17].

In this study, we assessed the vibration reduction efficiency of the multi-setting smart-
investigation of the ground and pre-large hole boring (MSP) method. The characteristics of
the traditional blasting method and the MSP method were compared, and the effects of
free face formation with respect to size of the drilled holes were analyzed theoretically. In
addition, real-scale test blasting was performed at a subway construction site, utilizing var-
ious blasting patterns of general blasting and the MSP method along the tunnel. Vibration
was monitored and this data was analyzed to compare the vibration reduction efficiencies,
and a detailed analysis of the effect of detonation delay time on vibration propagation
characteristics was performed as well.

2. Project Description
2.1. Introduction to MSP Method

The main purpose of the MSP method is to reduce the blast-induced vibration as one
of the cut methods by boring a large empty hole, as shown in Figure 1. A cut blasting
method using a large hole involves the utilization of 250–1000-mm diameter empty holes in
Korea [14]. The MSP method usually includes 50 m boring length using a high-performance
boring machine with a 382 mm hammer bit: 20 to 60 m depths can be drilled depending on
the conditions of a site. This method can be used to simplify the blasting patterns of the cut
area compared with other methods.
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This large empty hole plays an important role in the reduction of the initial vibration
by releasing the confining stress of the tunnel face before blasting, and the residual energy
after rock breaking. In addition, the compressive stress wave generated by the explosion is
reflected as a tension stress wave when it reaches the free face, and tensile strength of rocks
is typically much lower than compressive strength; therefore, the explosives loaded into
a charge hole at the cut area can break rock more efficiently [18–23]. The boost of tensile
failure by producing a large-diameter empty hole at the excavation surface, which is longer
than the length of the blast holes, greatly contributes to the efficiency of the blast force,
thus it has a great advantage in increasing the excavation length [15].

Figure 2 depicts an earlier version of a boring machine and the newly developed
high-performance MSP boring machine. One of the main issues with the old machine
was a lack of mobility and necessity for multiple construction vehicles (crane, truck, etc.)
for transportation and setting of the boring machine. Furthermore, a transition between
various functionalities was incorporated, and required accessories and other parts to be
carried around separately and manually installed. In contrast, the high-performance MSP
boring machine is capable of independent movement and setting utilizing a remote control
and crane system, which significantly reduces installation and uninstallation times by
more than 50% compared to older boring machines. A hydraulic power pack system that
generates electric power is used for boring without a diesel engine. This system improves
the working environment by reducing the smoke in the tunnel.
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Figure 2. Comparison of boring machine: (a) outdated boring machine, and (b) newly developed high-performance MSP
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Figure 3a shows the applications of the MSP method at tunnel and shaft construction
sites. This method is also used to create a free face to increase the breaking efficiency when
applying a hydraulic rock splitter, which is a non-vibration excavation method, as shown
in Figure 3b. The machine can not only be used for boring in the vertical shaft through
mode conversion, as shown in Figure 3c, but also for slope boring in the range of 0–90◦.
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2.2. Characteristics of the MSP Method

The characteristics of the most commonly used traditional methods and the MSP
method are compared in Table 1. V-cut and cylinder-cut, which are mainly used for cut
blasting, have no free face or small scale before blasting. One of the most important
features of the MSP method is the formation of a large empty hole of 382 mm, which is
approximately 3.7 times larger than that for the cylinder-cut before blasting. This method
provides a larger initial space for moving breaking rocks through a large empty hole,
and then a new free face is created sequentially through the movement of the breaking
rocks [24]. In particular, vibration reduction and breaking efficiency can be maximized
when constructing multi-MSP with two or more holes, and this method can use both short-
and long-hole blasting. In addition, the large hole serves as a groundwater discharge hole
as well, and the amount of groundwater for a 50 m section ahead of the tunnel face can be
predicted.

Table 1. Comparison of characteristics of cut blasting methods.

General Blasting (B) Single-MSP Multi-MSP

Site image
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Number of initial free faces 0 or 1–3
(Small scale)

1
(Large scale)

2–3
(Extremely large scale)

Characteristics

- Traditional cut method
(V-cut, Cylinder-cut)

- Relatively simple
process compared with
other methods

- Limitation of vibration
reduction exists

- High vibration
reduction efficiency

- Increases blasting
efficiency of cut area

- Additional process and
cost required for boring
a large hole

- Combining
low-vibration explosive
maximizes vibration
reduction

- Increased construction
cost due to combination
of methods

Application target areas

- Suitable for short-hole
blasting (L ≤ 1.5 m)

- Suitable for hard rock

- Suitable for long-hole
blasting (L ≥ 2.0 m)

- Suitable for soft rock

- Suitable for short- and
long-hole blasting

- Suitable for soft and
hard rock

The MSP method includes a real-time boring data monitoring system equipped with
the high-performance boring machine, and a borehole alignment tracking and ground
exploration system. The monitoring system measures the feed pressure, torque pressure,
percussion pressure, advance speed, and percussion vibration during construction. This
system can increase boring efficiency and minimize several problems, including damage
or loss of equipment caused by contact with geological anomalies or the carelessness of
operators.

The large empty hole is not only used as a free face but also plays an important role as
a guide hole. The borehole alignment tracking and ground exploration system is placed
into the hole after boring is completed to observe the geological features ahead of the
tunnel face. Images inside a hole are captured using a machine vision camera or 360◦

camera to investigate the conditions of the rock mass, joints, groundwater, and fractured
zones. Figure 4 shows a case of exploring the inside of a hole in a tunnel construction site
in the Gangwon region, Korea, where limestone is dominantly distributed. The image on
the left shows the system equipment, and the image on the right shows a large amount
of groundwater leaking from the left side of the roof at 30 m, and it can be realized that
a confined aquifer exists in this section. These data provide important information for
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reasonable and economical design, considering safety, for tunnel support patterns and
blasting designs in the 50 m section.
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Figure 4. Prediction of rock mass conditions ahead of tunnel face through borehole alignment tracking and ground
exploration system.

The boring quality is highly dependent on the effects of gravity, rotation of the hammer
bit, unexpected joint set, and fractured zone in the rock mass. Boring results should be
checked through tunnel excavation after 2–3 weeks, and reconstruction may be required
depending on the boring quality. Re-mobilization of the boring machine and additional
labor required to rectify errors in free face cut blasting delay the entire construction schedule
because all tunnel construction near the tunnel face must be suspended; this, in turn, would
lead to significant economic losses in terms of lengthened construction period, the necessity
for repetition of previously failed procedures, delay of subsequent procedures dependent
on completion of free face formation, and associated increased construction and labor cost.
A whole boring path can be traced using the borehole alignment tracking and ground
exploration system with an inertial measurement unit sensor to estimate the quality of
the boring result; thus, it is possible to determine right after boring whether the boring
requires reconstruction.

3. Comparison of Blasting Efficiency by Size of Empty Hole

The blasting efficiencies of the MSP and cylinder-cut methods, which utilize empty
holes, were compared according to the diameters of empty holes. Cylinder-cut generally
includes 1–3 empty holes with a diameter of 102 mm, which is relatively less effective
in reducing the vibration. Figure 5 shows the advance rate according to the drill length
and diameter of the empty hole. The longer the drilling length, the lower the blasting
efficiency, and the larger the empty hole, the better the blasting efficiency for the same
drilling length [14]. Figure 5 does not contain detailed information for diameters over
203 mm. It can be expected that the MSP method has better blasting efficiency because it
uses a 382 mm hole, almost twice as large as 203 mm.

The volumes of free faces for the MSP and cylinder-cut methods were calculated to
compare the effect of the free face. It was assumed that 1–3 holes of 102 mm diameter
were drilled to 1.1 m and the cross-sectional area of the free face was calculated using
Equation (1):

A =
πd2

4
(1)

where A is the cross-sectional area of the circle (m2) and d is the diameter of the drilled hole
(m). The calculated areas of the free faces for 1 hole of 382 mm and 1–3 holes of 102 mm
were compared, and the 382 mm diameter empty hole was found to increase the free face
by 14, 7, and 4.67 times for 1–3 empty holes with the diameter of 102 mm, respectively. The
MSP method, which normally bores an empty hole of 50 m depths at one time, is expected
to have a greater blasting efficiency by securing an additional free face in the direction of
excavation. In this case, the MSP method with a 50 m depth of the empty hole is expected
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to have 213 times the effect of the free face compared with the cylinder-cut method with
three empty holes.
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Equation (2) can be used to calculate the conversion diameter of empty holes with the
same effect when using more than two empty holes as a free face:

D = d
√

n (2)

where D is the conversion diameter of the empty hole, d is the diameter of the empty hole,
and n is the number of empty holes. Assuming the same drilling length, a hole with the
diameter of 382 mm has the same effect as 14 holes with a diameter of 102 mm, which is
equivalent to 636 holes of 50 m depth [14].

4. Real-Scale Test Blasting
4.1. Overview of Test Blasting

Real-scale test blasting was conducted to analyze the effects of vibration reduction
depending on several blasting patterns, including the MSP method. The test blasting was
carried out at a subway construction site in Seoul, concerned with damage to existing un-
derground infrastructures due to blast-induced vibration and minimizing civil complaints
in the urban area. A total of five patterns, including general blasting (B) and controlled
blasting (CB), were applied in the full-face excavation method, and the order of test blasting
was planned, as shown in Figure 6. The test blasting was performed at one site to compare
the results under the most similar conditions as possible. The area comprised granite gneiss
with approximately 80 MPa, and rough discontinuities under slightly weathered conditions
were identified in the rock mass at intervals of 0.2–0.4 m. Minimate plus (Instantel Inc.,
Ottawa, ON, Canada), which is a vibration monitoring system, was installed at the same
distance with a total of three points just above the tunnel face for measuring blast-induced
vibration, and the detailed information of the measuring instruments are shown in Table 2.

The patterns of test blasting for each method are shown in Table 3. The base case,
Pattern B, represents a cylinder-cut utilizing smooth blasting, a conventional uncontrolled
blasting pattern currently used in the field. In comparison, pattern CB-1, which also used
cylinder-cut, instead utilizes a combined Controlled Blasting (CB) method. Furthermore,
the other three controlled blasting patterns, CB-2, CB-3, and CB-4, are constructed with the
MSP method. In particular, the CB-4 pattern was used to maximize the blast-induced vi-
bration through the multi-MSP method using low-vibration explosives of 32 mm. Through
comparison of vibration data collected from the each of the five patterns, the effect of cut
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and controlled blasting methods on the reduction in blast-induced vibration have been
investigated and identified.
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Table 2. Specification of instruments for measuring vibration.

Specification Description

Name Minimate Plus (Instantel Inc.)
Range Up to 254 mm/s

Resolution 0.127 or 0.0159 mm/s with built-in preamp
Accuracy ±5% or 0.5 mm/s

Frequency range 2 to 250 Hz
Sampling rate 1024 to 16,000 S/s per channel

Table 3. Patterns of real-scale test blasting (base case (B), controlled blasting (CB)).

Pattern B Pattern CB-1 Pattern CB-2 Pattern CB-3 Pattern CB-4

Cut method Cylinder-cut
(2 holes)

Cylinder-cut
(2 holes)

Single-MSP
(1 hole)

Single-MSP
(1 hole)

Multi-MSP
(3 holes)

Controlled blasting method Smooth blasting Combined CB Combined CB Combined CB Combined CB

Explosives Emulsion Emulsion Emulsion Emulsion Low-vibration
explosive

Detonator Non-electric Non-electric Non-electric Non-electric Non-electric
Advance (m) 2.0 2.0 2.0 1.0 0.8

Blast hole depth (m) 2.2 2.2 2.2 1.1 1.0
Charge per delay

(kg/hole) 1.20 1.20 1.20 0.375 0.24

Number of LD holes - 32 37 37 37
Spacing of contour holes (m) 0.55 0.4 0.4 0.4 0.4

Number of blast holes 158 210 211 235 323
Total charge (kg) 159.70 178.10 176.60 68.325 69.880

High-performance emulsion with 32 mm loaded in the cut, stoping, and lifter holes
were mainly used for breaking rocks, and a finex which is low-vibration explosives of
17 mm was used in the contour hole to reduce overbreak, and the specification of the
explosives are shown in Table 4. Sequential blasting was performed using millisecond (MS)
delay detonators with a delay time of 20 milliseconds increments and long-period (LP)
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delay detonators with delay intervals between 100 and 500 milliseconds. General blasting
was detonated in the order of cut holes, stoping holes, contour holes, and lifter holes. In
addition, CB with pre-splitting (PS) and line drilling (LD) was detonated in the order of PS
holes, cut holes, stoping holes, contour holes, and lifter holes. Figure 7 shows images of
the construction procedures and installation of the vibration monitoring instruments, and
Figure 8 shows images of the cut area using different cut blasting methods, such as general
blasting, and the CB-2 and CB-4 patterns.

Table 4. Specification of used explosives.

Name Manufacturer Diameter
(mm)

Velocity of
Detonation

(m/s)

Density
(g/cc)

Heat of
Explosion
(kcal/kg)

Gas Quantity
(`/kg)

NewMite Plus Hanhwa corp. 32 5700 1.1–1.2 880 950
Finex 17 4400 1.0 800 850
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4.2. Results of Test Blasting

The results of the test blasting are summarized in Table 5, and the average peak
particle velocity (PPV) for each pattern was compared based on Equation (3):

PPVB − PPVCB
PPVB

× 100 (3)

where PPVB is average PPV of general blasting, PPVCB is average PPV of each controlled
blasting. According to the results of test blasting, the CB-1, -3, and -4 patterns showed
vibration reduction rates of approximately 16%, 39%, and 72% respectively, compared to
the average PPV value of general blasting. Meanwhile, a highest amplitude vibration was
generated in the CB-2 pattern, as shown in Table 5. The CB-2 pattern was expected to
exhibit a 20–30% vibration reduction efficiency, but the actual data showed a 46% increase
compared with general blasting.

Table 5. Measured results of blast-induced vibration.

No. Cut
Method

Peak Particle Velocity (PPV, cm/s) Vibration Reduction Rate
(%) Compared with BNo. 1 No. 2 No. 3 Min. Max. Ave.

1 B 0.468 1.260 0.624 0.468 1.260 0.784 -
2 CB-1 0.495 0.838 0.637 0.495 0.838 0.657 H 16.20
3 CB-2 0.868 1.080 1.480 0.868 1.480 1.143 N 45.79
4 CB-3 0.327 0.592 0.505 0.327 0.592 0.475 H 39.41
5 CB-4 0.241 0.160 0.252 0.160 0.252 0.218 H 72.19

4.3. Results of PPV Histories

Based on the measured blast-induced vibration data from each of the five test blast
patterns, the PPVs were extracted for each detonation time. Figure 9a–e illustrates the
relationship between the PPV values and the delay time of detonators (DTD) for each of
the five test blast patterns. The base case, pattern B, was measured with the maximum PPV
of 0.894 and 1.260 cm/s in the cut area and stoping area, respectively. Combined CB with
PS and LD was applied from CB-1 to CB-4 patterns, and although low-vibration explosives
were used, a relatively high-amplitude vibration in the contour line was generated in the
CB-1 to CB-3 patterns. In particular, higher vibrations were measured in the CB-2 pattern
despite the use of the single-MSP method, and the vibration of 1.340 cm/s occurred in
the PS holes, followed by the maximum vibration of 1.480 cm/s in the stoping holes. The
CB-3 pattern greatly reduced the vibration due to the use of single-MSP and reduced
charge weight by decreasing the advance. The CB-4 pattern had a significantly lower PPV
compared with other methods due to the use of multi-MSP and low-vibration explosives.
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5. Discussion
5.1. Analysis of Vibration-Increasing Factors

Several factors that could influence blast-induced vibration were analyzed to estimate
the cause of the high level of vibrations in the CB-2 pattern. Factors can be classified
into rock mass and explosion characteristics, which are summarized in Table 6 [14,25–27].
Blast-induced vibration is not only directly related to the quantity of explosives and the
distance between blast points and structures, but also the geological and geotechnical
conditions of the rock in the excavation area [28]. Geological conditions and the distance
between the blast face and structures indicate the properties related to the medium through
which vibrations propagate, and these variables cannot be altered [29]. In particular, the
spacing and orientation of the joint set and fractured zones have a significant effect on the
vibration propagation characteristics [30,31].

Table 6. Group of factors affecting blast-induced vibration.

Group Type Parameter
Degree of Effect

Severe Moderate Mild

Geological
conditions

Uncontrollable
variables

Distance between blasting point and structures #
Overburden #

Topography and stratum #
Rock condition #

Atmospheric condition #

Blasting conditions Controllable
variables

Type of explosive #
Charge per delay #

Delay time of detonation #
Drilling angle #

Burden and hole spacing #
Stemming conditions #

Primer position #
Charge weight #

Furthermore, the blasting conditions indicate the properties associated with the source
corresponding to the factors causing ground vibration. Several controllable parameters can
be estimated using empirical methods and should be properly estimated depending on the
geological conditions to minimize the vibration [32,33]. However, these changeable parame-
ters can lead to many unexpected variables during the blasting construction process, which
can occur in combination and increase the vibration. Depending on the type of explosive,
the time to reach the maximum pressure varies, and the vibration and frequency increase
with time [14]. A low-vibration explosive has a detonation velocity of approximately 60%
of that of an emulsion, which is commonly used in tunnel blasting. Although it generates
a relatively low vibration, the insufficient crushing efficiency can lead to high-amplitude
vibration caused by incorrect design [34,35]. In general, electric/non-electric detonators
used for blasting use chemical retarders to delay the detonation time, and these detonators
can have errors in detonation time of up to 10% [36]. These errors can change the initiation
time, and could cause difficulty in controlling the blast-induced vibration; thus, the error
of the detonator might increase blast-induced vibration [37–39]. The accuracy of the delay
time of the detonator is critical to the coupling of explosion energy and crack propagation
between holes [40], and the sequence of detonation can be overlapped or reversed, causing
greater vibration than expected [41,42]. To minimize these detonating errors, an electronic
detonator with 0.01% error has recently been employed [36]. Accurate or irregular drilling
can increase efficiency depending on the blasting patterns, but sometimes vibration can
increase owing to unexpected drilling errors [43]. Moreover, a decrease in burden or hole
spacing can increase the explosion energy or occur a dead pressure caused by locally
concentrated explosives [44], meanwhile, an increase in burden or hole spacing makes it
difficult to break the rock mass.
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5.2. Analysis of Propagation Characteristics of Blast-Induced Vibration

In addition, combined CB is located on the tunnel contour line and generates a PS
layer along the guide holes before the main blasting to control overbreak and prevent the
propagation of blast-induced vibration to the outside of the tunnel [45,46]. According to
the research, a vibration reduction effect of approximately 50% has been reported [47], and
the vibration is usually reduced to around 30% on the construction site. However, CB-1
has a vibration reduction rate of only approximately 16%, even though combined CB was
applied under the same conditions as general blasting, as shown in Table 5.

As previously stated, the PPV values were extracted in Figure 9. Then, the locations
at which these maximum values were measured were overlaid onto the initial design
drawings of tunnel cross-section for all blast holes, as shown in Figure 10. Each figure
depicts the area showing the first and second maximum value of PPV, and each shaded
area represents detonators with the same delay time. According to Figure 10, most areas
showing the high-amplitude blast-induced vibration were measured at the stoping, contour,
or lifter area rather than the cut area in CB-1, CB-2, and CB-3 patterns, while the CB-4
pattern showed the first maximum value of PPV in the cut area; however, the value of
0.160 cm/s is a significantly lower PPV value compared to other patterns. In particular,
patterns CB-1 to CB-3 with combined CB generated maximum PPVs in the contour line
despite the use of low-vibration explosives and LD holes. To generate the fracture planes
smoothly through the tunnel contour line using PS blasting, appropriate blasting patterns
should be designed considering the rock conditions, particularly in jointed rock. In addition,
it is important for PS and LD holes to maintain regular spacing in both the longitudinal
and lateral directions, and the drilling angle for all blasting holes should also maintain
constant directionality, as originally designed.
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As a result of analyzing the drilling condition, the spacing between each hole not only
exceeded the design criteria but was not uniformly drilled, indicating that the LD holes
failed to act as guide holes to generate the fractured planes. Furthermore, it is assumed
that the cracks between the PS holes and LD holes are not smoothly connected owing to
the characteristics of the rock mass with a dense distribution of multiple joint sets [48].
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We estimate that, despite application of the MSP method, relatively high-amplitude blast-
induced vibration partially occurred in the contour line owing to detonation without LD
holes acting as free faces. Furthermore, the CB-2 pattern demonstrated high-amplitude
blast-induced vibration in the contour line, and did not produce fractured layers smoothly,
and it failed to prevent propagation of the vibrations generated by the main blasting. Vibra-
tion monitoring was conducted under as similar conditions as possible, and it is assumed
that the variance in geological conditions between the blasting point and measurement
point affected the characteristics of vibration propagation [49]. Therefore, to efficiently
apply the low-vibration explosives for combined CB, the advance should be limited to
the maximum of 1.5 m, and appropriate patterns should be designed considering rock
characteristics. In addition, it is believed that efficient vibration reduction will be possible
if drilling errors are minimized by strengthening construction standards.

5.3. Effects of MSP Method on Vibration Reduction

According to the results of the test blasting, the MSP method was generally more
effective in reducing the blast-induced vibration than the traditional cut method. However,
as discussed in the previous section, the CB-2 pattern with the single-MSP method unex-
pectedly produced a high-amplitude vibration due to the geological characteristics of the
rock mass and drilling errors in the stoping area and contour line. The test blasting was
performed once for each pattern, and it is difficult to establish the effect of vibration reduc-
tion of the MSP method. Based on numerous field applications of the MSP method and
the results of the test blasting, a vibration reduction effect of approximately 25–30% was
expected compared with the general blasting; thus, additional test blasting must be carried
out to establish a tendency of the vibration reduction effect for the MSP method [15,16].

When the number of large empty holes was increased (CB-4), the free face in the cut
area was expanded to increase the moving space of crushed rock in the stoping area and to
reduce the crushing resistance; hence, it was possible to greatly reduce the vibration, and
the MSP method with combined CB exhibited a reduction effect of approximately 70%. If
maximum vibration occurs in the stoping, contour, or lifter areas rather than the cut area,
there is a limit to the effect of reducing the vibration using the MSP method. Therefore, a
study of a new blasting pattern is necessary that can be installed separately in each section
of a tunnel face to reduce the blast-induced vibration rather than focusing on the cut area.
Furthermore, since there are various variables and restrictions in the actual construction
site which prevent stringent control over experimental conditions, additional field-scale
experiments will be pursued to analyze the effect of precise vibration reduction with respect
to the size of the empty holes and demonstrate that the enhancement in vibration reduction
efficiency observed is reproducible under homogeneous conditions. These efforts will
help establish optimal design patterns using large empty holes to minimize blast-induced
vibration depending on the conditions of the site. It is believed that the proper combination
of multi-MSP over three holes with other vibration-controlled blasting techniques, such
as electronic detonators, can pose as a viable alternative cut method for non-vibration
excavation sections close to safety facilities.

6. Conclusions

In this study, we studied how much the MSP method using large empty holes could
efficiently reduce the vibration generated during tunnel blasting. The vibration reduction
efficiency of this method was analyzed through the real-scale test blasting of five patterns,
using the traditional cylinder-cut and MSP methods, at a tunnel construction site.

The MSP method creates relatively large free faces compared to the traditional parallel
hole cut method in the cut area before the main blasting, significantly reducing blast-
induced vibration by up to 72% compared to general blasting utilizing the traditional
cylinder-cut method. Thus, the MSP method could be used as an excellent alternative
method for non-vibration excavation sections, which are highly sensitive to blast-induced
vibration, to reduce construction duration and costs. However, even when the stress
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level around the cut area was released through the application of the MSP method, there
was a limit in reducing blast-induced vibration due to drilling error in the contour areas.
Therefore, an improved blasting pattern using large empty holes should be considered to
be located in each section of the stoping area instead of concentrating the large empty hole
on the cut area.

Since it is difficult to determine the vibration reduction effect of the MSP method
due to insufficient field data and lack of experimental controls in this study, we hope
to reproduce our findings through continuous data collection and controlled field-scale
experiments. We hope to demonstrate that the MSP method can efficiently control blast-
induced vibration across various site conditions and is a viable and effective method for
blast-induced vibration control. Furthermore, we expect that utilizing electronic detonators
that exhibit enhanced precision of detonation delay compared to electric/non-electric
detonators will maximize vibration reduction efficiency of the MSP method. Lastly, the
MSP method not only reduces blast-induced vibration compared to the traditional cut
blasting (pattern B) adopted in this paper but also can collect geological information
without additional guide holes through the use of a real-time boring monitoring system
and a borehole alignment tracking and ground exploration system and presents as a great
resource for drill and blast tunneling methods.
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