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Abstract: Entering a new era of big data, analysis of large amounts of real-time data is important,
and air quality data as streaming time series are measured by several different sensors. To this
end, numerous methods for time-series forecasting and deep-learning approaches based on neural
networks have been used. However, they usually rely on a certain model with a stationary condition,
and there are few studies of real-time prediction of dynamic massive multivariate data. Use of a
variety of independent variables included in the data is important to improve forecasting performance.
In this paper, we proposed a real-time prediction approach based on an ensemble method for
multivariate time-series data. The suggested method can select multivariate time-series variables
and incorporate real-time updatable autoregressive models in terms of performance. We verified the
proposed model using simulated data and applied it to predict air quality measured by five sensors
and failures based on real-time performance log data in server systems. We found that the proposed
method for air pollution prediction showed effective and stable performance for both short- and
long-term prediction tasks. In addition, traditional methods for abnormality detection have focused
on present status of objects as either normal or abnormal based on provided data, we protectively
predict expected statuses of objects with provided real-time data and implement effective system
management in cloud environments through the proposed method.

Keywords: dynamic regression; dynamic transfer; ensemble; air pollution quality; application
performance monitoring

1. Introduction

Massive real-time data storage and real-time data visualization are available in many
industries, and have improved data analysis techniques for real-time data. In other words,
among various versions of time-series analysis, the prediction in real time is the one of
main interests in the field. Also, much log big data has been produced between web or
mobile applications and server systems because of developments of web and IoT systems,
etc. Thus, analyzing this kind of data is becoming increasingly important these days [1,2].
In particular, APM (Application Performance Management) is a real-time log big data
analysis system that collects and manages performance information of a server system
between usages of user applications and services of a server system such as web application
server or data base server.

Various extended models such as VAR (Vector Autoregressive) and VARMA (Vector
Autoregressive Moving Average) have been used for multivariate time-series analysis.
VAR and VEC (Vector Error-correction) were exploited for long-term prediction based
on multivariate time-series data [3], and VARMA was used for multivariate time-series
data in financial services [4]. Study in [5] researched prediction performance of the VAR
model using direct multi-step estimation for both stationary and non-stationary time series
generated in economic activities, and study in [6] forecasted price of electricity by VAR
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model using fractional cointegration. One drawback of VAR model is that the number of
parameters to be estimated can become large [7]. Recently, predictions for Fuzzy time series
were performed using a multivariate heuristic model [8], and a new method using Fuzzy
relation based on a neural network algorithm was suggested for high-dimensional time
series data [9]. However, these models need to satisfy too many conditions and constraints;
the VARMA model is slow with complicated data [10]. In addition, even if the models
handle multivariate time-series data, they are usually not suitable to forecast a certain
dependent variable of the data. Thus, given many situations, traditional single models for
forecasting multivariate time series have limits.

As one possible approach to these problems, an ensemble method combining many
models have been proposed for time-series data in diverse situations. In particular, as so-
lutions based on neural network algorithm have been in fashion, [11] suggested a new
type of ensemble method using nonlinear weights with ARIMA, ANN, and RNN models.
Despite some advantages, however, the method is not adequate for real-time forecasting
and has a limitation of increasing complexity as the number of models increases. Similarly,
based on research using a neural network algorithm, these kinds of multivariate time-series
forecasting methods are not suitable for real-time analysis because of long training time
with high complexity [12]. Recently, for real-time prediction, the ELMK method combining
ELM (Extreme Learning Machine) and kernel methods was proposed [13]. It showed
increased real-time forecasting performance on non-stationary time series by applying a
fixed memory-based prediction algorithm that eliminates training data of the past. In ad-
dition, [14] suggested an online prediction model by applying versions of Newton and
gradient descent algorithms into a loss function of the ARMA model. Although these
kinds of studies on real-time prediction of time series have been conducted, there are
few studies focusing on real-time analysis for multivariate time series. A new real-time
multivariate forecasting model is needed to replace the univariate one to handle many
time-series features collected online.

In this paper, we propose multivariate ensemble method based on dynamic transfer
model for stable real-time prediction and verify its performance by applying it to predict
failures with performance log data generated in a server system. Time-series prediction
algorithms using a transfer model are a form of lagged regression where input variables
Xt affect autoregressive input variables of response variables Yt. There are various ways
of building and identifying lagged regression models according to relationships between
input Xt and output Yt. One disadvantage of a lagged regression model is that it is difficult
to consider uncertainty of a dynamic input variable process [15]. Also, when one attempts
to find lags from cross correlation between input and output variables, the model can be
unclear and too empirical [16]. Although some solutions such as using Monte-Carlo-based
analysis [17] have been proposed to solve this problem, we suggest a novel ensemble-based
method. An ensemble approach incorporates various features from various locations and
scales that can be beneficial in many fields [18]. The proposed method selects various
input variables for each lagged regression and generate diverse dynamic transfer models
based on the selected input variables, with autoregressive time-series analysis of output
variables. We perform this approach to build a basis ensemble model with offline training
data and then forecast response variables in real time by updating the basis model online.
Since there are many dynamic transfer basis models generated from diverse combinations
of input variables, autoregressive orders, and difference orders, and because the best
model is selected from a set of bases by an ensemble method, we obtain the best offline
model that is suitable in as many situations as possible. Next, we update weights for each
basis model and regression coefficients in real time, which enables the proposed approach
to be faster, more accurate, and more stable for predictions in many environments. We
consistently manage the suggested model by periodically offline updating the basis model
to reflect unpredictable environmental changes that are possible in industry. Moreover, we
effectively use memory since online updating does not require much information.
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We verified significant performance of the proposed real-time forecasting algorithm
based on the ensemble of dynamic transfer models for multivariate time series by analyzing
simulated dataset. Next, we suggested a way of using the proposed method for server per-
formance data in server systems. For server system data, we predict failures with real-time
data from a performance management system. Given plenty of multivariate applications,
servers, and databases in the field of performance management, it is important not only to
assess status of the present system, but also to correctly predict failures. The precautionary
action with high prediction accuracy enables us to consistently operate services in a cloud
environment of a server system because of directly allocating resources such as CPU or
memory. We showed that the provided method can achieve good prediction performance
with the real-time multivariate time-series data in a server system.

2. Preliminaries: ARIMA, Transfer Function, Ensemble

In this section, we provide a summary of classical time-series models and an ensemble
model for the prediction model proposed in the next section. A time series is a sequence
of quantitative observations at successive time points. We denote xt to be the observation
at time t. A sophisticated, classical, and widely used model is autoregressive integrated
moving average (ARIMA) with order p, d, and q, ARIMA(p, d, q):

(1−
p

∑
i=1

αiBi)(1− B)dxt = (1 +
q

∑
i=1

φiB)at,

in which at is the zero-mean white noise at time t and B is a backward shift operator.
Autoregressive and moving average, ARMA, is a special case of ARIMA(p, d, q) with a
difference order d of zero. ARMA is a statistical model for time series to describe a weakly
stationary stochastic process with autoregression and moving average terms. The model
ARIMA(p, d, q) is ARIMA(p, 0, q) for d-step differential process (1− D)dxt. If the moving
average polynomial, (1 + ∑

q
i=1 φiB), is invertible, the model can be represented as an

infinite autoregressive model, xt = ∑∞
i=1 α′ixt−i + at. A transfer function model represents

the relation between input xt and output Yt that reflects input-output delays [19]. The use
of moving average polynomials δ(B) and ω(B) for both xt and Yt in the model enables
determination of the causal relationship between two time series: for delay b and noise nt,
δ(B)Yt = ω(B)xt−b + nt. If multiple inputs, x1,t, . . . , xm,t exist, the model is

Yt = δ(B)−1ω1(B)x1,t−b1 + · · ·+ δ(B)−1ωm(B)xm,t−bt + n′t,

where n′t is noise [20]. Modeling transfer functions with multiple inputs and reflecting
nonlinearity between input and output are challenging. In light of this observation, we
propose a dynamic transfer model. An ensemble method is a way of integrating multiple
machine-learning algorithms to obtain better performance than one algorithm alone. A key
component in ensembles is to have multiple base learners exceeding random algorithm
and including diversity. To promote diversity in base learners and numerically avoid
overfitting, bootstrap aggregating is widely adopted by using a randomly drawn subset
of a training set. In bootstrap aggregating, an ensemble classifier f is composed of base
learners, f̂i, i = 1, · · · , B, with associated weight wi as follows:

f̂ = w1 f̂1 + w2 f̂2 + · · ·+ wB f̂B.

Weight wi is often determined according to the performance of f̂i.

3. Proposed Method

The proposed method for multivariate time series consists of two components, dy-
namic transfer model and an ensemble of dynamic transfer model. First, we describe the
formulation of dynamic transfer model and point out both similarities and differences
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between the existing models and the proposed one. Then, we describe the integration of
dynamic transfer models for reliable and accurate prediction in multivariate time series.

3.1. Dynamic Transfer Models

In this section, we explain a dynamic transfer model using multivariate time series
and expound an ensemble of such models for more accurate and stable performance.
We consider two versions, one that stores a fixed number of past observations and another
that does not need to store past observations but update the model parameters on a real-
time basis. The basic idea of a dynamic transfer model is to combine a dynamic lagged
regression model with a transfer function model to allow the model to adapt its parameters
in an online fashion.

Consider a time series Yt corresponding to a response variable and independent time-
series signals x1,t, x2,t, · · · , xm,t, t = 1, · · · , T. We start with a dynamic regression model for
response time series Yt,

(1− B)dYt = β0 +
p

∑
k=1

βkYt−k +
m

∑
j=1

Ijαjxj,t + εt, (1)

of autoregressive order p, difference order d, and input selector I of m× 1, where Ij is 1 if
the corresponding xj,t is included and zero otherwise and εt is white noise. For example,
for p = 2, d = 1, and I = [1 0 0 1]T , the corresponding model is

Yt −Yt−1 = β0 + β1Yt−1 + β2Yt−2 + α1x1,t + α4x4,t + εt. (2)

As shown in the example, for d ≤ p, the model with p, d, and I produces the same
result as the model with p, 0, and I.

The model attempts to determine the effect of input signals, xj,t, j = 1, · · · , m, on re-
sponse signal Yt in such a way that the dynamic response of Yt may vary in xj,t using
input selector I. We maintain several input selectors, I(`), ` = 1, · · · , L, in an ensemble
stage, which will be explained in the following section. The model can capture the effect
of xj,t that declines gradually to zero as in lagged regression models. For example, if Yt is
modeled by an infinite number of lagged values x1,t, among m = 4 input signals, with an
exponentially decaying effect.

Yt = w{x1,t + βx1,t−1 + β2x1,t−2 + · · · }+ εt.

Then the model is rewritten as Yt =
w

1−βB x1,t + ε(t) for |β| < 1 and is simplified as a
lagged dependent variable model,

Yt = βYt−1 + αx1,t + ε′t,

which is an instance of the proposed model in (1) with p = 1, d = 0, and I = [1 0 0 0]T .
The dynamic transfer model shares similarity with an autoregressive moving average

with external terms (ARMAX) model. ARMAX is an application of ARMA with external
explanatory variables. However, we mention the following two differences between the
two models. First, the proposed model considers input signal xj,t to be stochastic, whereas
ARMAX models consider external inputs as deterministic. We separately build the time-
dependent model of input signal xj,t. Second, the model allows the dynamics of a response
signal by selection of input signals, using input selector I, in various ways. This approach
enables the model to generate several meaningful results that will be used and aggregated
in the ensemble stage.

Indeed, the proposed model faces a few computational challenges. For model training,
it attempts to find the relationship between response signal Yt and current input signal xj,t
only at time t. Given the input signals as a stochastic process, we try to explain Yt using
input signals at a certain fixed time, usually current time t. This approach is considered a
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model simplification, and will be compensated by the ensemble stage in the next section.
Difference order is also challenging, and several strategies such as empirical analysis of
autocorrelation, numerical search of the lowest standard deviation, and theoretical testing
of stationarity can be adopted in practice. For model identifiability, we need to fix p, d,
and I in the model. Identification of optimal parameters is nontrivial but challenging. For
example, to find the optimal difference order d, one can adopt several strategies such as
empirical analysis of autocorrelation, numerical search of the lowest standard deviation,
and theoretical testing of stationarity. To cope with this challenge, we set difference order d
from 1 to D, assessing its performance in the following ensemble stage. The same strategy
is applied to p and I. For fixed p, d, and I in the model, the model is identifiable, and we
estimate the parameters using least-squares. The estimates are consistent but possibly
biased in some cases [21]. We similarly build an autoregressive model for input xj,t of
autoregressive order pj and difference order dj,

xj,t(1− B)dj = φj,0 +

pj

∑
k=1

φj,kxj,t−k + εj,t.

We represent the prediction of input signal xj,t+h, h ≥ 1 by available measurements up
to current time t when predicting Yt+h in Equation (1). This procedure is commonly used
to replace an unobserved, usually random input with its expectations from an auxiliary
model [22]. We denote the h-step-ahead prediction of Yt+h using observations up to t
by Ŷt+h|t. For example, suppose the exemplary model in (2) is used, and the following
autoregressive models for x1,t and x4,t were obtained, respectively: x1,t = φ̂1,0 + φ̂1,1x1,t−1 +
ε1,t and x4,t = φ̂4,0 + φ̂4,1x4,t−1 + φ̂4,2x4,t−2 + ε4,t. Then, the one-step-ahead prediction
Yt+1|t is obtained as follows:

Ŷt+1|t = β̂0 + β̂1Yt + β̂2Yt−1 + α̂1(φ̂1,0 + φ̂1,1x1,t) + α̂4(φ̂4,0 + φ̂4,1x4,t + φ̂4,2x4,t−1).

3.2. Ensemble of Dynamic Transfer Models

For accurate and reliable online prediction using multivariate time series, we propose
an ensemble approach that generates numerous dynamic transfer models, described in
the previous section and used as a base learner in the ensemble method, and select a few
models that work well in predefined prediction tasks. Then, we update the selected models
on a real-time basis using either a fixed amount of past data or recursive least-squares.
To build an ensemble model, we conduct the following three steps:

Step 1. Generate numerous candidate models for response Y(`)
t as in (1) with p`, d`, and

I`, ` = 1, . . . , L, using training observations.
Step 2. Choose the top-K models as base learners among the L candidate models in

terms of minimum prediction error.
Step 3. Generate prediction models for input variables, xj,t, using training observations.

The above steps are performed in an offline training session for a h-step-ahead predic-
tion task. Specifically, we consider models of autoregressive orders from 1 to P, difference
orders from 1 to D, and input variables no greater than q among m variables, which brings
the total number of considered models to PD ∑

q
j (

m
j ) in Step 1. If PD ∑

q
j (

m
j ) models are

computationally feasible to handle, we set L = PD ∑
q
j (

m
j ); otherwise, L is a large number

that can be handled computationally. It is possible that different models for xj,t are used in
Step 3. We apply a model-weighting strategy based on prediction error [23]. For a candidate
model Y(`)

t , the model-performance weight, w`, in training is calculated and normalized
as follows:
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w` =
1

∑T−h
t=T−G+1−h(Yt − Ŷ(`)

t+h|t)
2

, w` ←
w`

∑L
l=1 wl

,

in which parameter G is the number of time observations for performance evaluation in
offline training. Since the weight is reciprocal to the sum of squared error, the larger is w`,
the better is the model. Then, we choose the top-K models, Ŷ(1)

t , · · · , Ŷ(K)
t as base learners

in terms of w`, and we build the final ensemble model as the following:

Ŷt = w1Ŷ(1)
t + w2Ŷ(2)

t + · · ·+ wKŶ(K)
t .

Similarly, for a prediction model of each input xj,t in Step 3, we consider models of
autoregressive orders from 1 to P′, and difference orders from 1 to D′ and construct an
ensemble of them similarly. In short, the offline training session produces K feasible models
of input xj,t for the h-step-ahead prediction task, yielding x̂j,t+h. Then Ŷt+1|t and Ŷt+2|t that
is Ŷt+h|t in (1), are constructed using x̂j,t+h.

When online streaming observations of Yt′ , x1,t′ , x2,t′ , · · · , xm,t′ , t′ > T are available,
we update the coefficients (β0, βk, and αj in (1)) in each of the top-K models. We have
two options in updating. One is to use a fixed number of past observations from t′ and
refit each model to calculate the coefficients. This option is reasonable in that we cannot
indefinitely store streaming data in memory due to fixed memory size. Denote this version
as EDT-w (ensemble of dynamic transfer model using fixed window). The second option is
to apply recursive least-squares to update the coefficients. The second option also makes
sense in that not only does the recursive least-squares (RLS) approach enable fast updating,
but also makes possible the use of all past observations without storing them in memory.
Denote this version as EDT-r (ensemble of dynamic transfer model using RLS). Then we
update model-performance weight w` using the most recent prediction task as follows:

w` =
1

∑t′−h
t=t′−G+1−h(Yt − Ŷ(`)

t+h|t)
2

, w` ←
w`

∑L
l=1 wl

.

4. Experiments

For all experiments, we deployed six traditional time-series forecasting methods,
ARIMA, ARIMAX, ANN (Artificial Neural Network), ANNX (Artificial Neural Network
with extra predictor), RNN (Recurrent Neural Network), VAR (Vector Autoregressive),
and the two proposed methods, EDT-w and EDT-r. ANN is a collection of nodes, also
known as neurons, with a layer structure to map inputs to outputs. ANNX is an appli-
cation of ANN with external explanatory variables. RNN is a class of artificial neural
networks with internal, hidden and autoregressive, states, and VAR is a multivariate
autoregressive version of ARIMA. For the proposed methods, we set the parameters as
P = 9, D = 3, P′ = 5, D′ = 1, K = 40, and window size = 200. To compare short-term and
long-term forecasting performance, we provide four forecasting errors for t+ 1, t+ 3, t+ 6,
and t + 12 in terms of RMSE (root mean square error) and repeat the computation three
times. Also, computing time in seconds is provided as reference, and all of them are in
a reasonable range. The computing time of only two proposed methods are different for
t+ 1, t+ 3, t+ 6, and t+ 12 because they select the local optimal parameters while training
depending on the time window.

4.1. Simulation 1

The first simulation dataset is obtained using VAR.sim function from package multivar
in R that aims to generate VAR-based simulation data. Since real-life datasets in the later
sections are eight-dimensional, we generated the same eight-dimensional time-series data,
(x1,t, . . . , x8,t), and set the last one, x8,t as a target time-series, yt, for forecasting. One
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example is provided in Figure 1. The length of each time-series is 5000 with the first 4000
data used for training and the remaining 1000 data for testing. There is no anomaly in this
first simulation with stationarity compared with simulations without stationarity in the
next section.
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Figure 1. An example of the first simulation dataset. The bottom center is the target time-series.

Outputs for the first simulation are shown in Table 1. For t + 1, VAR is the most
likely to show the best performance since the first simulation data were generated by the
VAR model of VAR.sim function in R. Indeed, VAR was superior for short-term prediction.
However, the proposed EDT-w method dominates the other methods for t + 3, t + 6, and
t + 12 with longer-term.

4.2. Simulation 2

We used arima.sim function from package stats in R to generate the second simula-
tion dataset. First, we generated seven independent time-series, (x1,t, . . . , x7,t), as a form
of ARIMA(m, n, 0) where 1 ≤ m ≤ 5 and 0 ≤ n ≤ 2. We also pre-set a range of autore-
gressive coefficients to be between −1 and 1. Then, we defined yt as a target time-series
that is dependent on (x1,t, . . . , x7,t). We first generated independent time-series with the
same rule for (x1,t, . . . , x7,t) and define it as zt. Then, we added a linear combination of
(x1,t, . . . , x7,t) at time t with coefficients between −1 and 1 to zt and defined it as the final
target time-series, yt. For example, yt as a form of ARIMA(2, 2, 0) can be repreresented as

yt = zt + α1x1,t + · · ·+ α7x7,t

where zt = β1zt−1 + β2zt−2 + θ1εt−1 + θ2εt−2 + εt and−1 ≤ α, β, θ ≤ 1. As in the previous
simulations, the length of each time-series is 5000 items, and the first 4000 were used for
training and the later 1000 for testing. One example is visualized in Figure 2.
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Table 1. RMSE and computing time for datasets from the first simulation.

Target Time Iteration ARIMA ARIMAX ANN ANNX RNN VAR EDT-r EDT-w

t + 1

1st
time 0.01 5.69 0.3 3.02 2.45 0.01 0.36 1.98

RMSE 0.5245 0.3607 0.4705 0.3595 0.4810 0.1356 0.7619 0.8498

2nd
time 0.53 4.76 0.92 18.49 4.02 0.23 0.23 0.81

RMSE 0.5824 0.4002 0.5217 0.4361 0.5558 0.1815 0.8043 0.4107

3rd
time 0.07 0.78 0.27 2.58 0.61 0.06 0.78 0.53

RMSE 0.5771 0.5823 0.5660 0.5649 0.7306 0.2495 1.4617 0.5189

t + 3

1st
time 0.01 5.69 0.3 3.02 2.45 0.01 0.26 0.72

RMSE 0.6163 0.4341 0.5495 0.4451 0.4668 0.2878 0.5642 0.3754

2nd
time 0.53 4.76 0.92 18.49 4.02 0.23 0.28 0.86

RMSE 0.6348 0.4627 0.6516 0.4902 0.5436 0.3968 0.8547 0.1924

3rd
time 0.07 0.78 0.27 2.58 0.61 0.06 0.47 0.36

RMSE 0.6241 0.7274 0.6306 0.6436 0.7185 0.4598 0.9037 0.2411

t + 6

1st
time 0.01 5.69 0.3 3.02 2.45 0.01 0.22 1.13

RMSE 0.6604 0.4191 0.6338 0.4439 0.4637 0.3678 0.6202 0.3311

2nd
time 0.53 4.76 0.92 18.49 4.02 0.23 0.32 0.75

RMSE 0.6638 0.4747 0.6793 0.5354 0.5469 0.4438 0.7295 0.2470

3rd
time 0.07 0.78 0.27 2.58 0.61 0.06 0.26 0.38

RMSE 0.7100 0.7961 0.7249 0.7321 0.7208 0.6028 0.9821 0.2087

t + 12

1st
time 0.01 5.69 0.3 3.02 2.45 0.01 0.17 1.61

RMSE 0.6781 0.4526 0.7137 0.5224 0.4658 0.4245 0.6170 0.2047

2nd
time 0.53 4.76 0.92 18.49 4.02 0.23 1.19 2.32

RMSE 0.6560 0.5039 0.7386 0.5746 0.5519 0.5420 0.6807 0.1731

3rd
time 0.07 0.78 0.27 2.58 0.61 0.06 0.28 0.2

RMSE 0.7565 0.7635 0.7958 0.7851 0.7163 0.6555 0.9284 0.4405
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Figure 2. An example of the second simulation dataset. The bottom center is the target time-series.
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The output in Table 2 is very similar to that of the previous simulation because this
second simulation data were created using arima.sim function in R. Thus, ARIMA shows
the lowest error for t + 1 and t + 3. However, as in the previous case, the proposed EDT-w
method is always better than the other methods for t + 6 and t + 12 with longer-term.

Table 2. RMSE and computing time for datasets from the second simulation.

Target Time Iteration ARIMA ARIMAX ANN ANNX RNN VAR EDT-r EDT-w

t + 1

1st
time 0.25 5.12 0.81 3.93 2.83 0.15 1.36 2.44

RMSE 0.0049 0.0066 0.0052 0.0065 0.2060 0.0055 0.0589 0.0537

2nd
time 1.45 5.17 3.22 10.67 3.26 0.8 0.39 1.89

RMSE 0.0415 0.0424 0.0930 0.0502 0.5686 0.0438 0.1612 0.0863

3rd
time 0.11 0.78 0.22 1.28 1.25 0.09 0.49 0.56

RMSE 0.0322 0.0351 0.0375 0.0433 0.3966 0.0328 0.1368 0.0982

t + 3

1st
time 0.25 5.12 0.81 3.93 2.83 0.15 0.65 2.31

RMSE 0.0079 0.0092 0.0091 0.0100 0.1646 0.0078 0.0118 0.0040

2nd
time 1.45 5.17 3.22 10.67 3.26 0.8 0.28 1.48

RMSE 0.0737 0.0827 0.1799 0.1046 0.5683 0.0869 0.1982 0.0943

3rd
time 0.11 0.78 0.22 1.28 1.25 0.09 0.37 0.6

RMSE 0.0398 0.0530 0.0502 0.0633 0.3935 0.0513 0.0855 0.0501

t + 6

1st
time 0.25 5.12 0.81 3.93 2.83 0.15 0.41 2.03

RMSE 0.0121 0.0129 0.0147 0.0141 0.1626 0.0108 0.0263 0.0026

2nd
time 1.45 5.17 3.22 10.67 3.26 0.8 0.38 3.19

RMSE 0.1298 0.1499 0.2638 0.1921 0.5774 0.1630 0.4244 0.0701

3rd
time 0.11 0.78 0.22 1.28 1.25 0.09 0.5 0.39

RMSE 0.0538 0.0785 0.0720 0.0880 0.3966 0.0796 0.1695 0.0304

t + 12

1st
time 0.25 5.12 0.81 3.93 2.83 0.15 1.16 2.69

RMSE 0.0193 0.0163 0.0238 0.0186 0.1611 0.0154 0.0330 0.0030

2nd
time 1.45 5.17 3.22 10.67 3.26 0.8 0.5 1.38

RMSE 0.2367 0.2190 0.3531 0.2828 0.5928 0.2470 0.3131 0.0794

3rd
time 0.11 0.78 0.22 1.28 1.25 0.09 0.43 0.44

RMSE 0.0747 0.1216 0.1038 0.1303 0.4093 0.1249 0.2065 0.0406

4.3. Application 1: Air Quality Data

The one-year dataset (https://archive.ics.uci.edu/ml/datasets/Air+Quality) from
March 2004 to February 2005 [24], registered at UCI Machine-Learning Repository, has
9358 samples of hourly averaged responses obtained by five metal oxide chemical sensors
embedded in an Air Quality Chemical Multisensor Device. Originally, this was used to
prove cross-sensitivities and improve sensor capabilities of concentration estimation [25].
For application to the proposed method, we selected eight columns, CO(GT), PT08.S1(CO),
C6H6(GT), PT08.S2(NMHC), NOx(GT), PT08.S3(NOx), PT08.S4(NO2), and PT08.S5(O3),
and set the C6H6(GT) representing hourly averaged Benzene concentration as a target
value for time-series forecasting because this is one of the most important target values in
the previous reference. This is visualized in Figure 3.

https://archive.ics.uci.edu/ml/datasets/Air+Quality
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Figure 3. Eight time-series in air quality datasets are displayed. The bottom center is the target
time-series, C6H6(GT).

We use four types of experiments, and the first 5000, 6000, 7000, and 8000 data are
used as training data for each. Then, the next immediate 1000 data are used as testing data
for each scenario. Missing data are originally tagged with a −200 value and were replaced
with na.approx function in R.

Outputs for the air quality application are shown in Table 3. EDT-w always shows the
best performance except for two cases for t + 1. In addition, forecasting performance in
terms of RMSE is usually more than twice that of the other methods. Thus, this experiment
provides evidence of the strength of the proposed method.

In conclusion, EDT-w usually shows the best performance for long-term time-series
forecasting such as t + 6 and t + 12. Also, it shows not the best but very high performance
even for short-term forecasting such as t + 1 and t + 3. Therefore, the proposed EDT-w can
be a good option for accurate and stable forecasting performance for longer-term.

4.4. Application 2: APM Data

Various events occur while applications are in use. Modifying an existing application,
sudden heavy inflow of users, and delayed processing are representative examples of such
events. They can be stored in a form of log data in connected database or server systems,
and APM (application performance management) is an analytic solution that can detect
and resolve failure or trouble in web applications by analyzing such log data.
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Table 3. RMSE and computing time for air quality data.

Target Time Iteration ARIMA ARIMAX ANN ANNX RNN VAR EDT-r EDT-w

t + 1

5000 to 6000
time 0.06 0.71 0.22 2.79 0.51 0.04 0.47 0.53

RMSE 0.4282 0.4259 0.4312 0.4134 1.1139 0.4561 0.6609 0.4821

6000 to 7000
time 0.03 0.7 0.25 1.86 0.77 0.02 0.29 0.41

RMSE 0.3346 0.3394 0.3537 0.3352 0.9868 0.3579 0.4570 0.2243

7000 to 8000
time 0.05 0.47 0.31 1.34 0.56 0.03 0.37 0.6

RMSE 0.3039 0.3067 0.3194 0.3082 0.9522 0.3215 0.5261 0.3211

8000 to 9000
time 0.07 0.73 0.8 7.7 0.46 0.04 0.3 0.56

RMSE 0.3025 0.3066 0.2681 0.2545 0.8133 0.2956 0.7946 0.1912

t + 3

5000 to 6000
time 0.06 0.71 0.22 2.79 0.51 0.04 0.47 0.41

RMSE 0.8377 0.8562 0.8559 0.7954 1.1069 0.4967 1.7584 0.3451

6000 to 7000
time 0.03 0.7 0.25 1.86 0.77 0.02 0.39 0.48

RMSE 0.6535 0.6603 0.7072 0.6495 0.9827 0.6822 1.6410 0.2156

7000 to 8000
time 0.05 0.47 0.31 1.34 0.56 0.03 0.4 0.53

RMSE 0.5941 0.6021 0.6037 0.5978 0.9446 0.6252 1.1272 0.1168

8000 to 9000
time 0.07 0.73 0.8 7.7 0.46 0.04 0.34 0.59

RMSE 0.5580 0.5841 0.4508 0.4465 0.7882 0.5384 1.3260 0.1284

t + 6

5000 to 6000
time 0.06 0.71 0.22 2.79 0.51 0.04 0.34 0.53

RMSE 1.0202 1.0590 1.0906 1.0282 1.1181 1.0086 1.1211 0.5270

6000 to 7000
time 0.03 0.7 0.25 1.86 0.77 0.02 0.37 0.52

RMSE 0.8521 0.8711 0.9710 0.8972 0.9829 0.8385 0.8362 0.2502

7000 to 8000
time 0.05 0.47 0.31 1.34 0.56 0.03 0.54 0.48

RMSE 0.7823 0.7959 0.7716 0.7597 0.9463 0.7899 0.7107 0.2854

8000 to 9000
time 0.07 0.73 0.8 7.7 0.46 0.04 0.45 0.57

RMSE 0.6162 0.6493 0.5382 0.5099 0.7919 0.6114 0.6127 0.1762

t + 12

5000 to 6000
time 0.06 0.71 0.22 2.79 0.51 0.04 0.31 0.41

RMSE 1.0553 1.0776 1.1929 1.0921 1.1187 1.2360 0.9430 0.4948

6000 to 7000
time 0.03 0.7 0.25 1.86 0.77 0.02 0.36 0.68

RMSE 0.9182 0.9518 1.1717 1.0377 0.9808 0.9636 0.8282 0.2899

7000 to 8000
time 0.05 0.47 0.31 1.34 0.56 0.03 0.59 0.6

RMSE 0.8672 0.8716 0.8701 0.8208 0.9563 0.9639 0.7210 0.4015

8000 to 9000
time 0.07 0.73 0.8 7.7 0.46 0.04 0.5 0.54

RMSE 0.6122 0.6393 0.5721 0.5411 0.7987 0.5785 0.6455 0.2702

The given APM dataset provides 54,995 items of time-series data collected every 10 s
for eight log data of Used memory, System CPU, User CPU, Count, Num http, Num javad, Num
jdbc, and Response, as in Table 4, and they are visually presented in Figure 4.
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Table 4. Summary of data attributes in the APM data.

Log Data Description

Used memory memory occupancy for a target application
System CPU CPU occupancy for a target application

User CPU CPU occupancy for all application
Count The number of simultaneous access

Num http The number of thread for a target application about http requests
Num javad The number of thread for a target application about javad
Num jdbc The number of thread for a target application about jdbc
Response Response time of a target application to a request of users

Time

da
ta

se
t2

[, 
1]

0 10000 20000 30000 40000 50000

−
2

−
1

0
1

2

Time

da
ta

se
t2

[, 
2]

0 10000 20000 30000 40000 50000

0
10

20
30

40
50

Time

da
ta

se
t2

[, 
3]

0 10000 20000 30000 40000 50000

0
10

20
30

40
50

60

Time

da
ta

se
t2

[, 
4]

0 10000 20000 30000 40000 50000

−
15

−
5

0
5

10
20

Time

da
ta

se
t2

[, 
5]

0 10000 20000 30000 40000 50000

0
5

10
15

20
25

Time
da

ta
se

t2
[, 

6]

0 10000 20000 30000 40000 50000

0
5

10
15

20

Time

da
ta

se
t2

[, 
7]

0 10000 20000 30000 40000 50000

−
6

−
4

−
2

0
2

4

Time

da
ta

se
t2

[, 
8]

0 10000 20000 30000 40000 50000

0
20

40
60

80

Figure 4. Eight time-series in the APM dataset. The bottom center is the target time-series, Response.

We set the last variable, Response, as a target time-series to predict and the remaining
seven variables as its covariates. The first 5000 data items were used for training, and eight
manually selected subsets of 1000 items of time-series data are used for testing. We divide
Response into eight subsets for comparison: four are stationary according to a stationarity
test and the other four are non-stationary. Response without any system failure or trouble is
usually in the normal range regardless of time point.

Outputs for the APM application are shown in Table 5. APM based on time-series
forecasting is reasonable because its computing time is usually less than 1 or 2 s, which is
much smaller than the 10-second interval of collecting data. Next, ANN or VAR shows
better performance for t + 1 and t + 3, while the proposed EDT-r and EDT-w do so for t + 6
and t + 12. The most interesting thing is that VAR shows extremely bad performance for
t + 6 and t + 12, indicating that VAR is not good for time-series with anomalies, while the
proposed EDT-r and EDT-w are very stable in such a situation. Lastly, the second and third
non-stationary cases for t + 12 are the only two where EDT-r achieves the best performance.
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Table 5. RMSE and computing time for APM data.

Target Time Iteration ARIMA ARIMAX ANN ANNX RNN VAR EDT-r EDT-w

t + 1

1st non-stationary
time 0.16 4.23 0.25 2.39 1.75 0.06 1.94 1.14

RMSE 0.1045 0.0412 0.0232 0.0423 0.3434 0.0107 0.1003 0.0909

2nd non-stationary
time 0.19 6.43 0.13 14.96 2.36 0.11 0.72 0.72

RMSE 0.0263 0.0200 0.0100 0.0310 0.3071 0.0040 0.0511 0.0348

3rd non-stationary
time 0.1 1.36 0.18 1.6 0.51 0.01 0.34 0.44

RMSE 0.1038 0.3772 0.1168 0.1508 1.3540 0.0507 0.4286 0.3403

4th non-stationary
time 0.14 1.34 0.31 1.3 0.45 0.02 0.39 0.23

RMSE 0.1457 0.1297 0.0312 0.0628 0.4285 0.0153 0.1344 0.1257

1st stationary
time 0.14 1.27 0.24 1.67 0.78 0.01 0.27 0.37

RMSE 0.0014 0.0014 0.0002 0.0003 0.1555 0.0003 0.0075 0.0075

2nd stationary
time 0.14 1.28 0.13 1.43 1.22 0.08 0.38 0.34

RMSE 0.0018 0.0016 0.0003 0.0003 0.1641 0.0003 0.0081 0.0082

3rd stationary
time 0.09 1.28 0.16 1.59 2.72 0.05 0.37 1.69

RMSE 0.0014 0.0013 0.0003 0.0004 0.1651 0.0003 0.0076 0.0076

4th stationary
time 0.15 1.04 0.2 1.64 0.35 0.07 0.18 0.48

RMSE 0.0013 0.0011 0.0004 0.0005 0.1710 0.0005 0.0077 0.0077

t + 3

1st non-stationary
time 0.16 4.23 0.25 2.39 1.75 0.06 0.65 2.24

RMSE 0.1693 0.1313 0.1570 0.2012 0.2859 0.1280 0.1662 0.1558

2nd non-stationary
time 0.19 6.43 0.13 14.96 2.36 0.11 0.17 0.56

RMSE 0.0716 0.0644 0.0839 0.0898 0.2557 0.0404 0.1363 0.1286

3rd non-stationary
time 0.1 1.36 0.18 1.6 0.51 0.01 0.2 0.56

RMSE 0.4501 0.6450 0.7157 0.7266 1.2954 0.6688 1.1211 1.0639

4th non-stationary
time 0.14 1.34 0.31 1.3 0.45 0.02 0.36 0.27

RMSE 0.2325 0.2791 0.2083 0.2899 0.3510 0.1928 0.2118 0.1886
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Table 5. Cont.

Target Time Iteration ARIMA ARIMAX ANN ANNX RNN VAR EDT-r EDT-w

1st stationary
time 0.14 1.27 0.24 1.67 0.78 0.01 0.14 0.42

RMSE 0.0060 0.0064 0.0022 0.0026 0.1135 0.0024 0.0130 0.0112

2nd stationary
time 0.14 1.28 0.13 1.43 1.22 0.08 0.18 0.43

RMSE 0.0071 0.0061 0.0025 0.0029 0.1167 0.0024 0.0128 0.0122

3rd stationary
time 0.09 1.28 0.16 1.59 2.72 0.05 0.53 2.7

RMSE 0.0053 0.0050 0.0026 0.0030 0.1170 0.0025 0.0230 0.0237

4th stationary
time 0.15 1.04 0.2 1.64 0.35 0.07 0.19 0.43

RMSE 0.0049 0.0046 0.0028 0.0034 0.1197 0.0033 0.0174 0.0171

t + 6

1st non-stationary
time 0.16 4.23 0.25 2.39 1.75 0.06 1.35 0.51

RMSE 0.2617 0.3144 0.3208 0.3204 0.2897 0.8960 0.3072 0.1404

2nd non-stationary
time 0.19 6.43 0.13 14.96 2.36 0.11 0.27 0.6

RMSE 0.1470 0.1287 0.1394 0.1311 0.2557 0.2262 0.1141 0.0519

3rd non-stationary
time 0.1 1.36 0.18 1.6 0.51 0.01 0.16 0.27

RMSE 1.2191 1.0748 1.5719 1.8800 1.2983 7.4417 1.2883 1.1557

4th non-stationary
time 0.14 1.34 0.31 1.3 0.45 0.02 0.28 0.25

RMSE 0.3511 0.5330 0.4426 0.3829 0.3500 1.6100 0.2739 0.2432

1st stationary
time 0.14 1.27 0.24 1.67 0.78 0.01 0.25 0.35

RMSE 0.0144 0.0150 0.0089 0.0099 0.1130 0.0092 0.0155 0.0080

2nd stationary
time 0.14 1.28 0.13 1.43 1.22 0.08 0.3 0.39

RMSE 0.0160 0.0136 0.0095 0.0111 0.1154 0.0092 0.0182 0.0087

3rd stationary
time 0.09 1.28 0.16 1.59 2.72 0.05 2.16 2.58

RMSE 0.0128 0.0118 0.0098 0.0109 0.1186 0.0091 0.0185 0.0090

4th stationary
time 0.15 1.04 0.2 1.64 0.35 0.07 0.28 0.23

RMSE 0.0125 0.0122 0.0104 0.0117 0.1175 0.0129 0.0183 0.0101
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Table 5. Cont.

Target Time Iteration ARIMA ARIMAX ANN ANNX RNN VAR EDT-r EDT-w

t + 12

1st non-stationary
time 0.16 4.23 0.25 2.39 1.75 0.06 0.67 0.49

RMSE 0.3718 0.5571 0.5494 0.5292 0.2907 14.6659 0.2539 0.2141

2nd non-stationary
time 0.19 6.43 0.13 14.96 2.36 0.11 0.39 0.68

RMSE 0.2263 0.1813 0.2871 0.1649 0.2607 2.4823 0.1190 0.1212

3rd non-stationary
time 0.1 1.36 0.18 1.6 0.51 0.01 0.18 0.36

RMSE 2.7556 1.8032 4.0593 6.1531 1.2995 4286.3025 1.5128 1.8513

4th non-stationary
time 0.14 1.34 0.31 1.3 0.45 0.02 0.21 0.39

RMSE 0.4862 0.8009 0.5762 0.5887 0.3554 46.5682 0.3411 0.2814

1st stationary
time 0.14 1.27 0.24 1.67 0.78 0.01 0.24 0.31

RMSE 0.0215 0.0203 0.0169 0.0191 0.1131 0.0154 0.0154 0.0144

2nd stationary
time 0.14 1.28 0.13 1.43 1.22 0.08 0.37 0.36

RMSE 0.0212 0.0190 0.0167 0.0184 0.1180 0.0158 0.0156 0.0143

3rd stationary
time 0.09 1.28 0.16 1.59 2.72 0.05 1.35 1.45

RMSE 0.0182 0.0179 0.0177 0.0185 0.1167 0.0158 0.0172 0.0152

4th stationary
time 0.15 1.04 0.2 1.64 0.35 0.07 0.2 0.27

RMSE 0.0185 0.0190 0.0185 0.0206 0.1162 0.8072 0.0166 0.0159
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5. Conclusions

For the prediction task for streaming multivariate time series, numerous models
are possible, ranging from classical models to modern deep-learning models. Effective
models need to be accurate in a certain h-time ahead task by Ŷt+h and consistent and
reliable in several h-time head tasks. Transfer models together with ARIMA are nonlinear,
rather classical, and established forecasting models. We aimed to improve the models
to make them dynamic by including variable selectors and stable by constructing an
ensemble of them. Though many sub-models participate in the final model, each of which
is easy to modify in the face of new online data. From a computational viewpoint, model
building requires a comparable amount of time in comparison to several existing models
such as VAR and RNN, and computation time will decrease if parallel processing is in
use for the building of each sub-model. The prediction performance of the proposed
model is promising and effective not only in two adopted models, but also in two real-life
multivariate time series. For the prediction task of atmospheric pollution, the data are
interrelated and stochastic by nature, so the need for multivariate time series, including
external variables, escalates. The current study only included seven internal chemicals
for the target variable of air pollution. In future, we hope to include external factors in
the proposed model and to verify the model capacity. We plan to refine the model by
adding a forgetting factor to updating sub-models and by reflecting theoretical aspects of
the models.
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