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ABSTRACT Despite any doubts about driving safety, many stroke drivers drive again due to the absence
of valid screening tools. The on-road test is considered a formal assessment, but there are safety issues in
testing directly on stroke patients who are not fully capable of driving. A driving simulator is a promising
tool since it provides meaningful information for identifying hazards to driving safety across different driver
populations and driving conditions. Using the advantages of a driving simulator, we propose a Driving
Performance Assessment System for Stroke drivers (Driving-PASS). Driving-PASS is designed not only
to pre-screen invalid stroke drivers before the on-road test but also to provide problematic driving items for
the use in driving rehabilitation. To design assessment classifiers, i.e., the core engine of Driving-PASS,
we collect driving data from a total of twenty-seven participants in thirteen driving scenarios. Thereafter,
we get subjective assessment results from ten driving evaluators in eleven assessment items. By using driving
data and subjective assessment results, we construct eleven assessment classifiers for ten driving ability
items and one driving suitability item. We addressed the technical challenges such as handcrafted features
and imbalanced dataset by a feature extraction method using pre-trained CNN models and a resampling
method. Through comprehensive performance evaluation, we build eleven accurate assessment classifiers in
Driving-PASS by carefully selecting deep features in each assessment item. We envision that Driving-PASS
can be used as a pre-screening tool for evaluating stroke drivers and will ultimately improve road safety.

INDEX TERMS Driving assessment, driving performance, stroke drivers, deep features.

I. INTRODUCTION
Driving is a complex task that requires many skills, such

Stroke patients were not different from healthy people in
simple driving tasks, but deficits became apparent in com-

as cognitive and perceptual-motor behaviors [1]. While the
ability to drive anywhere, anytime, is one of the essential
forms of independence, driving ability for stroke survivors
is affected in various ways, including physical effects, visual
problems, cognitive effects, fatigue, and epilepsy [2].
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plex tasks, causing many driving errors [3]. Nevertheless,
many stroke survivors return to driving. In the Republic
of Korea, 66.1% of patients with first-ever stroke return
to driving at a mean of 2.15 months after stroke [4].
It is essential to decide the returning time for stroke sur-
vivors since they are all different in the severity of resid-
ual symptoms and the degree of recovery. If driving is not
appropriate, proper driving rehabilitation is required until
recovery.
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Guidelines for stroke drivers vary from country to country.
Durations of driving cessation after stroke range from one
to six months, depending on the country: one month in New
Zealand [5], one month in French [6], three to six months in
the United States [7], and six months in Belgium [8]. In gen-
eral, most driving guidelines for stroke patients recommend
stopping driving for at least one month after a stroke [9].

After the driving cessation, stroke drivers undergo a
comprehensive evaluation of driving abilities (e.g., clinical
off-road tests and an on-road test) to identify potential seque-
lae and assess driving suitability. Due to limited financial
and human resources [10], choosing a reliable and valid
instrument remains a critical concern in making decisions
about the withdrawal of the driving license, its retention,
or its restriction [11]. Stroke survivors do not need to notify
the driver licensing authority [12] if there are no residual
neurological deficits (visual field defects, cognitive defects,
and impaired limb function) in the comprehensive evaluation
after one month [13]. However, if there are residual neuro-
logical deficits, the patient is responsible for reporting to the
driver licensing authority [14]. Physicians who take care of
stroke patients also have an ethical duty to notify the driving
licensing authority [15].

Despite clear guidelines for returning to driving after a
stroke, there are remarkable differences between restrictions
and compliance [16], [17]. Surprisingly, many stroke sur-
vivors resume driving without medical clearance due to the
absence of valid screening tools. In the United States, 30%
to 43% of the approximately 6 million stroke survivors drive
again within a year, and 87% of them return to driving
without formal driving evaluation [18]. Furthermore, a rel-
atively small percentage of stroke survivors (25.9%) received
driving evaluations or advice before return to driving in the
Republic of Korea [19]. Also, stroke patients themselves and
their families tend to overestimate the driving performance of
stroke survivors [20]. This improper care of stroke survivors
increases the risk on the road, and actual car accidents by
stroke survivors have been reported [21].

For evaluating the driving performance of stroke drivers,
three types of assessment methods have been developed:
an off-road test, an on-road test, and a driving simulator
test.

First, the off-road test assesses three main functions rel-
evant to driving for medical clearance: motor, visual, and
cognitive functions [22]. The motor function is evaluated by
muscle testing, such as range of motion and grip strength.
Useful Field Of View (UFOV) [23] is widely used for assess-
ing the visual function. To assess the cognitive function,
many off-road tests such as a paper and pencil tests or
a computer-based psychometric tests have been developed,
e.g., Motor-Free Visual Perceptual Task (MVPT) [24], Trail
Making Test (TMT) [25], Cognitive Behavioral Driver’s
Inventory (CBDI) [26], Sensory-Motor and Cognitive Test
(SMCTest) [27], and Stroke Driver Screening Assessment
(SDSA) [28]. However, the off-road test has limitations
in recognizing subtle motor, cognitive, and visual deficits
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because these deficits become apparent in highly demanding
driving situations [29].

Second, the on-road test, a.k.a. a behind the wheel test,
is considered as the gold standard for assessing driving
performance [30]. On-road test, administered by the motor
vehicle licensing authority, helps to assess functional capa-
bility to drive. However, this test cannot evaluate complex
and potentially dangerous driving situations (e.g., collision
avoidance) [31]. There are limitations to testing for all stroke
survivors, such as safety concerns and resource limitations.

Third, driving skills are a complex combination of visual,
cognitive, and physical functions and cannot be evaluated
separately, so driving simulators are a promising tool for
evaluating overall driving skills. The driving simulator is
practical, safe, cost- and time-effective due to controllable
and repeatable driving test environments [32]. In addition,
a cognitive function test in challenging driving scenarios and
analysis with standardization are possible [33]. Nevertheless,
there is no standard evaluation protocol because there are
many degrees of freedom in creating a driving environment
and using driving profile data.

To safely and accurately assess stroke drivers’ driving
performance, we propose a Driving Performance Assessment
System for Stroke drivers (Driving-PASS) based on a driving
simulator. The proposed system is designed to pre-screen
invalid stroke drivers before the on-road test and provide
problematic driving items for use in driving rehabilitation.

The major contributions of this paper are as follows:

« We propose a driving performance assessment system
that pre-screens invalid stroke drivers in an on-road
driving test and provides problematic driving items for
driving rehabilitation, called Driving-PASS.

« In Driving-PASS, technical challenges lie in limitations
of handcrafted feature design and imbalanced dataset
problems. We propose a feature extraction method using
pre-trained CNN models and a resampling method to
compensate for the challenges.

« By carefully selecting deep features and using a resam-
pling method in each item, we build accurate eleven
assessment classifiers, the core engine of Driving-
PASS. We expect Driving-PASS to be an effective
pre-screening tool to improve the safety of stroke
drivers.

The rest of the paper is organized as follows. Section II
introduces driving simulator-based assessment methods in
related work. In section III, we propose eleven assessment
classifiers of Driving-PASS to identify problematic driving
abilities and judge driving suitability. Section IV evaluates
the classification performance of the classifiers. Section V
discusses the limitations of this work and future work. Finally,
this paper concludes in Section VL.

Il. RELATED WORK

In this section, we conduct a literature review on assessing
driving performance based on a driving simulator. Table 1
shows the summary of relevant studies, taking into account
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TABLE 1. Driving simulator study for measuring driving performance.

Num. Category Subcategory Performance Measurement Analysis Participant
1. Objective  Var. 3 measurements: Standard deviation of lateral po- ANOVA analysis 16 healthy participants remained awake
sition and Standard deviation of mean speed in overnight [34]
straight and curvy road
2. Objective  Err. Number of accident, 8 driving faults (e.g., Driving T-test Patients suffering from the relapsing-remitting
with headlights switched off at nighttime, Disre- form of multiple sclerosis [35]
garding the speed limit)
3. Objective  Err. Number of collisions in 14 scenarios x? test and 36 patients with advanced glaucoma and 36
Fisher’s exact test  age-matched healthy people [36]
4. Objective Var. & Err. 12 measurements (e.g., Standard deviation of T-test and logistic 29 Alzheimer disease patients and 21 Control
steering wheel rotation, Number of times car trav- regression participants [37]
els off road)
5. Objective  Var. & Err. 14 measurements (Capture four primary skills: ANOVA 13 Autism spectrum disorder patients and 26
braking, speed control, steering, and judgement. Control participants [38]
e.g., rolling stops, deceleration smoothness, colli-
sions)
6. Objective  Var. & Err. 11 measurements (e.g., Speed, Lane, Center, Stop Discrimination and 17 head-injured and 148 uninjured adults [39]
Sign) Pearson correlation
7. Objective Var. & Err. 5 measurments: Road position, Speed, Speed de- T-test 18 patients with untreated major depressive
viation, Reaction time, Crashes disorder and 29 healthy people [40]
8. Objective Var. & Err. 10 measurements (e.g., Mean speed, Brake pedal T-test 8 subjects with suspected dementia and 14
pressure, Number of lane boundary crossings) healthy people [41]
9. Objective Var. & Err. 5 measurements (e.g., total run length, speed vio- Multivariate Senior drivers and advanced age senior drivers
lation) and 4 operational parameters (e.g., Curva- analysis of variance (total 53 volunteer older adults) [42]
ture error, Steering wheel rate)
10. Objective  Var. & Err. 5 measurements: Maximum velocity, Mean veloc- T-test and 20 adults with attention deficit-hyperactivity
ity, Lane position, Reaction time, and Collision Pearson’s disorder(ADHD) and 21 controls without
chi-squared test ADHD [43]
11. Objective  Var. & Err. 6 measurements (e.g., Top speed, Mean speed, Cronbach’s 49 older drivers in on-road test and driving
Lane accuracy) and 6 errors (e.g., Accident, Ig- alpha analysis simulator assessment [44]
nore speed limit, Crossing safety line)
12. Objective  Var. & Err. 12 measures in two categories (Speed control and T-test 17 patients with whiplash associated disorders
Direction control): e.g., Speed, Speed variability, (WAD) and 26 healthy people [45]
Lane position error, Collisions driving parameters
13. Objective  Var. & Err. 3 measurements by a weighted sum of the Pearson 804 learner drivers in simulator test and on-
z-transformed values: SpeedScore, Violoation- intercorrelation road driving test [46]
Score, SteeringErrorScore
14. Subjective Rating 14 rating items in four broad domains (Handling T-test 11 patients with traumatic brain injury (TBI)
of Controls, Regulation of Trajectory, Basic Ma- and 16 healthy people [47]
neuvers, and Higher-order Skills)
15. Subjective Rating 20 rating items (e.g., Steering, Changing gears, Rasch analysis 31 Stroke patients [48]

Using pedals, Attention to left)

Num.: Number, Var.: Variables, and Err.: Errors

performance measures. We note that driving performance
takes into account two aspects: driving abilities and driving
suitability.

For driving abilities, we need to consider the design of
assessment items. The items are divided into two categories:
objective and subjective. These objective and subjective items
are primarily designed to evaluate driving abilities, such
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as speed, steering, road traffic compliance, and emergency
response. The researcher variously organizes individual items
according to the research purpose. Objective item consists
of performance measurements, such as statistical variables
(e.g., standard deviation lateral position) [34], and driving
errors (e.g., number of collisions) [36]. These measurements
are sometimes used individually, but in most cases, they are
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used together, depending on research purposes [37]-[46].
On the other hand, subjective item consists of performance
measures such as the Likert-scale score and binary decisions
(e.g., Pass or Fail). The measurements are graded based on the
subjective judgments [47] or pre-defined criterion [48] using
the driving evaluator’s observations of driving patterns on the
specific driving scenarios.

These objective and subjective items are mainly used for
factor analysis by comparing two groups (patients vs. healthy
people) or two different situations (driving simulator vs.
on-road driving). Both items have the following advantages
and disadvantages: Objective item is reliable and produces
many objective measurements from a driving simulator.
However, due to the high degree of freedom to create driv-
ing features in the driving simulator, it is challenging to
select optimal features, i.e., limitations of handcrafted fea-
ture design. Subjective items consist of categorical variables
(e.g., Likert-scale) and intuitively easy to understand the
relative driving performance. However, there are reliabil-
ity issues due to the way the human raters evaluate it.
In addition, the subjective assessment using these items
is time-consuming and expensive if many evaluators are
required.

For the driving suitability, it is essential to evaluate the
driving abilities comprehensively and to establish pass or fail
criteria. Driving suitability is determined by considering the
evaluation results of overall driving abilities. The evaluation
results of driving abilities are converted to a single score by
using functions such as z-score or sum [49]. The final driving
suitability is then determined by considering the distribution
of the control group [47], results of driving evaluators [50],
or results of the on-road test [51]. In this work, we use the
results from driving evaluators as the criteria for determining
driving suitability.

Note that we use two objective and subjective data in
our system for constructing assessment classifiers with an
Artificial Intelligence (AI) approach. The objective data and
subjective data are used for the classifiers as input data and
label data, respectively.

Research related to the evaluation of driving performance
in stroke drivers is well studied. However, to the best of our
knowledge, automated studies using Al is rare. This may be
due to difficulties collecting data from stroke patients and
evaluating various traffic situations from different driving
simulators. In this work, we design the subjective assessment
and automate the manual assessment task with Al techniques.

There are four categories of automation methods using
artificial intelligence (Al) techniques, i.e., machine learning
and deep learning, as shown in Fig. 1. The traditional machine
learning approach consists of four processes [52]: Input, Fea-
ture extraction, Machine learning for Classification, and Out-
put, as shown in Fig. 1-(a). This approach requires the feature
extraction process for generating handcrafted features before
a machine learning task. The limitations of this approach
are highly susceptible to errors and only suitable only one
domain [53]. With advances in deep learning technology,
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FIGURE 1. Classification approaches by using machine learning and deep
learning.

deep learning has been widely used in many applications
such as automobile [54], sports [55], and healthcare [56].
The three main approaches to using deep learning tech-
niques depend on the data size and the research purpose.
Fig. 1-(b) is to replace the ML approach’s feature extrac-
tion component with pre-trained CNN models’ deep
features [57], [58]. This approach is effective for developing
Al models using relatively small data sets without any spe-
cific domain knowledge. Fig. 1-(c) shows transfer learning,
which is one of the deep learning techniques [59]. Transfer
learning is to take a network that is well trained in one
domain and adapt it to a new task in a different domain,
reducing the time to develop deep learning models. Fig. 1-(d)
shows a conventional deep learning approach. The structural
characteristic is end-to-end learning. While designing and
optimizing a deep learning model takes a lot of time and trial
and error, this approach is the best of the three deep learning
approaches.

Among these approaches, we choose a deep learning
approach using deep features of pre-trained CNN models,
as shown in Fig. 1-(b). With a small data set, it can effec-
tively perform the classification tasks using deep features
without manual feature extraction. In particular, the pro-
posed Driving-PASS uses deep features to compensate for the
limitations of hand-crafted feature design in various driving
scenarios.

Our previous work [60] used a conventional machine
learning approach, as shown in Fig. 1-(a). The differences
compared to the previous work are as the following: First,
we recruit additional evaluators (a total of ten driving eval-
uators) to improve the reliability of the subjective assess-
ment. Second, we complement additional technical methods
in the system’s functional components, i.e., Feature engineer-
ing, Resampling, Automated Machine Learning (Auto-ML),
to enhance the performance of Driving-PASS.

ill. PROPOSED METHOD

In this section, we introduce the detailed process of Driving-
PASS. Driving-PASS consists of three processes, as shown
in Fig. 2: driving test, subjective assessment, and classifica-
tion. Driving-PASS is aiming at providing insufficient driving
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FIGURE 2. Overview of driving performance assessment system for stroke drivers.

abilities and a decision about driving suitability. For this goal,
we propose assessment classifiers using driving profile data
and subjective assessment results.

A. DATASET FOR DRIVING TEST
In this section, we construct a driving simulator environment
and collect driving data in a simulator-based test.

1) EXPERIMENTAL SETUP

We use a STISIM DriveTM driving simulator for the driv-
ing test consisting of diverse driving scenarios. The driving
simulator provides driving profiles reflecting on driver pat-
terns and errors depending on pre-defined driving scenarios.
A total of 29 time-series driving profiles are generated with
a 30 Hz sampling rate as raw data.

For designing driving scenarios, we design a total of thir-
teen driving scenarios in three traffic environments (Urban,
Highway, and Rural), as shown in Fig. 3. We take into account
the appropriate driving test time (25 minutes on average) and
properly configure the test’s driving scenarios. The driving
scenarios consist of two to three repetitions of basic driving
skills related to speed control and steering control in the three
different traffic environments. We also add driving events,
considering cognitive & perceptual skills: three traffic light
control events (green, green, and red) and three emergency
control events. The rural scenarios are placed last because
simulation sickness is the biggest in curves [61]. The other
traffic environments are randomly arranged to form Path A
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FIGURE 3. Driving scenario description in three traffic environments
(Urban, Highway, Rural).

and Path B. Participants randomly select Path A and Path B
to perform the driving test. We construct a simula-

tor environment by following the simulation settings
of Oh et al. [62].

2) PARTICIPANTS

We recruit a total of twenty-seven participants consisting of
eighteen stroke survivors and nine healthy people for this
driving test. We note that Driving-PASS includes healthy
people in the test to make a somewhat equal distribution
between normal and abnormal driving when constructing
general assessment items. The driving performance of stroke
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TABLE 2. Driving scenario.

DS Driving event TE Road T.
1 Traffic light (Green), Speed limit sign (70km/h) Urban 1-S
2 Traffic light (Green), Speed limit sign (70km/h) Urban 1-S
3 Traffic light (Red), Speed limit sign (70km/h) Urban 1-S
4 A parked car suddenly enters and exits my lane. Urban 1-S
5 A parked car comes into driver’s lane, slowly Urban 1-S

goes, then leaves.
6  Speed limit sign (100km/h) Highway  2-S
7  Speed limit sign (100km/h) Highway  2-S
8 Speed limit sign (100km/h) Highway  2-S
9 Left Curve sign, Speed limit sign (100km/h) Rural 1-C

10 Right Curve sign, Speed limit sign (100km/h) Rural 1-C
11 Left Curve sign, Speed limit sign (100km/h) Rural 1-C
12 Right Curve sign, Speed limit sign (100km/h) Rural 1-C
13 Oncoming car is heading into driver’s lane. Rural 1-C

DS: Driving Scenario, TE: Traffic Environment, 1-S: 1-way Straight road
2-S: 2-way Straight road, 1-C: 1-way Curvy road

patients tends to be biased toward an abnormal driving distri-
bution. All of the stroke survivors satisfied with the minimum
cognitive ability for driving, i.e., over 24 scores in a Korean
version of Mini-Mental State Examination (K-MMSE) [63].
Healthy drivers have driving licenses with driving experience
of over three years. Participants perform a simulator-based
driving test consisting of thirteen driving scenarios.

3) DRIVING DATA

Driving scenarios are programmed to trigger an event when
a driver goes to a specific location. We use driving data
in a window (400 meters) that is the area of 200 meters
before and after the specific location. In this way, driving
data is segmented using a window s. The segmented driv-
ing data is used in subjective assessment and assessment
classifiers. For subjective assessment, the segmented driving
data is prepared as a video record by recording driving on
the specific area using the playback function of the STISIM
simulator. In the classification process in assessment classi-
fiers, the segmented driving data (time-series data) is con-
verted to a 3-dimensional matrix as an input image of the
CNN. This approach is similar to stacking EEG signals (time-
series data) and converting them into image data for analysis
via CNN [64], [65].

B. LABELING

In this section, we design a driving performance evaluation
method by human evaluators, which is used to set ground
truth labels in Driving-PASS classifiers.

1) A DESIGN OF ASSESSMENT PROTOCOL

For designing a driving performance assessment for stroke
drivers, we need to consider individual driving abilities in
each driving situation and overall driving suitability. If a
participant fails the driving test, we should be able to train the
participant to pass the test after training the lack of specific
driving abilities through the rehabilitation program.
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In order to reflect the design goals, we propose a subjective
driving evaluation method. Specifically, we design an assess-
ment protocol with driving ability items in three different
driving environments to evaluate basic maneuvering skills
and cognitive & perception skills. The protocol also has a
final decision item for determining driving suitability. Table 3
shows a subjective assessment sheet for the assessment pro-
tocol. Ten driving ability items consist of a five-score Likert-
scale (0 to 4), and the final driving suitability item consists of
binary decisions (Pass or Fail).

TABLE 3. Subjective assessment sheet.

Item Description TE Skill T. Score

Item 1 Speed Control Urban BD 01234
Item 2 Steering Control Urban BD 01234
Item 3 Traffic Light Control Urban CP 01234
Item 4 Emergency Control 1 Urban CP 01234
Item 5 Emergency Control 2 Urban CpP 01234
Item 6 Speed Control Highway BD 01234
Item 7 Steering Control Highway BD 01234
Item 8 Speed Control Rural BD 01234
Item 9 Steering Control Rural BD 01234
Item 10  Emergency Control 3 Rural CP 01234
Item 11 Driving Suitability - - Pass or Fail

TE: Traffic Environment, T: Type, BD: Basic Driving skills
CP: Cognitive & Perceptual skills

We note that eleven assessment items are designed by
considering thirteen driving scenarios. The relationship map
between them is shown in Fig. 2. For example, speed control
and steering control items (item 1, 2, 6, 7, 8, and 9) are linked
to all driving scenarios in each traffic environment to evaluate
overall basic driving abilities. Traffic control item (item 3) is
linked to three driving scenarios since a driver passes three
traffic lights (green, green, and red). Three emergency items
(item 4, 5, and 10) are linked to one driving scenario to inves-
tigate whether a driver performs well in a specific hazardous
situation. The final item (item 11) is linked to all driving
scenarios, taking into account the driving performance for all
driving scenarios to determine the final driving suitability.

2) SUBJECTIVE ASSESSMENT BY DRIVING EVALUATORS
To assess driving performance, we score the driving perfor-
mance according to the opinion of driving evaluators.

We invite a total of ten driving evaluators (seven driving
experts and three driving researchers). Driving experts are
the experts with more than five years of experience in the
field of driving performance assessment. Driving researchers
consist of researchers who have less than five years of experi-
ence and conduct driving research, including human factors.
We hide personal information, show the recorded video clips
of twenty-seven drivers, and ask for the evaluation of the driv-
ing performance. The evaluators score each item according to
their subjective opinions on the subjective assessment sheet.

To reliably assess each item’s performance, we use the
mean of multiple raters evaluating the same person. The
method is used to increase reliability [66].
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3) RELIABILITY ADJUSTMENT

In this section, we select the optimal raters in each item
to improve reliability and use scores of selected raters for
making ground truth labels in Driving-PASS.

Cronbach’s alpha « is commonly used to assess the reli-
ability or internal consistency. Cronbach’s alpha « is inter-
preted according to the rule of thumb: «>0.9 is excellent,
0.9>0>0.8 is good, 0.8>a>0.7 is acceptable, 0.7>«>0.6
is questionable, 0.6>a>0.5 is poor, 0.5>« is unacceptable.
In general, a score of more than 0.7 is usually acceptable.
However, a higher alpha value of 0.90 has been recom-
mended [67]. By using Cronbach’s alpha «, it is possible
to increase reliability by eliminating the poor performing
raters [68].

In order to select the optimal raters, Driving-PASS has
different policies for driving ability items and a driving suit-
ability item. The driving ability items are designed to evaluate
general driving abilities based on the general driver’s safety
knowledge. On the other hand, the driving suitability item is
designed to determine the fitness to drive based on a qualified
professional’s experience and perspective due to safety issues
on the actual road driving test.

For the driving ability items, the eliminating process is
carried out until there is no further improvement in driving
ability items’ reliability. The items (item 1 to item 10) aim
to maximize each item’s reliability by selecting the optimal
raters among all ten diving evaluators.

For the driving suitability item, we use the decision results
only from seven driving experts. When determining whether
an actual stroke patient is eligible for a driver’s license,
the evaluator puts slightly different weights on the driving
performance evaluation items based on their experience and
perspective. Therefore, we considered all experts’ opinions to
determine the Pass or Fail according to the majority vote.

Table 4 shows the reliability results after selecting the
optimal raters in each item. After selecting the optimal raters,
we use the mean of scores from selected raters as a perfor-
mance score in the ability items. For the driving suitability
item, we use the total number of Pass from seven driving
experts.

TABLE 4. Reliability adjustment by selecting optimal raters.

Item Original  Filtered Selected Raters

Cron.a Cron.a
Item 1 .892 901 E1 E2 E3 E4 ES E6 E7 R2R3
Item 2 931 932 E1 E3 E4 ESE6E7R1 R2R3
Item 3 .966 968 El1 E2E3 E4 E5R1 R2R3
Item 4 964 974 E1 E2E3 E4R1 R2R3
Item 5 .960 961 El1 E2E3 E4 ESE6R1 R2R3
Item 6 .890 .890 E1 E2 E3 E4 E5 E6 E7 R1 R2R3
Item 7 .965 .965 E1 E2 E3 E4 E5 E6 E7 R1 R2R3
Item 8 .948 951 El1 E2 E4 E5 E6 E7 R1 R2R3
Item 9 955 955 El E2 E3 E4 E5 E6 E7 R1 R2 R3
Item 10 917 925 El1 E2 E5 E6 E7 R1 R2R3
Item 11 - 932 E1 E2E3 E4E5S E6E7

E: Expert, R: Researcher, Cron.a: Cronbach’s alpha
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C. ASSESSMENT CLASSIFIERS

In this section, we introduce how to design assessment clas-
sifiers by using the segmented driving data in Sec. III-A3 and
the subjective assessment results in Sec. III-B. The detailed
process of data processing is shown in Fig. 4.

Assessment Items

Subjective Assessment
(Sec. llI-B2)

| Item 1 ‘ ‘ Item 2 ‘ ‘ Item 3 ‘ coe

Recorded Video Clip
(Sec. llI-A3)

Driving Profile Data
(Sec. 111-A3)

Reliability Adjustment
(Sec. llI-B3)

Scene 4

Deep Feature Engineering .
(Sec. l1I-C2) Labeling (Sec. llI-C1)

! i

Driving Data Dataset Preparation
Jtom Diving Stratified Holdout (60:40)
Simulator 1

Training Dataset Test Dataset

I
Resampling
(Sec. 11I-C3)
lTrain Model
Automated Machine Learning
(Sec. 1-C4)

Performance Evaluation with Trained Model (Sec. IV)

x 30 Iteration

FIGURE 4. The detailed process of data processing in Driving-PASS.

In more detail, deep feature engineering (Sec. III-C1) and
labeling (Sec. III-C2) processes are performed to construct
the dataset. After that, we evaluate the classification perfor-
mance of eleven assessment classifiers in Driving-PASS by
thirty times repeated Stratified Holdout. Holdout technique
randomly splits the dataset into a training dataset and a test
dataset with aratio of 60:40. Stratified sampling preserves the
percentage of samples for each class in the original dataset.

Eleven assessment classifier models are trained using a
training dataset. We add a resampling method (Sec. III-C3)
to increase the classification performance and construct the
classifiers using Automated Machine Learning (AutoML)
tool in Matlab (Sec. III-C4). The test dataset is applied to the
trained model to verify the final classification performance.
The evaluation results are discussed in Sec. IV.

1) LABELING
In the previous process, we select the best evaluators for
each item and estimate the performance results (the mean of
scores m and the total number of Pass ¢) from those evaluators.
Driving-PASS aims to classify not only insufficient driving
abilities but also driving suitability. Therefore, we define two
binary classes in driving ability items and a driving suitability
item to achieve these purposes.
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In driving ability items, we define two binary classes,
i.e., Proficient and Non-proficient. Based on the mean of
scores m for 27 participants in driving ability items (item1 to
item10), we can categorize them into two classes using a
fixed score. For setting the fixed score, we use a fixed
score of 2.8. When converting the 5-score Likert-scale
(0 to 4) to 100 points, the proficiency is defined as 70 points
or more (origin Likert-scale score is 2.8). The on-road driving
exam uses a fixed threshold of 70 points for passing crite-
rion [69]. We use the criterion for classifying insufficient
driving abilities in our system. The class for driving ability
items Class, (m) is labeled according to the mean of scores m,
as shown in Eq. 1. Labeled classes are used as ground-truth
labels in Driving-PASS.

Classu(m) = {Proflclenf, . ifm> .2.8 )
Non-proficient, otherwise
Driving suitability item is evaluated according to the
majority rule. If more than four evaluators determine a person
as pass, the person passes. Otherwise, the person is evaluated
as a failure. Eq. 2 shows that the class for driving suitability
item Classg(t) is labeled according to the total number of
Pass 7. Additionally, we include driving data from healthy
people in our datasets. When all healthy people’s information
is hidden, all healthy drivers are considered to pass according
to the criterion’s driving suitability. We confirm that there is
no false decision on the criterion in healthy people.
Pass, ift >4

Classs(t) = 2
s Fail, otherwise @

2) FEATURE ENGINEERING
STISIM driving simulator provides driving profile data con-
sisting of 29 time-series data as raw data. Using the data,
we can extract the driving patterns for predefined scenarios.
The driving patterns appear in the form of driving perfor-
mance metrics, a.k.a. features. Depending on metric types,
we can generate many driving performance metrics, e.g.,
mean speed, a standard deviation of speed, and maximum
speed in speed metrics [70]. The technical problem is that
designing driving performance metrics for specific research
purposes is somewhat subjective and has limitations due to
the design of handcrafted features. For example, optimal
driving performance metrics are different for each driving
scenario and also depend on scenario size, such as whether
to view the scenarios individually, regionally, or globally.
CNN has been shown to excel in a wide range of com-
puter vision tasks, and approaches to leverage proven CNN
models for new applications have been developed as one of
the key CNN-based researches. “Deep features™ extracted
from pre-trained CNN models are applied to machine learn-
ing classifiers (e.g., ensemble, support vector machine, and
decision tree classifier) as the input data for medical appli-
cations, such as tuberculosis [71], malaria parasite [72], lung
cancer survivor [73], and cataract detection [74]. Although
pre-trained CNN models have been designed and trained for
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image classification using millions of ImageNet examples,
this approach contributes to performance improvements in
different domains for specific medical applications.

In this work, we use pre-trained CNN models as a tool for
feature extraction to address the limitations of handcrafted
features. We select five pre-trained CNN models in this work:
Resnet18, Inceptionv3, Resnet50, Resnet101, and Inception-
ResNet-v2 (IncResV2). Resnet18 [75] and Inceptionv3 [76]
are a well-known CNN model architectures demonstrated in
ILSVRC (ImageNet Large Scale Visual Recognition Chal-
lenge). The remaining models are those with improved per-
formance by changing the size and structure of the Resnet
model and Inception model [77], [78]. Table 6 details the
depth, parameter size, and input size of these CNN models.
We investigate how the performance changes as the structure
of the CNN model increases.

Feature extraction: deep features are extracted from the
activation layer of a pre-trained CNN model. How to con-
struct input data from a driving simulator and generate deep
features are described in detail below.

Step 1: Construct input data: Input data for these CNN mod-
els is a 3-dimensional (3D) image data. We only use
raw driving profiles that represent driving patterns
in specific driving scenarios. Therefore, we select
21 raw data from 29 raw driving profile data,
as shown in Table 5. After that, we generate deep fea-
tures in each driving scenario from four pre-trained
CNN models by using the raw data. Pre-processing
for deep features works as follows: we align 21 nor-
malized raw driving profile data into a 3D matrix
[sxf %3], where simulation sample s and features f
are determined in Sec. III-A3 and Sec. III-C2,
respectively.

Step 2: Resize the input data: In order to use a pre-trained
CNN model, the size of input data must be the same
as that of the input data of the CNN model. Therefore,
we resize the 3D matrix tailored to the input size of
the individual CNN model before feature extraction.
The individual input size of CNN models is described
in Table 6. For resizing the input data, we use a
function imresize provided in Matlab.

Step 3: Generate deep features: Deep features are generated
from the activation layer of pre-trained CNN models
using a function Activations in the Deep learning
toolbox of Matlab. For example, the deep features of
Resnet18 are extracted from the pool5 layer and con-
sist of 512 features for scenario 1, as shown in Fig. 5.
The name of the activation layer and the number of
deep features in four pre-trained CNN models are
described in Table 6.

Step 4: Concatenate deep features: Some items among driv-
ing ability items, such as speed control, are related to
several driving scenarios (scenarios 1 to 5). To con-
sider this relationship, we generate input data by
concatenating deep features in the related scenarios.
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FIGURE 5. Feature extraction by using a pre-trained CNN model.

TABLE 5. Description for Selected Raw Driving Profile Data in STISIM
driving simulator.

Num. Driving Profile Measurement
Unit
1. Driver’s longitudinal acceleration feet/second?
2. Driver’s lateral acceleration feet/second?
3. Driver’s longitudinal velocity feet/second
4. Driver’s lateral velocity feet
5. Driver’s lateral lane position with respect to the  feet
roadway dividing line
6. Vehicle curvature 1/ foot
7. Current roadway curvature 1/ foot
8. Vehicle heading angle degrees
9. Steering wheel angle input degrees
10. Longitudinal acceleration due to the throttle feet/second?
11. Longitudinal acceleration due to the brakes feet/second?
12. Running compilation of the crashes that the counts
driver has been involved in
13. Driver’s longitudinal velocity miles/hour
14. Steering input counts (Actual raw input) counts
15. Throttle input counts (Actual raw input) counts
16. Braking input counts (Actual raw input) counts
17.  Steering wheel rate radians/second
18. Minimum time to collision between the driver seconds
and all vehicles in the driver’s direction
19. Minimum range between the driver and all ve- feet
hicles in the driver’s direction
20. Minimum time to collision between the driver seconds
and all vehicles opposing the driver’s direction
21. Minimum range between the driver and all ve- feet

hicles opposing the driver’s direction.

For example, in the case of Resnetl8, input
data for an assessment item 1 consists of five
concatenated deep features df with the size of
[1 x 2560] that are extracted from five driving sce-
narios, i.e., [df1, df2, df3, dfs, dfs]. The input data for
a driving suitability item consists of thirteen con-
catenated deep features with the size of [1 x 6144]
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TABLE 6. Description of Pre-trained CNN Models and Feature
Information for Feature Extraction.

CNN Parameter  Input Feature extraction
Depth . e .
model size[million] size Act. layer Feat. num
Resnet18 18 11.7 224x224x3 ’poolS’ 512
Inceptionv3 48 23.9 299x299x3 ’avg_pool’ 2048
Resnet50 50 25.6 224x224x3 ’avg_pool’ 2048
Resnet101 101 44.6 224x224x3 ’pool5’ 2048
IncResV2 164 55.9 299x299x3 ’avg_pool’ 1536

Act. layer: Activation layer, and Feat. num: Feature number

that are extracted from all thirteen driving scenarios,
ie., [dfl, dfz, ey dfl2, df13].

Feature selection: Pre-trained CNN models are used to
extract deep features, but too many features increase the com-
putational burden on the machine learning classifier, resulting
in deterioration of classification performance. To overcome
this problem, we add feature selection method in our sys-
tem. The feature selection identifies relevant features that
are useful for determining the final class, and discards fea-
tures that are irrelevant and merely occupying the entire
dimension of the problem space. In this work, we perform
a chi-square test on the input data set to select the important
features. Matlab 2020a provides a function fscchi2 for feature
selection. We use only deep features with a score higher
than 0 calculated by this function.

3) RESAMPLING

In addition to feature engineering, it is required to balance
training dataset for the performance of the machine learning
algorithms [79]. We configure the dataset to perform binary
classification on eleven assessment items, but some items
do not have the same number of the dataset in each class,
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resulting in an imbalanced dataset. In general, imbalanced
datasets are easily found in medical applications due to
the lack of rare disease datasets [80]. For dealing with the
imbalanced dataset problems, resampling strategies such as
under-sampling and over-sampling are widely used. Since
we do not have many datasets in this work, we focus on
the oversampling techniques and use one resampling algo-
rithm in our work, i.e., Synthetic Minority Over-sampling
Technique (SMOTE).

SMOTE first randomly selects a minority class instance
a and finds its k-nearest neighbors. Then, a synthetic point
is created anywhere on the line between a and randomly
selected one of the neighbors b in the feature spaces [81].
To implement SMOTE, we use ‘“Data Mining with R”
(DMwR) package in R programming [82]. In the DMwR
package, it supports SMOTE for classification and regres-
sion. We create a file containing a training dataset in Matlab,
load it to perform SMOTE for classification in R program-
ming, and then import the file generated from R programming
back into Matlab to perform the next procedure. For parame-
ter settings of SMOTE, we set “perc.over = 100”. It means
over-sampling the minority class to the number of the major-
ity class. We also select the optimal number of k achiev-
ing the best classification performance by investigating k
from 1 to 10.

4) AUTOMATED MACHINE LEARNING

For the eleven assessment classifiers in Driving-PASS,
we use Machine Learning (ML) classifiers. Building a good
ML model requires a lot of manual trial and error in
model selection and hyper-parameters tuning. With advances
in ML techniques, these manual tasks are automated,
which is called AutoML. AutoML eliminates the man-
ual steps and builds an accurate model automatically in
a single step. That is, AutoML identifies the best model
among many available models (e.g., discriminant analy-
sis, k-nearest neighbor, linear, and SVM) and then tunes
its hyper-parameters to optimize performance by applying
Bayesian optimization. To implement AutoML in Driving-
PASS, we use a function fitcauto to select a classifica-
tion model with optimized hyper-parameters automatically.
Note that we focus on a feature extraction method using
pre-trained CNN models and a resampling method. In this
work. Developing a new ML classifier and comparing it
with other ML classifiers are beyond the scope of this

paper.

IV. EVALUATION

In this section, we evaluate the classification performance in
a total of eleven assessment items consisting of ten driving
performance classifiers and one decision classifier. For the
performance evaluation, we perform thirty times repeated
Stratified Holdout. We compare the performance of deep
features from five pre-trained CNN models and select deep
features that meet the best performance in each assessment
item.
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A. EVALUATION METRICS
To evaluate the classification performance, we introduce
evaluation metrics in this section. Driving-PASS consists
of eleven items: ten decision items (Proficient or Non-
proficient) and one decision item (Pass or Fail). In the follow-
ing, we describe the evaluation metrics used in our system.
Precision (Pre) is defined as the number of true positives
(Tp) over the number of true positives (7p) plus the number of
false positives (Fp), as shown in Eq. 3. Pre is the proportion
of positive cases that are correctly identified.
Pre = L 3)
Tp+ Fp
Recall (Rec) is defined as Tp over Tp plus the number of
false negatives (Fy ), as shown in Eq. 4. Rec is the proportion
of actual positive cases that are correctly identified.
Rec= —T )
Tp+ Fy
Accuracy (Acc) is defined as Tp plus Ty over the sum
of all binary performance metrics, i.e, Tp, Ty, Fp, and Fy,
as shown in Eq. 5. Acc is the proportion of the total number
of predictions are correct.
Acc = T+ Ty (5)
Tp+Ty +Fp+Fn
F1-score (F'1) is the harmonic mean of precision (Pre) and
recall (Rec), combining two performance metrics into one
metric, as shown in Eq. 6. This metric is one of the most used
metrics for handling imbalanced datasets.
Pre - Rec
Fl=2——— 6)
Pre 4+ Rec
Eleven assessment items in Driving-PASS consists of
binary items, i.e., two classes. To evaluate Driving-PASS’s
overall performance, we use a simple arithmetic mean of
four metrics of the two classes in each item. The average
performance metrics are formed by averaging the five per-
formance metrics in the two classes (N = 2), a.k.a., Macro-
average. The micro average indicates that each class is of
equal importance. We use five metrics as performance metrics
by micro-averaging, as follows:

mPre = ]leX/:;Pre(k) )
mRec = zlv éRec(k) (8)
mAcc = IleZZ;Acc(k) 9)
mF1 = zlvén(k) (10)

In our dataset, some items consist of imbalanced datasets,
where classes are not evenly distributed. In order to address
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FIGURE 6. Performance evaluation (mF 1) considering five deep features of Pre-trained CNN models and a resampling method (SMOTE).

this imbalanced dataset problem, we evaluate classifica-
tion performance by using mF1 to select the best classi-
fication method in each item. After that, we also evaluate
the classification performance with other performance
metrics.

B. CLASSIFICATION PERFORMANCE EVALUATION
This section evaluates the classification performance with
thirty times repeated Stratified Holdout, taking into account
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deep features of five pre-trained CNN models (Resnetl8,
Inceptionv3, Resnet50, ResnetlO1, and IncResV2) and a
resampling algorithm (SMOTE).

Fig. 6 shows the classification performance evaluation
(mF'1) considering five deep features and SMOTE. Classi-
fication performance is significantly affected by which fea-
tures are used. The performance is somewhat satisfactory
when using the raw data without a feature extraction method
using pre-trained CNN models, but it does not show the best
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TABLE 7. Summary of performance evaluation in Driving-PASS.

Performance Metrics

L. Traffic Road Skill Selected
Item Description Environment  Type Type Selected DS mF1 mAce mRec mPre DF
Item1  Speed Control Urban 1-S BD 1,2,3,4,5 0.95+0.05 0.95+0.05 0.95+£0.06 0.964+0.04 Resnetl01
Item 2  Steering Control Urban 1-S BD 1,2,3,4,5 0.834+0.07 0.84+0.07 0.84+0.07 0.86+0.07 Resnetl01
Item 3  Traffic Light Control Urban 1-S CcpP 1,2,3 0.9940.04 0.9940.04 0.99+0.03 0.994+0.03 Resnetl0O1
Item4 Emergency Control 1 Urban 1-S Ccp 4 0.88+0.09 0.90+0.08 0.89£0.09 0.90£0.09 Resnetl8
ItemS  Emergency Control 2 Urban 1-S CP 5 0.824+0.09 0.83+£0.09 0.83+0.09 0.84+0.09 Resnetl01
Item 6  Speed Control Highway 2-S BD 6,7,8 0.834+0.10 0.83+0.10 0.834+0.10 0.84+0.10 Resnet50
Item 7  Steering Control Highway 2-S BD 6,7,8 0.824+0.10 0.82+0.10 0.8240.10 0.84£0.10 Resnet50
Item 8  Speed Control Rural 1-C BD 9,10,11,12,13 0.81£0.12 0.8140.12 0.83£0.11 0.834+0.11 Inceptionv3
Item 9  Steering Control Rural 1-C BD 9,10,11,12,13 0.84+0.09 0.85+0.09 0.88+0.07 0.85+0.08 IncResV2
Item 10 Emergency Control 3 Rural 1-C Cp 13 0.864+0.10 0.86+£0.10 0.8740.09 0.88£0.09 IncResV2
Item 11 Driving Suitability - - - All DS 0.884+0.08 0.89+0.07 0.884+0.08 0.90+0.07 Resnetl01

DS: Driving Scenario, DF: Deep Features, BD: Basic Driving skills, CP: Cognitive & Perceptual driving skills

performance. Evaluation results demonstrate that the feature
extraction method with pre-trained CNN models effectively
classifies two binary classes in each item. In most cases, using
a pre-trained CNN model for feature extraction improves the
classification performance.

The best classification performance is seen on deep fea-
tures, and the best CNN models for the deep feature extrac-
tion depends on the assessment items. For driving ability
items, the best deep features are different depending on the
traffic environments. For example, deep feature (DF) using
Resnet 101 is the most performance in Urban, DF using
Resnet 50 in Highway, and DF using IncResV2 in Rural,
respectively. As an exception, DF using resnetl8 and DF
using Inceptionv3 perform best in items 4 and 8, respectively.
For a driving suitability item, DF using Resnet101 shows the
best classification performance.

Besides, applying the resampling algorithm (SMOTE)
improves classification performance (mF1) by 5~71% in
all eleven assessment items. The results indicate that evenly
distributing each class in the training dataset significantly
impacts classification performance.

Table 7 shows a summary of the performance evaluation
that considers all performance metrics (mF 1, mAcc, mRec,
and mPre) in eleven assessment items after finally selecting
the best deep feature with SMOTE in each item. The perfor-
mance metrics for mAcc, mRec, and mPre also show similar
performance patterns to mF1. Besides, the selected deep
features are relevant to driving simulation environments, such
as traffic environments and road types, not driving skill types.

In summary, we compensate for the limitations of hand-
crafted features and imbalanced dataset problems by care-
fully selecting deep features in each item and using a resam-
pling algorithm. Evaluation results show that Driving-PASS
shows high classification performance over mF1 of 0.81 in
all assessment items.

V. DISCUSSION
The demand for accurate and reliable evaluation of stroke
drivers is increasing due to accidents caused by them.
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1-S: 1-way Straight road, 2-S: 2-way Straight road, 1-C: 1-way Curvy road

Nevertheless, the lack of institutional control for stroke
drivers in the motor vehicle licensing authority increases the
risk of driving accidents. Our system offers an alternative to
stroke driver evaluation since the driving simulator test has
key advantages in identifying risks to driving safety compared
to other driving evaluation methods [83].

Driving-PASS is designed to address the safety concerns of
stroke drivers returning to driving by automatically evaluating
driving abilities and driving suitability. Assessment results
of Driving-PASS provide not only information about insuf-
ficient driving abilities for driving rehabilitation but also a
pre-screening judgment of whether a stroke survivor can per-
form the on-road test. Our system serves as a pre-screening
tool and ultimately improves stroke drivers’ safety and other
road drivers.

There are some limitations in this work. First, we use a
machine learning approach rather than using state-of-the-art
deep learning technologies. Deep learning technologies are
based on a data-driven approach that requires many datasets
to train deep learning models. Because of the small number of
driving datasets, we select one of the deep learning techniques
in our work that uses relatively small datasets but shows
good performance. We will extend our work to develop more
sophisticated classifiers using deep learning techniques by
collecting large driving datasets in future work.

Second, for driving ability items, our system’s evaluation
results do not reveal the cause of the driving error. They
only provide information about problematic items. Since
Driving-PASS is trained to classify binary decisions, such as
Proficient vs. Non-proficient, there are limitations to interpret
the detailed analysis of the problematic items. One solution is
to divide more subitems in each ability item and analyze the
subitems based on large driving data sets in terms of factor
analysis. However, such simulator analysis has limitations
since only the neuropsychometric test clearly reveals the rea-
sons for driving errors [84]. Despite the limitations, a driving
rehabilitation program improves driving performance skills
such as crashes and speed [85]. Repeated driving training
also demonstrates to help driving skills [86]. Considering
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the problematic items, we will develop an effective driving
rehabilitation program tailored to individual patients in the
future.

Lastly, there are twenty-seven driving data for the driving
simulator test and no on-road test results in our dataset. There-
fore, driving suitability is limited to the simulation test. In our
work, driving suitability means a preliminary examination
to determine whether an on-road test is suitable. Ultimately,
the on-road test determines the fitness-to-drive on the road.
We plan to extend our work to judge actual driving suitability
using only the simulator test results by collecting the results
of the on-road test.

VI. CONCLUSION

After a stroke, an accurate assessment of driving is essential
for driving safety. A driving simulator-based assessment is
a promising tool because of the benefits of effectively and
safely identifying risks to driving safety. As an effort to
provide such a system, we propose Driving-PASS based on
a driving simulator assessment.

We construct a simulator driving test consisting of thirteen
driving scenarios design a subjective assessment consisting
of ten driving ability items and one decision item. Using the
driving data from the driving simulator and evaluation results
from ten driving evaluators, we build eleven assessment
classifiers, the core engine of Driving-PASS. Technically,
we compensate limitations of handcrafted feature design and
imbalanced dataset problems by using a feature extraction
method using pre-trained CNN models and a resampling
method.

Evaluation results demonstrate that Driving-PASS
classifies problematic driving ability items (item 1~10) and
determines driving suitability item (item 11) with high clas-
sification performance. We envision that Driving-PASS will
be a pre-screening tool for assessing driving performance,
ultimately improving road safety.
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