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ABSTRACT
◥

Purpose: Gastric cancer remains the leading cause of cancer-
related deaths in Northeast Asia. Population-based endoscopic
screenings in the region have yielded successful results in early
detection of gastric tumors. Endoscopic screening rates are con-
tinuously increasing, and there is a need for an automatic com-
puterized diagnostic system to reduce the diagnostic burden. In this
study, we developed an algorithm to classify gastric epithelial
tumors automatically and assessed its performance in a large series
of gastric biopsies and its benefits as an assistance tool.

Experimental Design: Using 2,434 whole-slide images, we
developed an algorithm based on convolutional neural networks
to classify a gastric biopsy image into one of three categories:
negative for dysplasia (NFD), tubular adenoma, or carcinoma. The
performance of the algorithm was evaluated by using 7,440 biopsy

specimens collected prospectively. The impact of algorithm-assisted
diagnosis was assessed by six pathologists using 150 gastric biopsy
cases.

Results:Diagnostic performance evaluated by the AUROC curve
in the prospective study was 0.9790 for two-tier classification:
negative (NFD) versus positive (all cases except NFD). When
limited to epithelial tumors, the sensitivity and specificity were
1.000 and 0.9749. Algorithm-assisted digital image viewer (DV)
resulted in 47% reduction in review time per image compared with
DV only and 58% decrease to microscopy.

Conclusions: Our algorithm has demonstrated high accuracy in
classifying epithelial tumors and its benefits as an assistance tool,
which can serve as a potential screening aid system in diagnosing
gastric biopsy specimens.

Introduction
Gastric cancer is the third leading cause of cancer-related deaths in

bothmen andwomenworldwide (1). Although its incidence is decreas-
ing globally, the incidence and mortality of gastric cancer remain
considerably high inNortheastAsian countries, includingChina, Japan,
and Korea (2). Gastric cancer screening is done on a population basis in
Japan and Korea, and such mass screening has been shown to be
effective in detecting gastric cancer at an early stage, thereby reducing
mortality rates (3, 4). As a result, endoscopic screening rates for gastric

cancer underwent an annual increase of 4.2% from 2004 to 2013 in
Korea, reaching as high as 73.6% in the population over 40 years old in
the country (5). Accordingly, the diagnostic workload for gastric biopsy
specimens has increased steadily. Therefore, there is a need for an
automatic computerized diagnostic system to reduce the increasing
diagnostic burden and prevent misdiagnosis.

Developing an automated screening method can reduce heavy
diagnostic workloads, an excellent example of which is the automated
image analysis of cervical cytology specimens for cervical cancer
screening (6). With advances in digital scanning devices and deep
learning technologies, automated cancer diagnostic systems are being
developed usingwhole-slide images (WSI); however, these havemostly
been developed for breast and colorectal cancers (7–9). As for gastric
cancers, a small number of groups have reported their automated
histologic classification systems using convolutional neural networks
(CNN; refs. 10–15). Sharma and colleagues trained CNNs to detect
gastric cancer yielding overall classification accuracy of 69.9%; how-
ever, their dataset was limited to only 15 WSIs (12). Li and colleagues
proposed a deep learning–based framework, GastricNet, for automat-
ed gastric cancer detection and demonstrated its diagnostic accuracy of
100%, a performance superior to the already well-known, state-of-the-
art networks, including DenseNet and ResNet (16). However, this
study was conducted only on a publicly available gastric slide dataset,
lacking validation using an independent set of samples. Furthermore,
gastric adenomas were not included in their study design. Yoshida
and colleagues developed an image analysis software named
“e-Pathologist” that classifies gastric biopsy images into either carci-
noma, adenoma, or nomalignancy, and performed a prospective study
in a large set of gastric biopsy specimens to verify its utility (11).
Although e-Pathologist could accurately identify 90.6% of negative
specimens, the overall concordance rate was only 55.6%, and the
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false-negative rate was as high as 9.4%. Iizuka and colleagues evaluated
their algorithm that classifies WSIs into either nonneoplastic, adeno-
ma, or adenocarcinoma, and confirmed accuracy of 95.6% from their
test set consisting of 45 WSIs (13). Although the aforementioned
CNN-based gastric cancer detection algorithms have shownpromising
results, their diagnostic performance in the real clinical setting, as well
as impact on diagnostic workflow have not been validated.

In this study, we aimed to develop and evaluate a high-performance
deep learning algorithm for automated histologic classification of
gastric epithelial tumors (gastric adenomas and carcinomas) for
endoscopic biopsy specimens. Using a large dataset consisting of
2,434WSIs, we trained a baseline CNN and improved its performance
by applying additional color/space augmentation and representation
aggregation. Furthermore, the performance of our proposed model
was evaluatedwith 7,440WSIs prospectively, and its clinical benefits as
an assistance tool were assessed in an observer study. As a result, our
algorithm demonstrated consistent outstanding accuracy and efficien-
cy in identifying gastric epithelial tumors in both prospective and
observer studies, proving its potential as a screening or assistance tool
for gastric biopsy diagnosis.

Materials and Methods
Dataset
Training and validation set

To train the algorithm for gastric epithelial tumors, a total of 1,678
cases of gastric resection (n ¼ 201, 12%) and endoscopic biopsy
specimens (n ¼ 1,477, 88%) from 1,522 patients were collected from
two institutions: Korea University Guro Hospital (Guro-gu, Seoul,
South Korea, KUGH), and Green Cross Laboratories (GCL). A total of
792 (52%) were male and 730 (48%) were female, with an age range of
28–89 years old (mean� SD, 60� 13). For retrospective evaluation, we
collected 756 cases of endoscopic biopsy specimens fromGCL and Jeju
National University Hospital (Jeju, South Korea, JNUH); 392 (52%)
weremale and 364 (48%)were female, with an age range of 27–92 years
old (mean� SD, 59� 14).We call this retrospective evaluation dataset
as the validation set hereafter..

Test and observer study set
For the prospective study, GCL accrued 7,459 consecutive gastric

biopsies from 5,393 patients who received gastroscopy at eight local

clinics or hospitals located in Gyeonggi-do province in South Korea
from July 2019 to November 2019. The purpose of gastroscopy was
gastric cancer screening in 72% (3,883/5,393) of patients, and the
remaining 28% (1,510/5,393) underwent the procedure for the diag-
nosis of gastrointestinal (GI) symptoms, such as heartburn and
indigestion. A total of 2,754 (51%) were male and 2,639 (49%) were
female, with an age range of 29–93 years old (mean� SD, 58� 12).We
call this prospective evaluation dataset as the test set hereafter. For the
observer study, 150 cases of endoscopic biopsy specimens were
collected from 150 patients from GCL; 81 (54%) were male and 69
(46%) were female, with an age range of 25–87 years old (mean� SD,
62� 14). All specimens were made into glass slides of formalin-fixed,
paraffin-embedded tissue stained with hematoxylin and eosin (H&E)
using an automated staining system. Patient information was removed
from all slides for deidentification. All slides were scanned with a
virtual slide scanner Aperio VERSA (Aperio) at 40 � magnification.
This studywas approved by the Institutional ReviewBoard (IRB) at the
KUGH (Guro-gu, Seoul, South Korea, IRB no., 2017-GR0792), GCL
(IRB no., GCL-2017-2002-06), and JNUH (Jeju, South Korea, IRB no.,
2017-11-014), respectively, and it was conducted in accordance with
the Declaration of Helsinki. Informed consent from the patients was
waived with IRB approval.

Pathologic diagnosis
Three experienced GI pathologists at GCL (D.-I. Kim, J.M. Gwak,

and H. Ko) evaluated each slide independently and reached a
consensus for the reference diagnosis. We trained our algorithm
to classify each region into three categories: negative for dysplasia
(NFD), tubular adenoma (TA), and carcinoma (CA). Comparison
of this categorization with Korean pathologists’ diagnosis and the
revised Vienna classification (17) is summarized in Supplementary
Table S1. As for the revised Vienna classification, category 1 is NFD.
Category 3 and categories 4.1–4.2 belong to TA, and categories
4.3–5.2 are CA. The algorithm’s classification does not cover
category 2 because it is only used when one cannot decide whether
a lesion is nonneoplastic or neoplastic (17). The training set
included 1,678 cases (1,218 NFD, 187 TA, and 273 CA cases) and
the validation set included 756 cases (428 NFD, 162 TA, and 166 CA
cases), as shown in Supplementary Table S2. For the test set, 7,440
cases were included after excluding 19 cases with too small biopsy
size. In total, there were 6,441 cases of chronic gastritis, 838 cases of
nonneoplastic polyp (574 fundic gland polyp [FGP], 251 hyper-
plastic polyp (HP), 11 xanthoma, one inflammatory fibroid polyp,
and one heterotopic pancreas), 81 cases of TA, and 64 cases of CA
(Table 1). In addition, eight cases were diagnosed as indefinite for
dysplasia (IFD), and eight cases as nonepithelial tumors, including
mucosa-associated lymphoid tissue (MALT) lymphoma (n ¼ 5),
neuroendocrine tumor (n ¼ 2), and GI stromal tumor (GIST, n ¼
1). For all 145 gastric epithelial tumors, there was no disagreement
in diagnosis among three pathologists. Our observer study of 150
cases (120 NFD, 15 TA, and 15 CA cases) was divided into three
sets: set 1 included 40 NFD, five TA, and five CA, set 2 included 40
NFD, four TA, and six CA, and set 3 included 40 NFD, six TA, and
four CA cases, respectively. A summary of the sets is presented in
Supplementary Table S3. For each slide, both region-level and slide-
level annotations were made. The region-level annotation was made
by an experienced GI pathologist by marking the regions of interest
that were pathognomonic (Supplementary Fig. S1). Slide-level
annotations were made with the consensus of at least two pathol-
ogists. Brief information on the study workflow is visualized
in Fig. 1A.

Translational Relevance

Diagnostic workload for gastric biopsy specimens is increasing
steadily in Northeast Asia. Previous studies on deep learning–
assisted analysis of digital gastric biopsy images have limitations
with respect to clinical validation. In this study, we developed and
evaluated a deep learning algorithm for histologic classification of
gastric epithelial tumors in actual clinical practice. Our algorithm
demonstrated a superb performance with diagnostic accuracy of
0.97–0.99 calculated from the AUROC curve in both retrospective
and prospective studies. Algorithm-assisted diagnosis significantly
saved the average review time per image, particularly for negative
cases, reaching 100% sensitivity. We believe that our algorithm can
potentially serve as a screening or an assistance tool not only in
countries with heavy diagnostic workloads of gastric biopsy speci-
mens, but also in areas where experienced pathologists are not
available.
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Observer study
A multicenter, reader-blinded study was performed with partici-

pation from six pathologists at four different institutions in South
Korea (GCL; JNUH, Jeju, South Korea; Hanyang University Hospital,
Seongdong-gu, Seoul, South Korea; and Boramae Hospital, Sindae-
bang-dong, Seoul, South Korea). The six pathologists have aminimum
of 5 years of surgical pathology experience and have never used digital
pathology in clinical practice before. They did not participate in case
collection or establishing reference diagnosis. They were instructed to
review the slides and images at a rate similar to their routine practice.
For the observer study dataset, 150 gastric biopsy specimens were
obtained from GCL, which were tumor enriched with a tumor
prevalence of 20% compared with test set.

A total of 150 cases were further divided into three sets (each set
contained 20% of positive cases) and were evaluated by the pathol-
ogists under an inspector’s supervisionwhomanaged and recorded the
process. Each pathologist was randomly designated to assess the three
sets by conventional microscope (Mic), digital image viewer (DV), and
algorithm-assisted DV (AADV). To reduce and evaluate the effect of
possible bias from the dataset and reading method, the observer study
was designed to assign different datasets and reading methods for each
observer to cover all possible combinations. To establish familiarity
with the DV (with or without algorithm), a review of five training
images that were not part of the study cases was conducted before each
session. During sessions with DV and AADV, the time from opening
the image in the viewer to opening the next image was measured.
During sessions with Mic, the time from placing the slide on the
microscope’s stage to placing the next one was measured from the
video recording.

Proposed framework
In accordance with the redefined three categories, NFD, TA, CA, we

applied our proposed framework to generate both region-level and
slide-level classification from the WSIs of H&E-stained gastric biopsy
specimens (Fig. 1B and C). As the first step, the baseline CNN was
trained to extract spatially reduced features or representations using
the image and annotations of small patches from theWSI at 10� scale

(see Baseline Framework section in Supplementary Data for details).
After the feature extraction phase, additional convolution layers were
applied to expand the receptive field of the model to utilize wider
high-level context formore accurate region-level predictions.We called
this modified model a representation aggregation CNN (RACNN). To
generate a slide-level prediction, the summation of region-level pre-
dictions was calculated and used as a slide-level feature. Using these sets
of slide-level features and their corresponding slide-level annotations, a
random forest classifier was trained to classify each WSI into a slide-
level category. To further improve the performance and robustness of
the proposed pipeline, we adopted stain normalization and CIELAB
color space augmentation in training feature extraction model of our
RACNN model (see Stain Normalization and CIELAB Color Space
Augmentation sections in Supplementary Data for details).

Results
Table 1 summarizes the final diagnosis by the pathologists and

classification by the algorithm for the gastric biopsy specimens.
Representative histologic image for each lesion and the corresponding
heatmap generated by the algorithm are presented in Fig. 2, showing
significant overlap between the tumor areas marked by the pathologist
and those detected by the algorithm.

Performance of algorithm in the validation set
We used the AUROC curve, as well as sensitivity and specificity to

assess the performance of the algorithm quantitatively. For 756 gastric
biopsy specimens containing 328 (43%) cases of TA or CA, our
algorithm demonstrated remarkably high accuracy. For a two-tier
classification, that is, negative (NFD) versus positive, AUROC, sen-
sitivity, and specificity were 0.9949 [95% confidence interval (CI),
0.9890–0.9995], 0.9909 (95% CI, 0.9808–1.0000), and 0.9813 (95% CI,
0.9682–0.9929), respectively (Table 2; Fig. 3A). For a three-tier
classification (NFD vs. TA vs. CA), the macro-averaged AUROC (the
mean value of AUROCs for NFD, TA, and CA) was 0.9922 (95% CI,
0.9828–0.9986). Overall accuracy and balanced accuracy are shown
in Table 2.

Table 1. Diagnostic classification by human pathologists and proposed algorithm.

Classification by algorithm
Validation set (n ¼ 756) Total Test set (n ¼ 7,440)

Final diagnosis by pathologists NFD TA CA NFD TA CA Total

CG [no. (%)] 421 (98.4) 5 (1.1) 2 (0.5) 428 (56.6) 6,298 (97.8) 80 (1.2) 63 (1.0) 6,441 (86.4)
Nonneoplastic polyp [no. (%)] — — —

Fundic gland polyp — — — 547 (95.3) 24 (4.2) 3 (0.5) 574 (7.7)
Hyperplastic polyp — — — 239 (95.2) 11 (4.4) 1 (0.4) 251 (3.4)
Xanthoma — — — 10 (90.9) 0 (0.0) 1 (1.1) 11 (0.1)
Inflammatory fibroid polyp — — — 1 (100.0) 0 (0.0) 0 (0.0) 1 (<0.1)
Heterotopic pancreas — — — 1 (100.0) 0 (0.0) 0 (0.0) 1 (<0.1)

TA [no. (%)]
TA, LGD 2 (1.3) 145 (97.3) 2 (1.3) 149 (19.7) 0 (0.0) 65 (97.0) 2 (3.0) 67 (0.9)
TA, HGD 0 (0.0) 9 (69.2) 4 (30.8) 13 (1.7) 0 (0.0) 10 (71.4) 4 (28.6) 14 (0.2)

CA [no. (%)] 1 (0.6) 1 (0.6) 164 (98.8) 166 (22.0) 0 (0.0) 1 (1.6) 63 (98.4) 64 (0.9)
Indefinite for dysplasia [no. (%)] 4 (50.0) 2 (25.0) 2 (25.0) 8 (0.1)
Others [no. (%)]

MALT lymphoma — — — 4 (80.0) 0 (0.0) 1 (20.0) 5 (<0.1)
Neuroendocrine tumor — — — 0 (0.0) 0 (0.0) 2 (100.0) 2 (<0.1)
GIST — — — 1 (100.0) 0 (0.0) 0 (0.0) 1 (<0.1)

Total [no. (%)] 424 (56.1) 160 (21.1) 172 (22.8) 756 (100.0) 7,105(95.5) 193(2.6) 142(1.9) 7,440 (100.0)

Abbreviations: CG, chronic gastritis; HGD, high-grade dysplasia; LGD, low-grade dysplasia.
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Performance of the algorithm in the test set
To test our algorithm’s performance in real practice, we conducted a

5-month long prospective study at GCL. A large number of gastric
biopsy specimens (n¼ 7,440) was collected from 5,384 patients, and a
parallel diagnostic process was carried out by our pathologists and the
algorithm. For the two-tier classification, AUROC, sensitivity, and

specificity were 0.9790 (95% CI, 0.9612–0.9932), 0.9673 (95% CI,
0.9365–0.9930), and 0.9749 (95% CI, 0.9713–0.9785), respectively
(Table 2; Fig. 3B). For the three-tier classification, the macro-
averagedAUROCwas 0.9742 (95%CI, 0.9494–0.9935;Table 2).When
the cases were confined to only epithelial tumors, the sensitivity of our
algorithm reached 1.0000 (95% CI, 1.0000–1.0000; Table 2; Fig. 3C).

Figure 1.

Datasets and the proposed framework. A, Study profile of training set, validation set, and test set. B, The proposed framework. C, The architecture of the feature
extraction network and RACNN.

Park et al.

Clin Cancer Res; 27(3) February 1, 2021 CLINICAL CANCER RESEARCH722

on July 27, 2021. © 2021 American Association for Cancer Research. clincancerres.aacrjournals.org Downloaded from 

Published OnlineFirst November 10, 2020; DOI: 10.1158/1078-0432.CCR-20-3159 

http://clincancerres.aacrjournals.org/


False-negative predictions by the algorithm
No false-negative prediction was made by the algorithm in the

prospective test set. Three of 756 (0.4%) cases were found to be false
negative in the validation set: two CAs were classified as TA and NFD,

and one TA as NFD, as summarized in Supplementary Table S4.
Interestingly, a signet ring cell carcinoma (SRCC) was classified as
NFD despite a large area with the cancer cells in the biopsy tissue
(Supplementary Fig. S2A). On reviewing the slide, it appeared that the

Figure 2.

Gastric biopsies interpreted as NFD include gastric mucosa from the fundus (A) and antrum (B), gastric mucosawith erosion (C), and intestinal metaplasia (D). E and
F, Gastric adenomas with low-grade dysplasia, marked by the dashed blue lines, were recognized and depicted as blue areas by the algorithm. Images of papillary
adenocarcinoma (G), tubular adenocarcinomas with well (H), moderate (I), and poor (J) differentiation, SRCC (K), and mixed carcinoma (L). Carcinoma areas
identified by the pathologists and marked by the red dashed lines correspond well with the red areas recognized by the algorithm. Scale bar, 500 mm.
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mild nuclear atypia of the cancer cells might have contributed to
the misclassification. Two typical TA cases were classified as NFD,
probably due to the less glandular crowding from stromal edema
(Supplementary Fig. S2B).

False-positive predictions by the algorithm
Seven false-positive cases (1%) were observed in the validation set

(Table 1; Supplementary Table S5), and 183 false-positive predictions
(2.5%) were made in the training set; 115 cases of chronic gastritis or
nonneoplastic polyps were classified to TA and 68 cases to CA
(Table 1). The 115 false TA diagnoses by the algorithm included
80 chronic gastritis, 24 FGP, and 11 HP cases, and 71 false CA cases
included 63 chronic gastritis, three fundic gland polyps, a hyperplastic
polyp, a xanthoma, a MALT lymphoma, and two neuroendocrine
tumors. The probable causes of misdiagnosis by algorithm are sum-
marized in Supplementary Table S6. The most common cause of
misprediction into TA was regenerative atypia (38.3%) followed by
intestinalmetaplasia (18.2%). On the other hand, inflammatory tissues
(50%), such as ulcer detritus and granulation tissue, were the most
common histologic features that likely led tomisclassification into CA.
Representative false-positive cases are shown in Supplementary
Fig. S3.

Observer study
To evaluate the potential impact of our algorithm on deep learning–

supported diagnosis, we conducted a multicenter, reader-blinded
study for classification of gastric biopsies. Three sets of gastric biopsy
cases (n¼ 50/set) were independently classified by six pathologists by
using three different modalities, as shown in Fig. 4A; the time from the
start of the review to establishing a diagnosis was recorded. There was
no significant difference in overall review time per slide for the three
sets (Supplementary Fig. S4A). The summary of results is shown in
Supplementary Table S7. For a two-tier classification, NFD versus
positive, our algorithm showed 0.9600 (95% CI, 0.9600–0.9600)
accuracy, 1.0000 (95% CI, 1.0000–1.0000) sensitivity, and 0.8333
(95% CI, 0.8333–0.8333) specificity. Diagnostic performance was
compared among the three groups bymodality: Mic group, DV group,
and AADV group. Overall accuracy was 0.9633 (95% CI, 0.9226–
1.0000) in Mic group, 0.9867 (95% CI, 0.9578–0.9975) in DV group,
and 0.9967 (95% CI, 0.9881–1.0000) in AADV group. No significant
difference in accuracy, sensitivity, or specificity was observed among
the three groups (Fig. 4B). Algorithm-alone classification and AADV
group reached sensitivity of 1.0000.

The average time of review per slide was shortest in algorithm-
assisted group (Fig. 4C), with 44.97 (95%CI, 41.43–48.52), 35.70 (95%
CI, 33.24–38.15), and 18.90 (95%CI, 17.44–20.36) seconds inMic,DV,
and AADV groups, respectively. The same results were observed when
the time was normalized by mean review time of each pathologist
(Supplementary Fig. S4B), and all six pathologists yielded consistent
results (Supplementary Fig. S4C). In particular, the difference in
review time was more apparent in the negative cases (P < 0.001 for
Mic vs. AADV andDV vs. AADV); 46.78 (95%CI, 42.68–50.87), 36.08
(95% CI, 33.57–38.58), and 17.37 (95% CI, 15.85–18.89) seconds in
Mic, DV, and AADV groups. For TA/CA cases, review time was also
shorter in AADV group thanMic group (P < 0.05) with 37.77 (95%CI,
31.07–44.46), 34.18 (95% CI, 26.91–41.46), and 25.02 (95% CI, 21.25–
28.79) seconds in Mic, DV, and AADV groups, however, there was no
significant difference in review time between DV and AADV groups
(P ¼ 0.09). These findings demonstrate that the reduced reading time
by algorithm support is mostly attributed to the time saved from
reviewing negative cases.Ta
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Discussion
Recent studies have shown promising results of deep learning–

based algorithms in diagnosing pathologic lesions in digitized H&E
slides from various organs, including the stomach, breast, skin,
prostate, and lung cancers (9, 11, 14, 18–20). As for gastric cancer,
the increasing diagnostic workload of endoscopic biopsy specimens
calls for development of high-performance algorithm with high
sensitivity and specificity. In this study, we developed an algorithm
to detect gastric tumors and demonstrated a superb performance by
showing 100% sensitivity and 97% specificity in the prospective study

when limited to epithelial tumors (Table 2). Even when nonepithelial
tumors were included, it showed a 96% sensitivity, 97% specificity, and
97% accuracy. Considering that the clinically significant diagnostic
error rate in surgical pathology has been reported to vary from0.26% to
1.2%, our algorithm’s accuracy in diagnosing gastric tumors seems to
be almost equal to that of human pathologists.

Studies have suggested the utility of deep learning algorithms in
assisting pathologists to improve accuracy and efficiency in cancer
diagnosis (21, 22). To investigate the potential benefit of our algorithm
as an assistance tool for interpreting gastric biopsies, we performed an
observer study using three different modes: traditional microscope

Figure 3.

ROCcurves in the validation and test sets for each gastric lesion: NFD), TA, andCA in the validation set (A), test seta (B), and test setb (C). Note that ROCcurve forNFD
is equivalent to two-tier classification (NFD vs. the rest). Test seta, all cases except indefinite for dysplasia and test setb, all cases except indefinite for dysplasia, MALT
lymphoma, neuroendocrine tumor, and GIST. The dim lines correspond to the top and bottom bounds of 95% CI.
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(Mic), DV, and AADV. Although the overall accuracy was higher in
AADV group (0.9967) than in Mic group (0.9633), the difference was
not statistically significant (P ¼ 0.07). As disappointing as it may look,
we believe that this is primarily due to the high accuracy of pathologists
for gastric cancers in endoscopic biopsies. According to one study
including 1,331 patients who received endoscopic biopsy, overall
diagnostic accuracy for gastric cancer was 97.4% (23). Our algorithm’s
diagnostic accuracy was in the range of 0.97–0.98 in the validation
and test sets, and it even achieved 0.99 in the observer study. In addition,
we found that only the AADV group reached 100% sensitivity, whereas
Mic and DV groups each missed a positive case. Both of these cases had
tiny cancer foci present in the biopsy specimen. This suggests that the
high sensitivity achieved by algorithm assistance could reduce the risk of
missing cancer, particularly in biopsies with a small area of cancer cells.

Some studies have already demonstrated that artificial intelligence
(AI)-based algorithms can even exceed the sensitivity of pathologists in
detecting cancer foci in digital images. However, it comes at the cost of
increased false positivity (18). In our prospective study, 183 false

predictions (115 false TAs and 68 false CAs) were made by the
algorithm, while achieving 100% sensitivity, and algorithm-alone
classification had relatively low specificity of 0.8333 in the observer
study. Notably, however, in the observer study, all false-positive cases,
except one case, were corrected by the pathologists during the review
process, and the AADV group resulted in the highest specificity. Upon
reviewing the false-positive cases, we found that inflammation- or
ulcer-induced cellular atypia was responsible for most of the false
classifications by the algorithm (Supplementary Table S6). Although
reactive atypia often demonstrates histologic features almost identical
(or sometimes even worse) to those observed in gastric cancer cells,
experienced pathologists can easily identify them as benign from the
surrounding histologic context. Furthermore, in a screening or an
assisted mode, it is more important for an algorithm not to miss a
tumor than to avoid a false-positive diagnosis. Taken together, these
findings suggest that our algorithm as an assisting tool has the potential
to maximize both sensitivity and specificity in detecting tumors in
gastric biopsy specimens.

Figure 4.

Observer performance and review time per
slide with assistance. A, Observer study
design (left) and profile of study set (right).
B, Observer performance. Black circles
represent each observer. Accuracy (left),
sensitivity (center), and specificity (right)
are shown. C, The review time of all cases
(left) and NFD and TA/CA (cancer)
cases (right). Colored circles represent each
slide. � , P < 0.05; ��� , P < 0.001, ANOVA with
post hoc Tukey HSD test. n.s., not significant.
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There are several deep learningmodels that have been developed for
the diagnosis of gastric cancers using WSIs (11–13, 15, 24), and a
comparison of some of these studies and ours is summarized in
Supplementary Table S9. Although each study adopted a different
type of algorithm, most of them demonstrated a powerful diagnostic
accuracy. For example, Iizuka and colleagues (13) have reported 0.97–
0.98 AUROC, which is comparable with our results of 0.97–0.99
AUROC in the prospective set. Yoshida and colleagues were the first
to test AI algorithm for gastric cancer diagnosis in the biopsy speci-
mens, but its accuracy was not satisfactory (11). Most recently, Song
and colleagues have shown a high sensitivity and accuracy of AI
assistance system by conducting a multicenter test (15). However,
this study included both surgical and biopsy specimens and only junior
pathologists participated in the observer study to show that AI
assistance helped the pathologists achieve better accuracy. On the
other hand, in our study, we only included biopsy specimens in all sets,
except training set, and involved experienced pathologists to avoid
overestimating the algorithm’s performance compared with human
pathologists.

More importantly, we provided the evidence of time-saving benefits
of algorithm when it is applied as an assistant tool, which is one of the
critical factors that must be tested to determine the applicability of an
algorithm in real diagnostic workflow. Overall, algorithm assistance
resulted in a 47% reduction in review time per image compared with
DV group and a 58% reduction compared with Mic group. The time-
saving effect was more apparent in NFD cases (52% reduction; P <
0.001). Although a 27% reduction was observed in TA/CA cases, it was
not statistically significant (P ¼ 0.09). This increased efficiency for
diagnosing negative cases is notable given that we included 20% of TA/
CA cases in observer study set. In our prospective study including
7,440 endoscopic biopsies collected over 5months, only 2% (153 cases)
of them turned out to be gastric tumors that required additional
endoscopic or surgical intervention. Therefore, algorithm assistance
would have saved a considerable amount of time if it had been applied
to our actual clinical practice with negative cases comprising more
than 98% of specimens.

Although our algorithm successfully classified all SRCCs in the
prospective study, one case of SRCC in the validation set yielded a
false-negative result, which was misclassified as NFD (Supplementary
Fig. S2A). Because of its deceptively bland morphology, diagnosing
SRCC in small biopsies can be challenging even for pathologists at
times. It has been reported that four of the five false negatives
of the gastric biopsy malpractice claims involve SRCC (25). As for
false-positive results, benign signet ring cell changes canmimic SRCC.
A collection of “foam cells,” which are histiocytes containing
phagocytosed mucin or lipid in the lamina propria, is probably the
most common histologic entity that resembles SRCC. In our study, we
found that one xanthoma (of 10 cases) was misdiagnosed as CA
(Supplementary Fig. S3D). Signet ring cell change can also be seen
in acute erosive gastropathy inwhich gastric epithelial cells show signet
ring cell changes due to a degenerative process from ischemia (26). As
signet ring cell change–containing lesions are rare and sometimes the
morphologic features alone are not enough to differentiate between
signet ring cell changes and SRCC, further testing with such rare cases
is warranted to increase the reliability of our algorithm.

One of the limitations of our algorithm is its inability to detect
nonepithelial tumors. Because ourmodel has been trained to recognize
only epithelial tumors, it is highly likely that mesenchymal tumors of
the stomach, such as GIST, schwannoma, and leiomyoma, would be
classified as NFD. As mesenchymal tumors mostly manifest as a
submucosal mass beneath the normal gastric mucosa, the biopsy

sample tends to contain only a tiny piece of the tumor underneath
the muscularis mucosae, requiring careful examination. Indeed, in our
prospective study, the algorithm failed to recognize a case of GIST as a
tumor and misdiagnosed it as NFD. The majority of mesenchymal
tumors require additional IHC testing to make a final diagnosis.
Therefore, it may be reasonable to supplement the automated system
with a “bypass strategy” so that if a biopsied lesion is described as a
submucosal tumor by the endoscopist, the case is categorized sepa-
rately and sent directly to the pathologist. Interestingly, two neuro-
endocrine tumors were classified as CA, even though our algorithm
was not trained with this type of tumor, which is probably due to its
nesting and infiltrative growth patterns that resemble tubular
adenocarcinomas.

For countries with a high incidence of gastric cancer where large-
scale endoscopic screening is performed on a population basis (such as
Japan and Korea), reducing the diagnostic burden on pathologists
would be a major benefit anticipated from AI assistance. However, in
countries where the incidence of gastric cancer is much lower and
diagnostic accuracy is a concern because of a lack of experienced
pathologists, our algorithm, which has been trained with a massive
number of cases, would also prove useful in detecting gastric cancers.
Our algorithm was trained with gastric samples diagnosed by Korean
pathologists; thus, there is an important issue to consider when
applying the algorithm to specimens from other countries, which
involves discrepancies in histologic interpretation of gastric lesions
among different countries. For instance, Japan developed diagnostic
terminology and criteria for GI epithelial neoplasia different from
Western countries, and gastric lesions diagnosed as high-grade dys-
plasia by most Western pathologists are almost always diagnosed as
carcinoma by Japanese pathologists (27). Although the Vienna clas-
sification improved diagnostic agreement, in part, by establishing new
terminology (17), there stillmay exist differences in reporting of gastric
dysplasia/carcinoma. Korean pathologists have been influenced by
both Japanese and Western perspectives, and established diagnostic
terminology and guidelines for gastric neoplasia to improve diagnostic
consensus (28). Thus, we believe that there would be no significant
diagnostic discrepancies when our algorithm is used in other countries;
however, it needs verification by pathologists from other countries.

On a final note, in a population with high Helicobacter pylori
(H. pylori) infection rates, such as Korea and Japan, MALT lymphoma
has a relatively high prevalence. It was reported that of the 105,194
patients who received screening upper endoscopy from 2003 to 2013 at
Seoul National University Hospital (Jongno-gu, Seoul, South Korea),
429 malignancies were detected, of which MALT lymphoma
accounted for 12% (51/429 malignancies; ref. 29). These numbers
suggest that in countries with high H. pylori infection rates, MALT
lymphoma should be on the list of gastric tumors for screening. Our
test set contained five cases of MALT lymphoma detected and diag-
nosed by the pathologists. As our algorithm was never trained with
cases of MALT lymphoma, four cases (80%) were classified as NFD,
and one (20%) was classified as CA due to the destruction of the gastric
glands by the lymphoma cells. MALT lymphoma can appear as an
overt malignant lesion on endoscopy, but it more often presents as a
simple erosion, a thickened gastric fold, a gastritis-like change, or even
as normal gastric mucosa (30). For this reason, it is difficult to suspect
MALT lymphoma based solely on the endoscopic findings; thus, an
“algorithm bypass” strategy that we had suggested for submucosal
tumors cannot be applied to MALT lymphomas. High-grade lym-
phomas, on the other hand, would likely be classified as CA because
they are histologically similar to poorly cohesive carcinoma, which at
least allows an opportunity for pathologists to review the case.
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Therefore, to make our algorithms more complete and practical in the
clinical setting as a screening or assistance tool, it is necessary to
improve the algorithm to identify MALT lymphoma, in addition to
epithelial tumors in gastric biopsies.

In summary, we successfully developed a deep learning algorithm
that recognizes and classifies gastric tumors in endoscopic biopsy
specimens. In addition to verifying its high accuracy equivalent to
experienced human pathologists using a large number of prospectively
collected cases, we demonstrated that deep learning algorithm pro-
vides substantial time-saving benefits in an assistance mode. Despite
several limitations, we believe that our model possesses great potential
to serve as a screening or an assistance tool not only in countries with
increasing diagnostic workloads for gastric endoscopic specimens, but
also in areas where experienced pathologists are not available.
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