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H I G H L I G H T S  

• The purpose of this study was to develop and present an orthogonal neural network (ONN), a new deep-learning structure for medical image localization, for the 
first time in this paper. This method is simple, efficient, and completely different from a convolution neural network (CNN). 

• The diagnostic performance of ONN for detecting the location of pneumothorax in chest X-rays was assessed and compared to that of CNN. In addition, ONN and 
CNN were applied to predict the location of the glottis in laryngeal images. 

• An AUC of 0.870, an accuracy of 85.3%, a sensitivity of 75.0%, and a specificity of 86.5% were achieved by applying ONN to detect the location of pneumothorax in 
chest X-rays; the ONN outperformed the CNN. By applying ONN to predict the location of the glottis in laryngeal images, we achieved the accurate prediction rate 
of 70.5% and the adjacent prediction rate of 20.5%. The prediction accuracy of the ONN was compared favorably with that of the CNN. 

• This study demonstrated that an ONN can be used as a quick selection criterion to compare fully-connected small artificial neural network (ANN) models for image 
localization. The time it took to train an ONN was about 10% of the time using a CNN on images of a given input resolution. Our approach could accurately predict 
locations in medical images, reduce the time delay in diagnosing urgent diseases, and increase the effectiveness of clinical practice and patient care.  
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A B S T R A C T   

Background/Purpose: An orthogonal neural network (ONN), a new deep-learning structure for medical image 
localization, is developed and presented in this paper. This method is simple, efficient, and completely different 
from a convolution neural network (CNN). 
Materials and methods: The diagnostic performance of ONN for detecting the location of pneumothorax in chest X- 
rays was assessed and compared to that of CNN. In addition, ONN and CNN were applied to predict the location 
of the glottis in laryngeal images. 
Results: An area under the receiver operating characteristic (ROC) curve (AUC) of 0.870, an accuracy of 85.3%, a 
sensitivity of 75.0%, and a specificity of 86.5% were achieved by applying ONN to detect the location of 
pneumothorax in chest X-rays; the ONN outperformed the CNN. By applying ONN to predict the location of the 
glottis in laryngeal images, we achieved the accurate prediction rate of 70.5% and the adjacent prediction rate of 
20.5%. 
Conclusions: This study demonstrated that an ONN can be used as a quick selection criterion to compare fully- 
connected small artificial neural network (ANN) models for image localization. The time it took to train an 
ONN was about 10% of the time using a CNN on images of a given input resolution. Our approach could 
accurately predict locations in medical images, reduce the time delay in diagnosing urgent diseases, and increase 
the effectiveness of clinical practice and patient care.   

1. Introduction 

Deep-learning technology has recently emerged as an alternative to 

solving difficult scientific and technical problems, including those in the 
medical field. Promising results have been achieved in medical image 
analysis including in the detection of diabetic retinopathy in fundus 
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photographs, the detection of metastases in pathological images, and the 
classification of skin cancer from skin radiographs [1–3]. It has also been 
shown to predict outcomes in cancer patients, personalize therapy, 
respond early to treatment, or qualify for specific therapies [4,5]. Thus, 
it can provide a fast response for patients with a suspected disease and 
can overcome the deterioration of human vision diagnostic performance 
in general, especially if the image quality is degraded due to technical 
issues. 

The back-propagation method [6–8] has been the most popular 
training method for deep learning to date. In addition, convolution 
neural networks [9,10] (CNNs) have been a common currently used 
deep-learning structure for image recognition, performing especially 
well in classification and object detection tasks. For the 
back-propagation method, the gradient descent has been used to 
determine each weight factor in an artificial neural network (ANN) by 
calculating the delta value using all or a part of the training data 
repeatedly according to a given learning rate. Therefore, the rectified 
linear unit (RELU) function has been widely used as the activation 
function of nodes in ANN for conveniently calculating the output 
gradient of a given node. 

Distinct from the back-propagation method, a novel deep-learning 
algorithm, namely, the Kim-Monte Carlo algorithm, was recently 
developed by Kim [11]. This algorithm imitates the biological mecha-
nism of animals adapting to a given environment according to the 
evolutionary principle of the survival of the fittest [11]. The algorithm, 
which is a simple training process for ANNs, does not need to calculate 
the output gradient of a given node in ANN during the training session as 
the back-propagation method does [6–8]. Therefore, it becomes not 
more convenient to use the RELU activation function than a sigmoid 
function within an ANN node. 

The Kim-Monte Carlo algorithm has been applied to train ANNs to 
predict the location of the glottis in laryngeal images, to detect and 
classify intracranial hemorrhage on CT images, to detect pneumo-
peritoneum in abdominal radiograph images, and to detect the location 
of pneumothorax in chest X-rays [11–14]. Cho et al. [14] found that the 
diagnostic performance of CNN was lower than that of a small ANN for 
detecting the location of pneumothorax in chest X-rays, although the 
CNN required approximately 10 times of the computations using a small 
ANN trained on input X-ray images. The small ANN was selected by 
comparing the test results of several dozens of fully-connected small 
ANN models. They [14] indicated that CNNs may not perform well for 
image localization other than classification or object detection, and also 
found that the CNN with a sigmoid activation function for 
fully-connected hidden nodes outperformed the CNN with the RELU 
activation function. 

In this study, an orthogonal neural network (ONN), which is simple, 
efficient, and completely different from a CNN, is proposed as a new 
deep-learning structure for localization on medical images. The perfor-
mances of ONNs for detecting the location of pneumothorax in chest X- 
rays [14] and for predicting the location of the glottis in laryngeal im-
ages [11] were evaluated. In addition, the performances of ONNs with a 
sigmoid and RELU activations were assessed and compared. The per-
formance of CNN for predicting the glottic location in laryngeal images 
[11] was also investigated with the same dataset for comparison. 

2. Materials and methods 

2.1. Orthogonal neural network 

Just as a CNN consists of a convolution part and a fully-connected 
part, an ONN is composed of an orthogonal part and a fully-connected 
part. Fig. 1 shows a detailed schematic representation of the ONN ar-
chitecture. An input image of width n and height m provides input values 
to the n × m input nodes of the orthogonal part, which includes vertical 
layers and horizontal layers, as shown in Fig. 1. 

An input node is connected only to a vertical node with the same row 
number. If there are 2 vertical layers, the input nodes in the first half of a 
given row are connected to the node in the first vertical layer, and the 
input nodes in the second half of the given row are connected to the node 
in the second vertical layer. The weight factors for the connections of the 
input nodes in each column to a vertical layer are set to be the same. 
Each vertical node has its own bias value. Therefore, the vertical layers 
contain n weight factors and m × 2 bias values if the number of vertical 
layers is 2 (see Fig. 1). Likewise, an input node is connected only to a 
horizontal node with the same column number. If there are 2 horizontal 
layers, the input nodes in the first half of a given column are connected 
to the node in the first horizontal layer, and the input nodes in the 
second half of the given column are connected to the node in the second 
horizontal layer. The weight factors for the connections of the input 
nodes in each row to a horizontal layer are set to be the same. Each 
horizontal node has its own bias value. Therefore, the horizontal layers 
contain m weight factors and n × 2 bias values if the number of hori-
zontal layers is 2 (see Fig. 1). 

According to Fig. 1, the orthogonal part reflects the spatial location 
information of the input image and produces m × 2 + n × 2 outputs for 
2 vertical layers and 2 horizontal layers, providing the input values for 
the fully-connected part. An ONN requires significantly fewer weight 
factors and computing resources than a fully-connected ANN for training 
on images with a given input resolution. Additionally, an ONN contains 
a similar number of weight factors as a CNN, and requires much fewer 

Fig. 1. Schematic representation of the ONN structure.  
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computing resources than a CNN to train on images of a given input 
resolution because its computational procedure is much simpler than 
that of a CNN. The training time of ONN and CNN will be compared later 
in Section 3. 

2.2. Datasets 

The institutional review board (IRB) of Hanyang University Seoul 
Hospital (Seoul, Republic of Korea) approved this study and confirmed 
that all methods in this study were performed in accordance with the 
Good Clinical Practice guidelines with the need for informed consent 
waived (IRB No. HYUH 2021–03–024 for chest X-ray images; IRB No. 
HYUH 2018–08–018–002 for laryngeal images). 

Cho et al. [14] randomly selected 1000 chest X-ray images with 
pneumothorax from NIH (National Institutes of Health, Maryland, USA) 
Chest X-rays dataset (available at https://nihcc.app.box.com/v/ChestX 
ray-NIHCC) and randomly divided into training (80%) and test (20%) 
sets for ANNs and CNNs to detect the location of pneumothorax. For 
each chest X-ray image, the areas with pneumothorax were marked in 
white and the rest was marked in black (Fig. 2). Each 
pneumothorax-marked image was divided into 49 boxes for pneumo-
thorax localization (see Fig. 2b). The target values of the boxes in the 
pneumothorax-marked image containing one or more white pixels were 
set to 1, and the target values of the other boxes were set to 0 [14]. ONNs 
were applied to the same dataset for comparison with the pneumothorax 
detection results of Cho et al. [14] for each of the boxes in the chest X-ray 
images. 

Kim et al. [11] acquired 1200 laryngeal images during intubation in 
an emergency room and randomly divided them into training (1000) 
and test (200) sets for ANNs to predict the glottic location. For each 
laryngeal image, the location of the glottis was marked in white, and the 
rest was marked in black (Fig. 3). Each glottis-marked image was 
divided into 49 boxes for glottis localization (see Fig. 3b). The target 
value of the box in the glottis-marked image with the maximum average 
pixel value (Fig. 3b, red box) was set to 1, and the target values of the 
other 48 boxes were set to 0 [11]. The same dataset was also applied to 
CNNs as well as ONNs for comparison with the prediction accuracy 
findings of Kim et al. [11] for the glottic location in laryngeal images. 

2.3. Training process 

For an input resolution of 256 × 256 pixels, each black-and-white 
pixel of the original images was divided by the maximum value of 255 
to obtain a value between zero and 1.0 to use as the input value of an 
input node of the ONN and CNN. The number of hidden layers of the 
fully-connected part of the ONN and CNN was set to 1 or 2. The number 
of hidden nodes was set to 49 or 49–49. The number of output nodes in 
the fully-connected part was set to 49 for the pneumothorax and glottis 
localizations (Fig. 2b and Fig. 3b, respectively). Fig. 4 shows a detailed 
schematic representation of the actual architecture of the CNN for pre-
dicting the glottic location in laryngeal images. According to Fig. 4, the 
convolution part contains 84 individual 3 × 3 convolution filters (= 4 +

16 + 64) with 3 × 3 × 84 wt factors and 84 bias values. 
The Kim-Monte Carlo algorithm [11] was applied to train the ONN 

and CNN. The algorithm applied a random optimization process based 
on a Monte Carlo simulation during the training session to determine a 
massive number of unknown weight factors and bias values of the ONN 
or CNN as the variables that minimize the average training error for a 
given training dataset. The initial weight factors and bias values were 
randomly chosen within ranges of − 0.2 to + 0.2 and 0 to + 0.2, 
respectively [11]. The algorithm consisted of (a) randomly selecting the 
weight factors and bias values according to a given variable selection 
ratio and adjusting their values by small random amounts within the 
range of − 0.1 to + 0.1 [11], where it changes the bias value to be 
positive when the value is changed to be negative, (b) accepting or 
rejecting the adjustments depending on whether the new values 
decreased the average training error for all training data, and (c) 
repeating the above two steps [11]. The training session ended after 10 
training cycle iterations, during which the variable selection ratio of the 
training cycle was steadily decreased from 15% to 1.5% [11] of the total 
number of variables in the ONN or CNN. During a training cycle, the 
total sum of the variable selection ratios was set to 900%, and 30 at-
tempts were made to adjust the values of the selected variables by small 
random amounts [12,13]. After the training session was completed, the 
test set was applied to the ONN and CNN to obtain the test results and 
evaluate the diagnostic performance of the deep-learning model. 

3. Implementation 

For the activation function for nodes in the ONN or CNN, a sigmoid 

Fig. 2. Example of chest X-ray image processing for application to an ONN: (a) Original X-ray image, (b) Pneumothorax-marked image.  
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or RELU function was applied. 

yj = xj, if xj > 0
yj = 0, if xj ≤ 0 (1) 

The RELU activation function was implemented using Eq. (1) and the 
sigmoid activation function was implemented by the following formulas 
[14]: 

yj =
2

1 + e− xj
− 1 (2)  

yj =
1

1 + e− xj
(3)  

xj =
∑

i
wijyi + bj (4)  

where Eq. (4) (using one of Eqs. (1), (2), and (3)) denotes the summation 
over all nodes in the previous layer; i.e., each node j in a given layer 
receives an input yi from a node i in the previous layer; wij indicates the 
weight factor between nodes i and j; and bj indicates the bias value of a 
node j. The sigmoid activation functions in Eqs. (2) and (3) were applied 
to the intermediate nodes and output nodes, respectively [11]. 

Details about the hardware and software infrastructure used to 
implement the ONNs and CNNs are described below. The software for 
ONN and CNN, applying the novel deep-learning algorithm, a simple 
training process, was developed and programmed fully in-house by J. S. 

Fig. 3. Example of laryngeal image processing for application to an ONN and CNN: (a) Original laryngeal image, (b) Glottis-marked image.  

Fig. 4. Schematic representation of the CNN structure.  
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Kim using Microsoft Visual C+ +. Regular PCs without graphics pro-
cessing unit (GPU) computing were used [13,14]. The operating system 
used was Microsoft Windows 10 Professional (64-bit), and the CPU was 
an Intel i5 − 7400 processor. The main memory size was 16 GB. The 
time taken to train an ONN was approximately 5 h for the training set of 
800 chest X-ray images with an input resolution of 256 × 256 pixels. It 
took approximately one second to predict the entire test set of 200 X-ray 
images. In addition, the time taken to train a CNN was approximately 
60 h for the training set of 1000 laryngeal images with an input reso-
lution of 256 × 256 pixels. It took a few seconds to predict the entire test 
set of 200 laryngeal images. The time it took to train an ONN was about 
10% of the time using a CNN on images of a given input resolution. 

3.1. Statistical analysis 

We performed a receiver operating characteristic (ROC) curve 
analysis to determine the diagnostic performance of the ONNs for 
detecting the location of pneumothorax in chest X-rays. Statistical an-
alyses were conducted using R software [version 4.0.1] (R: A Language 
and Environment for Statistical Computing, R Core Team, R Foundation 
for Statistical Computing, Vienna, Austria, 2021, http://www.R-project. 
org). 

4. Results 

4.1. Detecting the pneumothorax location 

Table 1 shows the pneumothorax detection results for each of the 
boxes in the chest X-ray images in the test set by ANNs [14], CNNs [14], 
and ONNs. In Table 1, AUC denotes the area under the ROC curve, PPV 
indicates the positive predictive values, and NPV indicates the negative 
predictive value. With the ONN, we obtained an AUC of 0.870, an ac-
curacy of 85.3%, a sensitivity of 75.0%, and a specificity of 86.5%, 
which were compared favorably with those of the CNN. The detection 
results of the small ANNs in Table 1 were selected by comparing the test 
results among 45 fully-connected ANN models [14]. As shown in 
Table 1, the diagnostic performance of the ONN with a sigmoid acti-
vation function was comparable to that of the selected ANN models and 
was obviously better than that of the ONN with the RELU activation 
function. 

4.2. Predicting the glottic location 

Table 2 reports the glottic location prediction results in the laryngeal 

images in the test set for the selected ANN [11], CNNs, and ONNs, with a 
sigmoid activation function for all the nodes except the nodes in the 
convolution part of the CNNs. In Table 2, a predicted box overlapping 
with the glottis, which is marked in white, was considered an accurate 
prediction, and the adjacent prediction was defined as one of the eight 
adjacent boxes of the predicted box overlapping with the glottis, which 
is marked in white (see Fig. 3b) [11]. With the ONN, the accurate pre-
diction and the adjacent prediction rates were 70.5% and 20.5%, 
respectively, which was compared favorably with that of the CNN. The 
prediction results of the fully-connected small ANN in Table 2 were 
selected by comparing the training results among 84 ANN models [11]. 
As reported in Table 2, the prediction accuracy for the glottic location of 
the ONN was between those of the CNN and the selected ANN model. 

5. Discussion 

A new deep-learning structure for image localization, called an ONN, 
was presented and applied to detect the location of pneumothorax in 
chest X-rays, resulting in an AUC of 0.870, an accuracy of 85.3%, a 
sensitivity of 75.0%, and a specificity of 86.5%. We also applied ONNs 
and CNNs to predict the location of the glottis in laryngeal images and 
achieved accurate prediction and adjacent prediction rates of 70.5% and 
20.5%, respectively, with the ONN. The ONN was compared favorably 
with that of the CNN, a commonly used deep-learning structure for 
image recognition, and was compared decently with that of the selected 
ANN model [11,14]. Compared with a CNN, an ONN required only 
approximately 10% of the computations using a CNN to train images 
with an input resolution of 256 × 256 pixels. 

An ONN extracted well the spatial location information of the input 
images by setting the same weight factor to the connections of the input 

Table 1 
Test results for detecting the location of pneumothorax in chest X-rays by the type of deep-learning methods, i.e., artificial neural networks (ANNs), convolution neural 
networks (CNNs), and orthogonal neural networks (ONNs).  

Method Hidden nodes AUC Cut-off Sensitivity % Specificity % PPV % NPV % Accuracy % 

ANNa, 20 × 20 49  0.876  0.122  78.3  84.2  37.5  97.0  83.6 
ANNa, 30 × 30 49  0.881  0.101  81.0  83.6  37.4  97.3  83.3 
ANNa, 20 × 20 49–49–49  0.876  0.084  82.0  80.7  34.0  97.4  80.8 
ANNa, 30 × 30 49–49–49  0.882  0.101  80.6  83.0  36.5  97.2  82.7 
CNNb, Sigmoid 49  0.861  0.119  76.6  81.1  33.0  96.6  80.6 
CNNb, Sigmoid 49–49  0.859  0.128  76.9  82.6  34.8  96.7  81.9 
CNNb, RELU 49  0.829  0.072  80.8  76.9  29.7  97.1  77.3 
CNNb, RELU 49–49  0.795  0.134  73.9  82.6  34.0  96.3  81.7 
ONNc, Sigmoid 49  0.870  0.132  75.0  86.5  40.3  96.6  85.3 
ONNc, Sigmoid 49–49  0.866  0.091  80.4  80.5  33.3  97.1  80.5 
ONNc, RELU 49  0.840  0.088  74.6  82.5  34.1  96.4  81.6 
ONNc, RELU 49–49  0.820  0.072  78.1  78.4  30.5  96.7  78.4  

a Cho et al. [14]; using a fully-connected small artificial neural network (ANN) with a sigmoid activation function for all the nodes with an input resolution of 
20 × 20 or 30 × 30 pixels. 

b Cho et al. [14]; using a convolution neural network (CNN) with a sigmoid or RELU activation function for the fully-connected hidden nodes with an input res-
olution of 256 × 256 pixels. 

c This work; using an orthogonal neural network (ONN) with a sigmoid or RELU activation function for all the nodes other than the output nodes with an input 
resolution of 256 × 256 pixels. 

Table 2 
Prediction results for the glottic location in laryngeal images by the type of deep- 
learning methods. %, (number of images).  

Method/number of hidden nodes Accurate Adjacent Inaccurate 

ANNa/98  74.5% (149)  21.5% (43)  4.0% (8) 
CNNb/49  68.5% (137)  25.5% (51)  6.0% (12) 
CNNb/49–49  66.0% (132)  28.5% (57)  5.5% (11) 
ONNc/49  70.5% (141)  20.5% (41)  9.0% (18) 
ONNc/49–49  67.0% (134)  22.5% (45)  10.5% (21) 

aKim et al. [11]; using an artificial neural network (ANN) with an input reso-
lution of 30 × 30 pixels. bThis work; using a convolution neural network (CNN) 
with an input resolution of 256 × 256 pixels. cThis work; using an orthogonal 
neural network (ONN) with an input resolution of 256 × 256 pixels. 
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nodes in a given column to a vertical layer and setting the same weight 
factor to the connections of the input nodes in a given row to a hori-
zontal layer. This approach would be similar to using the latitude and 
longitude values on a map and finding the intersection. Having different 
biases for the vertical and horizontal nodes can help greatly in extracting 
the spatial location information. However, significantly increasing the 
number of vertical and horizontal layers will not be very important to 
improve extracting the spatial location information. 

CNNs have shown excellent performances in classification and object 
detection for images through abstraction extraction from the images 
while generating the featured maps using several filters. However, 
extracting the spatial location information required for localization may 
be slightly different from the abstraction extraction. Therefore, an 
approach from a different perspective, such as ONN, is required. 

In addition, the diagnostic performance of the ONN with a sigmoid 
activation function for all the nodes outperformed the ONN with RELU 
activation function for all the nodes other than the output nodes, as 
shown in Table 1. Since the back-propagation method [6–8] uses the 
gradient descent, the RELU function greatly simplifies the process of 
calculating the derivative of the activation function, as seen from Eq. 
(1). However, an essential characteristic of the activation function 
within an ANN node should be to generate a signal that is symmetric in 
both the forward and backward directions. The closest form to this 
function is the sigmoid function. Although the RELU function looks 
similar to a sigmoid function in terms of shape, it might remove some 
important data flow information from the ANN [14] [refer to Eq. (1)] 
and cannot produce a symmetrical signal, which is an essential char-
acteristic of the activation function within an ANN node. Therefore, the 
performance of the ANN cannot be optimized with the RELU activation 
function. 

Fully-connected small ANNs have achieved excellent results in image 
localization as in previous studies [11,14]. However, to change the input 
image resolution for the ANN and the number of hidden layers, several 
dozens of ANN models must be individually trained, and the test results 
of these models should be compared to find the best model. This 
approach requires considerable time, effort and computing resources, 
even for small ANN models. This study showed that an ONN can be used 
as a quick selection criterion to compare small ANN models for image 
localization, since the ONN performed well compared decently with the 
selected ANN model, and training an ONN on images with an input 
resolution of 256 × 256 pixels requires a similar amount of computing 
resources as a small ANN to train the same number of input images with 
a resolution of 30 × 30 pixels. 

In conclusion, as a new deep-learning structure for image localiza-
tion, an ONN, which is simple, efficient, and completely different from a 
CNN, was applied to detect the location of pneumothorax in chest X-rays 
and to predict the location of the glottis in laryngeal images. Since the 
ONN extracted the spatial location information of the input images 
better than the CNN, its localization performance was compared favor-
ably with that of the CNN. The ONN with a sigmoid activation function 
for fully-connected hidden nodes outperformed the ONN with the RELU 
activation function, which does not produce a symmetrical signal, an 
essential characteristic of the activation function within an ANN node. 
An ONN can be used as a quick selection criterion to compare the test 
results of small ANN models for image localization to choose the best 
model from several dozens of ANN models. Finally, the time it took to 
train an ONN was about 10% of the time using a CNN on images of a 
given input resolution, and the entire process of this study can be fully 
automated and embedded within a radiological imaging machine; 

therefore, our approach could accurately predict locations in medical 
images, reduce the time delay in diagnosing urgent diseases, and in-
crease the effectiveness of clinical practice and patient care. 

CRediT authorship contribution statement 

J.S. Kim: Conceptualization and design, Data processing, Software 
programming and execution, Data visualization, Data analysis and 
interpretation, Writing – original draft preparation, Writing – final 
manuscript preparation. Y. Cho: Conceptualization and design, Data 
collection, Data analysis and interpretation, Writing – Original draft 
preparation. T.H. Lim: Conceptualization and design, Data analysis and 
interpretation, Writing – Final manuscript preparation. All the authors 
have read and approved the final manuscript. 

Competing interests 

The authors declare no competing interests. 

Acknowledgments 

This work was supported by Hanyang University, Seoul, Republic of 
Korea (202000000002924). 

References 

[1] V. Gulshan, L. Peng, M. Coram, et al., Development and validation of a deep 
learning algorithm for detection of diabetic retinopathy in retinal fundus 
photographs, J. Am. Med. Assoc. 316 (2016) 2402–2410, https://doi.org/10.1001/ 
jama.2016.17216. 

[2] A. Esteva, B. Kuprel, R.A. Novoa, et al., Dermatologist-level classification of skin 
cancer with deep neural networks, Nature 542 (2017) 115–118, https://doi.org/ 
10.1038/nature21056. 

[3] B.E. Bejnordi, M. Veta, P.J.Van Diest, et al., Diagnostic assessment of deep learning 
algorithms for detection of lymph node metastases in women with breast cancer, 
J. Am. Med. Assoc. 318 (2017) 2199–2210, https://doi.org/10.1001/ 
jama.2017.14585. 

[4] W.L. Bi, et al., Artificial intelligence in cancer imaging: clinical challenges and 
applications, CA Cancer J. Clin. 69 (2019) 127–157, https://doi.org/10.3322/ 
caac.21552. 

[5] F. Coppola, et al., Human, all too human? an all-around appraisal of the “artificial 
intelligence revolution” in medical imaging, Front. Psychol. 12 (2021), 710982, 
https://doi.org/10.3389/fpsyg.2021.710982. 

[6] P.J. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the 
Behavioral Sciences (Ph.D. thesis), Harvard University, Cambridge, MA, 1974. 

[7] S. Sathyanarayana, A gentle introduction to backpropagation, Numer. Insight 7 
(2014) 1–15. 

[8] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back- 
propagating errors, Nature 323 (1986) 533–536, https://doi.org/10.1038/ 
323533a0. 

[9] Y. LeCun, Y. Bengio, G.E. Hinton, Deep learning, Nature 521 (2015) 436–444, 
https://doi.org/10.1038/nature14539. 

[10] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, In 
Proceedings of the IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition (2016) 770–778, https://doi.org/10.1109/CVPR.2016.90. 

[11] J.S. Kim, Y. Cho, T.H. Lim, Prediction of the location of the glottis in laryngeal 
images by using a novel deep-learning algorithm, IEEE Access 7 (2019) 
79545–79554, https://doi.org/10.1109/ACCESS.2019.2923002. 

[12] J.Y. Lee, J.S. Kim, T.Y. Kim, Y.S. Kim, Detection and classification of intracranial 
haemorrhage on CT images using a novel deep-learning algorithm, Sci. Rep. 10 
(2020) 20546, https://doi.org/10.1038/s41598-020-77441-z. 

[13] M. Kim, J.S. Kim, C. Lee, B.-K. Kang, Detection of pneumoperitoneum in the 
abdominal radiograph images using artificial neural networks, Eur. J. Radiol. Open 
8 (2021), 100316, https://doi.org/10.1016/j.ejro.2020.100316. 

[14] Y. Cho, J.S. Kim, T.H. Lim, et al., Detection of the location of pneumothorax in 
chest X-rays using small artificial neural networks and a simple training process, 
Sci. Rep. 11 (2021) 13054, https://doi.org/10.1038/s41598-021-92523-2. 

J.S. Kim et al.                                                                                                                                                                                                                                   

Downloaded for Anonymous User (n/a) at Hanyang University from ClinicalKey.com by Elsevier on January 10, 2022. 
For personal use only. No other uses without permission. Copyright ©2022. Elsevier Inc. All rights reserved.

https://doi.org/10.1001/jama.2016.17216
https://doi.org/10.1001/jama.2016.17216
https://doi.org/10.1038/nature21056
https://doi.org/10.1038/nature21056
https://doi.org/10.1001/jama.2017.14585
https://doi.org/10.1001/jama.2017.14585
https://doi.org/10.3322/caac.21552
https://doi.org/10.3322/caac.21552
https://doi.org/10.3389/fpsyg.2021.710982
http://refhub.elsevier.com/S2352-0477(21)00068-X/sbref6
http://refhub.elsevier.com/S2352-0477(21)00068-X/sbref6
http://refhub.elsevier.com/S2352-0477(21)00068-X/sbref7
http://refhub.elsevier.com/S2352-0477(21)00068-X/sbref7
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/ACCESS.2019.2923002
https://doi.org/10.1038/s41598-020-77441-z
https://doi.org/10.1016/j.ejro.2020.100316
https://doi.org/10.1038/s41598-021-92523-2

	Prediction of locations in medical images using orthogonal neural networks
	1 Introduction
	2 Materials and methods
	2.1 Orthogonal neural network
	2.2 Datasets
	2.3 Training process

	3 Implementation
	3.1 Statistical analysis

	4 Results
	4.1 Detecting the pneumothorax location
	4.2 Predicting the glottic location

	5 Discussion
	CRediT authorship contribution statement
	Competing interests
	Acknowledgments
	References


