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Abstract—Convolutional neural networks (CNNs) have led us
to achieve significant progress in object detection research. To
detect objects of various sizes, object detectors often exploit
the hierarchy of the multiscale feature maps called feature
pyramids, which are readily obtained by the CNN architecture.
However, the performance of these object detectors is limited
because the bottom-level feature maps, which experience fewer
convolutional layers, lack the semantic information needed to
capture the characteristics of the small objects. To address such
problems, various methods have been proposed to increase the
depth for the bottom-level features used for object detection.
While most approaches are based on the generation of ad-
ditional features through the top-down pathway with lateral
connections, our approach directly fuses multi-scale feature maps
using bidirectional long short-term memory (biLSTM) in an
effort to leverage the gating functions and parameter-sharing
in generating deeply fused semantics. The resulting semantic
information is redistributed to the individual pyramidal feature
at each scale through the channel-wise attention model. We
integrate our semantic combining and attentive redistribution
feature network (ScarfNet) with the baseline object detectors,
i.e., Faster R-CNN, single-shot multibox detector (SSD), and
RetinaNet. Experimental results show that our method offers
a significant performance gain over the baseline detectors and
outperforms the competing multiscale fusion methods in the
PASCAL VOC and COCO detection benchmarks.

I. INTRODUCTION

Object detection refers to the task of deciding whether there
are any instances of objects in the image and returns the
estimate of the location and the category of the objects [1], [2].
Historically, object detection has been one of the most chal-
lenging computer vision problems. Recently, deep learning has
led unprecedented advances in object detection techniques [2].
Convolutional neural networks (CNNs) can produce a hierar-
chy of abstract feature maps through a cascade of convolution
operations followed by a nonlinear function. Using CNN as
a backbone network, object detectors can effectively infer the
location of the bounding box and the category of the instances
based on the abstract feature maps. Various object detection
network structures have been proposed to date. The CNN-
based object detectors are roughly categorized into two groups:
two-stage detectors and single-stage detectors. The two-stage
detectors detect the objects using two separate subnetworks;
1) the region proposal network for finding the bounding boxes
containing the object, and 2) the object classifier network for

identifying the class of the objects and refining the bounding
boxes. The well-known two-stage detectors include R-CNN
[3], Fast R-CNN [4], Faster R-CNN [5], and Mask R-CNN [6].
Single-stage detectors directly estimate the bounding boxes
and the object classes from the feature maps in one shot and
include single-shot multibox detector (SSD) [7], YOLO [8],
YOLOv2 [9], and RetinaNet [10].

Recent advances in object detection are achieved by the
CNN’s capability to produce the abstract features containing
strong semantic cues. The deeper the convolutional layers
are, the higher the level of abstraction is for the resulting
feature maps. As a result, the features produced at the end
of the CNN pipeline (called top-level features) contain rich
semantics but lack spatial resolution, whereas the features
placed at the input layers (called bottom-level features) lack
semantic information but have detailed spatial information.
The hierarchy of such multiscale features constitutes so-called
feature pyramids, which are used to detect the objects of
different scales in many object detectors (e.g., SSD [7], MS-
CNN [11], and RetinaNet [10]). The structure designed to use
such feature pyramids for object detection is described in Fig.
1 (a). Note that the attributes of the large objects tend to be
captured on the top-level features of small size while those of
the small objects are well represented by the shallow bottom-
level features of large size.

One limitation of the feature pyramid method is the disparity
of the semantic information between the multiscale feature
maps used for object detection. The bottom-level features are
not deep enough to exhibit high-level semantics underlying
in the objects and their surroundings. This results in the
accuracy loss in detecting the small objects. In order to address
this problem, several approaches, which have attempted to
reduce the semantic gap between the pyramidal features in
different scales, have been proposed. One notable direction
is to provide the contextual information to the bottom-level
features by generating the highly semantic features in the top-
down pathway with latent connections. As illustrated in Fig. 1
(c), based on the top-level pyramidal feature obtained from the
bottom-up network, the additional features are subsequently
generated with increased depth and resolution. In order to
avoid losing the spatial information, lateral connections are
used to take the bottom-level features and combine them
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with the high-level semantic features. Various object detectors
including DSSD [12], FPN [13], StairNet [14], Libra R-CNN
[15], HR-FPN [16], and NAS-FPN [17] follow this principle,
and significant improvement has been reported in terms of
detection accuracy.

Our work is motivated by the observation that the capacity
of the current architectures for generating top-down features
might not be large enough to generate strong semantics for
all scales. Thus, we propose a new architecture, which deeply
fuses the multiscale features for enhanced object detection.
The proposed feature pyramid method, referred to as se-
mantic combining and attentive redistribution feature network
(ScarfNet), combines the multiscale feature maps using the
recurrent neural networks and then redistributes the fused
semantics to each level, generating the new multiscale feature
maps. The structure of ScarfNet is depicted in Fig. 2 (d). First,
the bidirectional long short-term memory (biLSTM) model
[18] is used to combine the multiscale pyramidal features.
Although biLSTM is widely used to extract the temporal
features from the sequential data, it can effectively combine
the semantics in multiscale features. Our conjecture is that
compared to the convolutive fusion methods, biLSTM requires
significantly reduced number of weights due to parameter shar-
ing, and the only relevant semantic information is selectively
aggregated through the gating function of biLSTM. The fused
feature maps are distributed through the channel-wise attention
model, generating highly semantic features tailored for each
pyramid scale. The final multiscale feature maps are used
for object detection. Note that our framework can be readily
applied to various feature pyramid-based CNN architectures,
which require strong semantic information.

In the experiments, we integrate ScarfNet with the baseline
detectors including Faster R-CNN [5], SSD [7], and RetinaNet
[10]. The evaluation conducted over PASCAL VOC [19]
and MS COCO [20] datasets shows that our method offers
significant improvement over the baseline detectors as well as
other competitive detectors in terms of detection accuracy. Our
code will be made publicly available. The contributions of our
paper are summarized as follows.

• We introduce a new deep architecture for closing the
semantic gaps between the multiscale feature maps. The
proposed ScarfNet generates new multiscale feature maps
with deeply fused and redistributed semantics by using
the combination of biLSTM and the channel-wise atten-
tion model.

• For the first time in the literature, the biLSTM is used
to combine the multiscale features to incorporate strong
semantics for feature pyramids. The biLSTM model can
produce deeply fused semantic information using the re-
current connection over different pyramid scales. Further-
more, ScarfNet benefits from the selective information
gating mechanism inherent in the biLSTM model. Due
to parameter sharing, the overhead due to ScarfNet is
small. In addition, ScarfNet is easy to train and is also
end-to-end trainable.

II. RELATED WORK

In this section, we review the basic object detectors and
several existing feature pyramid methods used to decrease the
semantic gap between the scales.

A. CNN-based Object Detectors

Recently, CNN has brought an order of magnitude perfor-
mance improvement in object detection. Various CNN-based
object detectors have been proposed to date. The current object
detectors can be categorized into two groups: two-stage detec-
tors and single-stage detectors. Two-stage detectors detect the
objects in two steps; finding the region proposals based on the
objectness of the regions and conducting the classification and
bound regression for detected region proposals. R-CNN [3] is
the first CNN-based detector where the traditional selective
search is employed to find the region proposals, and CNN is
applied to the image patch in each region proposal. Fast R-
CNN [4] and Faster R-CNN [5] reduced the computation time
of R-CNN by employing the region of interest (ROI) pooling
for using full-image feature maps and replacing the selective
search with the region proposal network (RPN). Single-stage
detectors directly perform classification and box regression
based on the feature maps. These detectors compute the con-
fidence score on the object category and the regression results
for the candidate boxes while sweeping the feature maps
spatially. The well-known single-stage detectors include SSD
[7], YOLO [8], and YOLOv2 [9]. Recently, RetinaNet [10] has
achieved the-state-of-the-art performance using ResNet [21] as
a backbone and various latest training tricks. Refer to [2] for
the comprehensive review of contemporary object detectors.

B. Object Detectors Using Multiscale Features

Several object detectors including SSD [7] and RetinaNet
[10] rely on hierarchical feature pyramids to detect the objects
of various sizes (Fig. 1 (a)). One problem with using multiscale
features directly produced by CNNs is the gap of the semantic
information between them caused by the different depths of
the layers passed by the input. Due to the relatively low level
of abstraction for bottom-level features, detection accuracy
for small objects is often limited. Fig. 1 (b), (c), and (d)
describe the strategies proposed to overcome this problem.
Fig. 1 (b) depicts the strategy of combining the multiscale
features into the single high-resolution feature map with
strong semantics. HyperNet [22] and ION [23] improved the
performance of RPN by aggregating the hierarchical features
with the appropriate resizing of the feature maps. Fig. 1 (c)
shows the strategy of generating highly semantic features
through the top-down pathway with lateral connections. Note
that the semantic information is generated through the top-
down connections while the detailed spatial information is
provided through lateral connections. Several detectors based
on this structure include DSSD [12], StairNet [14], TDM [24],
FPN [13], and RefineDet [25]. DSSD [12], StairNet [14], and
Libra R-CNN [15] use the deconvolutional layer-based top-
down connections. TDM [24] employs the top-down structure
specified for the RPN of the Faster R-CNN [5]. FPN [13]
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Fig. 1. Structure of several feature pyramid methods: In (a), feature pyramid obtained from convolutional layers is used in baseline detectors (e.g., SSD
[7]). In (b), multiscale features are fused and converted into the single semantic feature map with the highest resolution. (c) shows the structure generating
additional features in unidirectional way through the top-down structure with lateral connections. (d) shows the structure of the proposed ScarfNet, where the
multiscale features are fused in a bidirectional fashion and the learned semantics are propagated back to each scale.

uses the simplified structure using 2x up-sampling and 1x1
convolution for top-down and lateral connections, respectively.
RefineDet [25] employs two-step cascade regression for top-
down connections. NAS-FPN [17] uses neural architecture
search (NAS) to further optimize the process of designing
FPN. HR-FPN [16] demonstrates the effectiveness of high
resolution and multi-level features learned by the modified
backbone networks.

III. PROPOSED OBJECT DETECTOR

In this section, we introduce the details of the proposed
ScarfNet architecture.

A. Existing Feature Pyramid Methods

The feature pyramid-based object detectors performs detec-
tion based on the k(> 1) feature maps across different pyramid
levels to detect the various sizes of objects. As shown in Fig.
1 (a), the baseline detectors use the feature map Xl at the lth
pyramidal level

Xl = Bl (Xl−1) (1)
Detection Outputs = Dl(Xl), (2)

where l = n − k + 1, ..., n. Note that X1:n−k(=
[X1, X2, ..., Xn−k]) are the feature maps produced by the
backbone network, and Xn−k+1:n are the bottom-up features
from the subsequent convolutional layers. Bl(·) denotes the
operation performed by the lth convolutional layer, and Dl(·)
denotes the detection subnetwork that often applies a single
3x3 convolutional layer to produce the output of classification
and box regression. Due to the different depths from the input
to each pyramidal feature, shallow bottom-level features suffer
from the lack of semantic information.

In order to reduce the semantic gap between different
pyramid levels, several works proposed the top-down structure
using lateral connections as illustrated in Fig. 1 (c). This struc-
ture propagates the high-level semantics from the top layers
to the bottom layers with increased resolution while keeping
the spatial high resolution through lateral connections. The lth
feature map X ′l generated using this method is expressed as

X ′l = Ll (Xl) ⊕ Tl
(
X ′l+1

)
(3)

Detection Outputs = Dl(X
′
l) (4)

where l = n − k + 1, ..., n. Note that Ll(·) is the operation
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Fig. 2. The overall architecture of the proposed ScarfNet: ScarfNet consists of two modules: ScNet and ArNet. ScNet aggregates the pyramidal features
obtained from the bottom-up CNN pipeline. Then, ArNet distributes the fused semantics to each pyramid level. The final high-level semantic features are
generated by channel-wise concatenation between the output of ScarfNet and the original pyramidal features. The detailed structures of the matching block
and the attention block are depicted in the yellow boxes.

for the lth lateral connection, and Tl(·) is the operation for
the lth top-down connection. The operator ⊕ represents the
operation of combining two feature maps, e.g., channel-wise
concatenation and addition. Different methods (e.g., DSSD
[12], StairNet [14], TDM [24], FPN [13], and RefineDet
[25]) employ the slightly different structures for Ll(·) and
Tl(·). While these methods promote the abstraction level for
pyramidal features, they still have some limitations. Since the
top-down connection propagates the semantic information in
a unidirectional way, the semantics are not evenly distributed
among all pyramid levels. As a result, the semantic gap
between the pyramidal features still remains. Next, such unilat-
eral processing of the features has limited capacity to produce
rich contextual information for increasing the semantic levels
in all scales. In order to address these problems, we developed
a new architecture that uses biLSTM to generate the deeply
fused semantics through bi-lateral connections between all
pyramid scales. In the following subsections, we present the
details of our design.

B. ScarfNet: Overall Architecture

ScarfNet attempts to resolve the discrepancy of the semantic
information in two steps: 1) combining the scattered semantic
information using biLSTM and 2) redistributing the fused
semantics back to each pyramid level using the channel-
wise attention model. The overall architecture of ScarfNet is
depicted in Fig. 2. Taking the k pyramidal features Xn−k+1:n

as input, ScarfNet produces the new lth pyramidal feature map
X ′l as

X ′l = ScarfNetl (Xn−k+1:n) (5)
= Xl ⊕ ArNetl(ScNet(Xn−k+1:n)) (6)

Detection Outputs = Dl(X
′
l) (7)

where l = n − k + 1, ..., n. As in (6), ScarfNet consists
of two subnetworks: semantic combining network (ScNet)
and attentive redistribution network (ArNet). First, ScNet
merges the pyramidal features Xn−k+1:n through biLSTM
and produces the output features with the fused semantics.
Second, ArNet collects the output features from biSLTM and
applies the channel-wise attention model to produce highly
semantic multiscale features, which are concatenated to the
original pyramidal features. Finally, the resulting feature maps
are individually processed by the detection subnetwork Dl(·)
to produce the results for object detection.

C. Semantic Combining Network (ScNet)

The feature maps Xf
n−k+1:n produced by ScNet are ob-

tained as follows:

Xf
n−k+1:n = ScNet(Xn−k+1:n), (8)

where Xf
l is the output feature map for the lth layer. Fig. 3

depicts the detailed structure of ScNet. ScNet uniformly fuses
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Fig. 3. The structure of ScNet: The matching block and biLSTM are applied
to generate the fused feature map Xf

l . Note that the matching block applies
bilinear interpolation and 1x1 convolution to make the spatial and channel
dimensions equal for the inputs to biLSTM.

the semantics scattered in different pyramid levels using biL-
STM. The biLSTM model can selectively fuse the contextual
information in multiscale features through the gating function.
As shown in Fig. 3, ScNet consists of the matching block
and the biLSTM block. The matching block first resizes the
pyramidal features Xn−k+1:n such that they have the same size
as the largest pyramidal feature. Then, it adjusts the channel
dimension of the input using the 1x1 convolutional layer. As
a result, the matching block produces the feature maps of the
same spatial and channel dimensions for biLSTM. Note that
the resizing operation is performed by bilinear interpolation.
The biLSTM model used in SCNet follows the structure of
[26], which has significantly saved the computation time by
using convolutional layers for input connection and computing
the gating parameters based on the results of global average
pooling. The operations performed by biLSTM in [26] are
summarized as follows:

X̄l = GlobalAveragePooling(Xl) (9)

X̄f
l−1 = GlobalAveragePooling(Xf

l−1) (10)

il = σ
(
WxiX̄l +Wxf iX̄

f
l−1 + bi

)
(11)

fl = σ
(
Wxf X̄l +Wxff X̄

f
l−1 + bf

)
(12)

ol = σ
(
WxoX̄l +WxfoX̄

f
l−1 + bo

)
(13)

Gl = tanh
(
Wxc ∗Xl +Wxf c ∗X

f
l−1 + bc

)
(14)

Ct = Xl ◦ Cl−1 + il ◦Gl (15)

Xf
l = ol ◦ tanh (Cl) , (16)

where ◦ denotes the Hadamard product. The state update of
biLSTM is conducted in both forward and backward direc-
tions. Note that we only provide the forward update, and the
equations are similar for the backward update.

D. Attentive Redistribution Network (ArNet)

The ArNet aims to produce the high-level semantic feature
map, which is concatenated with the original pyramidal feature
map Xl as follows:

X ′l = Xl ⊕ ArNetl(X
f
n−k+1:n), (17)

where operator ⊕ denotes the channel-wise concatenation.
The detailed structure of ArNet is depicted in Fig. 4. ArNet

Attention 

Block

��

: ReLU

: Concatenation

��
�

��

�

����

�

����

�

.
 
.
 
.

.
 
.
 
.

Downscale 1x1 conv

Matching Block

Fig. 4. The structure of ArNet: ArNet concatenates the fused feature maps
Xf

n−k+1:n and applies the channel-wise attention. Then, the spatial and
channel dimensions of the resulting feature maps are adjusted by the matching
block.

concatenates the outputs Xf
n−k+1:n of biLSTM and apply

the channel-wise attention to them. The attention weights are
obtained by constructing the 1x1 vector using global average
pooling [28] and passing it through two fully connected layers
followed by the sigmoid function. Note that this channel-
wise attention model allows for selective propagation of the
semantics to each pyramid level. Once the attention weights
are applied, the matching block down-samples the resulting
feature maps to the original size of the pyramidal features and
applies 1x1 convolution to match the channel dimensions with
those of the original pyramidal features. Finally, the output of
the matching block is concatenated with the original feature
Xl to produce the highly semantic feature X ′l .

IV. EXPERIMENTS

We evaluated the performance of the proposed ScarfNet
model by comparing our detector with other multiscale de-
tection methods and conducting an extensive performance
analysis to understand the behavior of our architecture.

A. Experimental Setup

ScarfNet was applied to the baseline object detectors in-
cluding Faster R-CNN [5], SSD [7], and RetinaNet [10]. In
the case of Faster R-CNN and RetinaNet, we replaced the
original FPN part with the feature generation by ScarfNet. We
compared our method with the baselines, Faster R-CNN [5],
SSD [7], and RetinaNet [10], as well as the other competitive
algorithms including ION [23], R-FCN [27], DSSD [12],
and StairNet [14]. We measured the mean average precision
(mAP) in % on three widely used datasets for object detection
benchmark: PASCAL VOC 2007, PASCAL VOC 2012 [19],
and MS COCO [20].

B. Network Configuration

The advantage of ScarfNet is that there are not many
hyperparameters to be determined. Note that the spatial di-
mensions of the feature maps are readily determined based
on those of the baseline detectors. The channel dimensions
of the intermediate feature maps are fixed over the pipeline
between two matching blocks in ScNet and ArNet. Thus, we
only need to determine this channel dimension. According to
our empirical results, we set the channel dimension to 256.
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Method Backbone Input size mAP (%)
VOC 2007 VOC 2012

StairNet [14] VGG-16 300× 300 78.8 76.4
Faster R-CNN [5] VGG-16 ∼ 1000× 600 73.2 70.4

ION [23] VGG-16 ∼ 1000× 600 76.5 76.4
SSD300* [7] VGG-16 300× 300 77.5 75.8

Scarf SSD300 (ours) VGG-16 300× 300 79.4 77.2
SSD512* [7] VGG-16 512× 512 79.8 78.5

Scarf SSD512 (ours) VGG-16 512× 512 81.6 79.8
SSD321 [12] ResNet-101 321× 321 77.1 75.4
SSD513 [12] ResNet-101 513× 513 80.6 79.4

DSSD321 [12] ResNet-101 321× 321 78.6 76.3
DSSD513 [12] ResNet-101 513× 513 81.5 80.0

R-FCN [27] ResNet-101 ∼ 1000× 600 80.5 77.6
Faster R-CNN† [5] ResNet-101 ∼ 833× 500 81.1 -

Scarf Faster R-CNN (ours) ResNet-101 ∼ 833× 500 82.3 -
RetinaNet500† [10] ResNet-101 ∼ 833× 500 83.0 -

Scarf RetinaNet500 (ours) ResNet-101 ∼ 833× 500 83.5 -

TABLE I
PASCAL VOC 07/12 DETECTION RESULTS: THE DETECTION RESULTS FOR VOC 2007 ARE EVALUATED ON VOC 2007 test set AFTER TRAINED ON

VOC 2007 trainval AND VOC 2012 trainval. THOSE FOR VOC 2012 ARE EVALUATED ON VOC 2012 test set WHEN TRAINED ON VOC 2007 test, VOC2007
trainval, AND VOC 2012 trainval SETS.

C. Performance Evaluation: PASCAL VOC Results

1) Training on PASCAL VOC 2007 Dataset: The object
detectors under consideration were trained with the VOC 2007
trainval and the VOC 2012 trainval sets and evaluated with
the VOC 2007 test set. When ScarfNet was combined with
the SSD baseline, we trained our model over 120k iterations
(∼240 epochs). We used a learning rate of 10−3 for the first
80k iterations, 10−4 for the next 20k iterations, and 10−5 for
the last 20k iterations. The mini-batch size was set to 32, the
momentum for the stochastic gradient descent (SGD) update
was set to 0.9, and the weight decay was set to 0.0005. When
our method was combined with the RetinaNet baseline, we
used a learning rate of 5 × 10−3 for the first 60k iterations,
5×10−4 for the next 20k iterations, and 5×10−5 for the last
10k iterations. Other parameters were equally set except for
the weight decay of 0.0001.

2) Training on PASCAL VOC 2012 Dataset: The object
detectors were trained with the VOC 2007 trainval, the VOC
2007 test and the VOC 2012 trainval sets and evaluated with
the VOC 2012 test set. When our model was applied to the
SSD baseline, a total of 200k iterations were run with the
same training parameters as in the VOC 2007 case. Note that
we used a learning rate of 10−3 for the first 120k iterations,
10−4 for the next 40k iterations, and 10−5 for the rest.

3) Performance Comparison: Table I shows the mAP per-
formance of the object detectors under comparison evaluated
on the PASCAL VOC 2007 and 2012 test sets. For both PAS-
CAL 2007 and 2012 cases, the semantic features generated by
ScarfNet offer a significant performance gain over the baseline
detectors. In the case of PASCAL VOC 2007, the proposed
method achieves 1.9%, 1.8%, and 1.2% mAP gains over the
SSD300, SSD512, and Faster R-CNN baselines, respectively.

The proposed method also outperforms the RetinaNet baseline
by 0.5%. Since the RetinaNet baseline employs the top-down
structure based on FPN [13], we conclude that the features
generated by our method are superior to those generated by
FPN. Our object detector also achieves better performance
than the other competing algorithms including, StairNet [14],
DSSD [12], ION [23], R-FCN [27]. Although the detection
accuracy with the PASCAL VOC 2012 dataset is slightly
degraded compared to that with PASCAL VOC 2017, the
tendency of the detection results observed for PASCAL VOC
2007 remains the same. Note that the proposed detector
maintains the performance gain of 1.4% and 1.3% mAP over
the SSD300 and SSD500 baselines, respectively.

D. Performance Evaluation: COCO Results

1) Training: The object detectors under comparison were
trained with the MS COCO trainval35k split [23] (union of
80k images from the training set and a random 35k subset
of images from 40k image val split). The evaluation was
performed using the MS COCO test-dev. To train the proposed
structure based on RetinaNet [10], we used the learning rate
of 10−2 for the first 60k iterations, 10−3 for the next 20k
iterations, and 10−5 for the last 20k iterations. The mini-batch
size was set to 16, the momentum was set to 0.9, and the
weight decay was set to 0.0001.

2) Performance comparison: Table II provides the detec-
tion accuracy of the algorithms tested on the MS COCO
dataset. The experiment was conducted on various baseline
detectors and feature pyramid modules. The proposed Scarf
SSD513 and Scarf RetinaNet achieve the significant perfor-
mance gain over the baselines. Our method beats the Faster
R-CNN baseline [5] by 0.9% AP. Note also that the Scarf
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Method Network Backbone Module Input size fps AP AP50 AP75 APS APM APL

two-stage
Faster R-CNN* [5] ResNeXt-101 FPN ∼ 833× 500 15.3 37.6 59.1 40.7 19.2 41.8 52.3

ResNeXt-101 FPN ∼ 1333× 800 10.3 41.9 63.9 45.9 25.0 45.3 52.3

Scarf Faster R-CNN (ours) ResNeXt-101 SCARF ∼ 833× 500 13.8 38.5 59.9 41.5 19.1 42.9 54.1
ResNeXt-101 SCARF ∼ 1333× 800 8.9 42.8 64.3 47.1 26.0 45.7 52.9

one-stage

SSD513 [12] ResNet-101 - 513× 513 12.5 31.2 50.4 33.3 10.2 34.5 49.8
DSSD513 [12] ResNet-101 DSSD 513× 513 10.0 33.2 53.3 35.2 13.0 35.4 51.1

Scarf SSD513 (ours) ResNet-101 SCARF 513× 513 11.5 34.5 54.1 36.3 15.1 36.1 51.6

RetinaNet [10] ResNet-101 FPN ∼ 833× 500 15.4 34.4 53.1 36.8 14.7 38.5 49.1
ResNeXt-101 FPN ∼ 1333× 800 9.3 40.8 61.1 44.1 24.1 44.2 51.2

Scarf RetinaNet (ours) ResNet-101 SCARF ∼ 833× 500 13.6 35.1 53.8 37.7 15.8 38.7 49.0
ResNeXt-101 SCARF ∼ 1333× 800 8.4 41.6 62.0 44.6 24.5 45.5 52.3

TABLE II
DETECTION RESULTS ON MS COCO test-dev DATASET: THE SYMBOL “*” INDICATES OUR RE-IMPLEMENTED RESULTS. THE EXPRESSION “∼ x× y”

MEANS RE-SCALING OF THE INPUT IMAGE INTRODUCED IN THE ORIGINAL RETINANET PAPER.

Method mAP

Ablation
study

Basedline (SSD) 77.5

biLSTM 79.1

biLSTM + channel-wise attention 79.4

Other fusion strategy
(used with channel-wise attention)

1x1 conv.-based fusion 78.9

uniLSTM 78.7

Top-down structure
with lateral connections 78.6

TABLE III
RESULTS OF ABLATION STUDY ON VOC 2007 test DATASET.

SSD513 achieves 1.3% performance gain over DSSD513 and
the Scarf RetinaNet offers the 0.8% performance gain over the
RetinaNet baseline [10].

E. Performance Analysis: Ablation Study

1) Benefits of biLSTM: It is worth investigating the effec-
tiveness of biLSTM and channel-wise attention for fusing the
multi-scale features. Table III shows how the performance of
our method improves as we add bi-LSTM and channel-wise
attention to the baseline one by one. We see that the biLSTM
offers the 1.6% AP gain over the baseline and combination of
biLSTM and channel-wise attention adds 1.9% AP gain. Table
III also compares the different fusion strategies including the
1x1 convolutional layer, the top-down structure, and the uni-
directional LSTM. Our biLSTM achieves better performance
than the others; thus, parameter sharing, gating units, and
bilateral processing of biLSTM effectively control high-level
information to reduce the subtle semantic gap between the
hierarchical features.

2) Network Parameter Search: We need to determine the
channel dimension of the intermediate feature maps. We
should also determine whether the element-wise addition or
channel-wise concatenation is better in combining the output
of ScarfNet with the original feature pyramid. Table IV shows
the evaluation of the performance of our detector for various
combinations of channel dimensions (64, 128, 256, 512 versus
1024) and feature combining strategies (element-wise addition
versus channel-wise concatenation). According to Table IV,

Semantic feature generation strategy
Addition Concat.

Channel
dimension

64 78.3 78.8
128 78.6 79.1
256 79.1 79.4
512 79.5 79.2
1024 79.4 79.2

TABLE IV
MAP (%) PERFORMANCE FOR VARIOUS COMBINATIONS OF CHANNEL
DIMENSION AND SEMANTIC FEATURE GENERATION STRATEGY WHEN

EVALUATED ON VOC 2007 test set

the combination of 512 channel dimensions with element-
wise addition leads to the best detection accuracy. However,
using 512 channels significantly increases the computational
complexity of the entire network; thus, we chose 256 channel
dimensions with channel-wise concatenation.

V. CONCLUSIONS

In this study, we developed a deep architecture that gener-
ates multiscale features with strong semantics to reliably detect
the objects in various sizes. Our ScarfNet method transforms
the pyramidal features produced by the baseline detector into
evenly abstract features. ScarfNet fuses the pyramidal features
using biLSTM and distributes the semantics back to each
multiscale feature. We verified through experiments conducted
with PASCAL VOC and MS COCO datasets that the proposed
ScarfNet method significantly increases the detection perfor-
mance over the baseline detectors. Our object detector achieves
the state-of-the-art performance on the PASCAL VOC and
COCO benchmarks.
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