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Abstract: Dimethyl ether (DME) is a compound first introduced by Shell as a chemical solvent
for enhanced oil recovery (EOR). This study aims to investigate the efficiency of EOR using the
minimum miscible pressure (MMP) and viscous gravity number when a mixed solvent of CO2 and
DME is injected. Adding DME to the CO2 water-alternating-gas process reduces the MMP and
viscous gravity number. Reduction in MMP results in miscible conditions at lower pressures, which
has a favorable effect on oil swelling and viscosity reduction, leading to improved mobility of the
oil. In addition, the viscous gravity number decreases, increasing the sweep efficiency by 26.6%.
Numerical studies were conducted through a series of multi-phase, multi-component simulations.
At a DME content of 25%, the MMP decreased by 30.1% and the viscous gravity number decreased by
66.4% compared with the injection of CO2 only. As a result, the maximum oil recovery rate increased
by 31% with simultaneous injection of DME and CO2 compared with only using CO2.

Keywords: dimethyl ether (DME); water alternating gas (WAG); enhanced oil recovery (EOR);
chemical solvent; miscible gas

1. Introduction

As the discovery of new oil fields becomes increasingly difficult, most oil companies
are focusing on maintaining economic oil prices through enhanced oil recovery (EOR)
technology to maximize the recovery from oil fields [1]. Solvent injection is a mature EOR
method [2]. CO2 and hydrocarbon gas are widely used as injection fluids [3], wherein their
contact with reservoir fluid causes viscosity reduction and oil swelling. The effect is greater
under miscible conditions than immiscible conditions [4]. Research using hydrocarbon gas
or CO2 as a solvent has been conducted, from the laboratory to the field, for decades [3,5,6].
Additionally, research is being conducted to improve oil recovery and economic efficiency
using a mixed solvent of CO2 and hydrocarbon gas or a surfactant [7–10]. In particular,
according to previous studies that added liquefied petroleum gas (LPG) to CO2 flooding,
LPG increases the displacement efficiency by reducing the minimum miscible pressure
(MMP), which accelerates the effects of oil viscosity reduction, interfacial tension (IFT)
reduction, and oil swelling, resulting in an increase in oil recovery [6,11,12]. Dimethyl
ether (DME), an industrial chemical used as a fuel additive and aerosol propellant, is being
investigated as a solvent for EOR. Recently, DME was mixed with LPG and used as fuel
for transportation as well as for cooking and heating fuel [13,14]. As a solvent, DME has
the advantage of being soluble in both water and oil. DME can be mixed nearly ideally in
the oleic phase and is partially soluble in water because of its slight polarity [15]. These
properties enable a unique and improved oil recovery mechanism. DME remaining near
the injection well is extracted by the chasing water, which acts as a DME carrier, improving
the oil mobility near the production well [13]. Additionally, DME can be extracted from
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the produced fluid and reused through distillation and adsorption processes [14]. DME
was first introduced as a solvent for EOR by Shell [15–18], and this method has proven
effectiveness in improving oil recovery [14–16,19–21]. Recent research on DME in the field
of EOR has focused on modeling and experiments of the DME–water–oil phase behavior
or studies modeling the core scale [15,16,21–25]. Additionally, most of the EOR using
DME has been studied for the DME-enhanced water flood method, and to the best of our
knowledge, no studies have been reported on a CO2–DME mixed solvent. Though DME
has been proven as an effective solvent in improving oil recovery, it is an expensive solvent
around $565/m3 [26]. Therefore, the optimum amount of DME into the CO2 flood should
be determined through extensive compositional simulations to improve the economics of
the project. Therefore, this study evaluated the use of a mixed solvent to reduce DME and
increase the oil recovery rate by adding DME to the CO2 flooding. In addition, the amount
of DME that was recovered by chased water was examined with compositional analysis of
the produced fluid. In this study, a compositional model was developed to investigate oil
recovery when injecting a CO2–DME mixed solvent under the WAG scenario. Based on
the results from simulations, the sweep efficiency and displacement efficiency by WAG
using a CO2–DME mixed solvent were analyzed in terms of oil viscosity, viscous gravity
number, and MMP.

2. Materials and Methods
2.1. Fluid Modeling

Fluid modeling was performed using the properties of Weyburn W3 fluid. The com-
ponents of the Weyburn W3 fluid and the parameters of the equation of state (EOS) for
fluid modeling are listed in Table 1 [27]. The acentric factor was proposed by Pitzer [28] as
a comprehensive expression of the boiling point, molecular weight and polarity character-
istics of pure ingredients. Parachor is a material-specific value that relates surface tension
to chemical structure.

Table 1. Oil components and properties of each component for equation of state (EOS) calculation.

Component Composition Critical Pressure
(kPa)

Critical
Temperature

(K)
Parachor Acentric Factor Molecular Weight

(g/gmol)

N2 0.0207 3394.4 126.2 41 0.04 28.01
CO2 0.0074 7376.5 304.2 78 0.225 44.01
H2S 0.0012 8936.9 373.2 80 0.1 34.08
C1 0.0749 4600.2 190.6 77 0.008 16.04
C2 0.0422 4883.9 305.4 108 0.098 30.07
C3 0.0785 4245.5 369.8 150 0.152 44.09

DME 0.0001 5442.2 400.3 132 0.2 46.07
C4 0.0655 3722.7 416.5 185 0.1845 58.12
C5 0.0459 3379.4 464.9 228 0.239 72.15

C6-9 0.2155 3019.6 556.4 296 0.331 102.5
C10-17 0.2202 2017.5 692.3 505 0.584 184
C18-27 0.1027 1327.0 808.4 768 0.893 306.2
C28+ 0.1252 1155.1 915.5 1001 1.1 585.61

Regression matching is promoted using the experimental data of the Weyburn W3
fluid. Results from the fluid model adequately matched the experimental data and con-
firmed the reliability for composition simulation. The data values compared with the
modeling fluid are shown in Table 2.
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Table 2. Comparison of the fluid model and experimental data for Weyburn W3 fluid.

Parameters Fluid Model Experimental Data

Saturation Pressure (kPa) 4784.95 4920
Oil density at psat (kg/m3) 805.73 806.4
Oil viscosity at psat (mPa·s) 1.75 1.76
Formation volume factor 1.11 1.12

API (◦) 34.8 31

The Winprop software, developed by the Computer Modeling Group (CMG), was
used for fluid modeling. The Peng–Robinson EOS (PR EOS) [29,30] was used to calculate
the fugacity of a component in the oil and gas phases. The concept of fugacity is usually
used for multi-component equilibrium involving solid, liquid and gas phases. It is used to
determine the amount of ingredients in each stage of a multi-component mixture at various
temperatures and pressures [31]. Therefore, the Peng–Robinson equation was used to
predict the phase behavior of the mixed fluid and to tune the experimental values. The PR
EOS is as follows:

p =
RT

v− b
− a

v(v + b) + b(v− b)
(1)

or, in terms of the Z factor:

Z3 − (1− B)Z2 +
(

A− 3B2 − 2B
)

Z−
(

AB− B2 − B3
)
= 0 (2)

where a is the attraction parameter, b is the repulsion parameter, p is the pressure (Pa), T
is the temperature (K), v is the volume ( m3

mol ), and R is the universal gas constant ( m3·Pa
K·mol ).

The EOS constants for pure components are given by:

A = a
p

(RT)2 (3)

B = b
p

RT
(4)

a = Ω0
a

R2T2
c

pc
α (5)

b = Ω0
b

RTc

pc
(6)

α =
[
1 + m

(
1−
√

Tr

)]2
(7)

where α is a parameter for temperature, pc is the critical pressure, Tc is the critical temperature,
and Tr is the reduced temperature. Additionally, values of the constants are given as follows:

α =
[
1 + m

(
1−
√

Tr

)]2
α =

[
1 + m

(
1−
√

Tr

)]2
(8)

The parameter m is expressed as a function of the acentric factor ω:

m = 0.37464 + 1.54226ω− 0.26992ω2 (9)

Robinson and Peng [30] proposed a modified expression for m for heavier components
(ω > 0.49):

m = 0.3796 + 1.485ω− 0.1644ω2 + 0.01667ω3 (10)
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In PR EOS, the fugacity of component i of the hydrocarbon mixture, Φi, is expressed
through the following equation:

ln Φi =
Bi
B
(Z− 1)− ln(Z− B) +

A
2
√

2B

(
Bi
B
− 2

A

N

∑
j=1

yj Aij

)
ln

Z +
(

1 +
√

2
)

B

Z−
(

1−
√

2
)

B

 (11)

where yj is the gas mole fraction of component i. The mixing rules for expressing multi-
component fugacity are as follows:

A =
N

∑
i=1

N

∑
j=1

yiyj Aij (12)

B =
N

∑
i=1

yiBi (13)

Aij =
(
1− Kij

)√
Ai Aj (14)

where Kij is the binary interaction parameter.
The parameters of DME used in PR EOS were obtained from literature (Table 3) [13,32].

Table 3. Binary interaction coefficients between DME and each component.

N2 CO2 H2S C1 C2 C3 DME C4 C5 C6-9 C10–17 C18–27 C28+

N2 0.00 - - - - - - - - - - - -
CO2 0.00 0.00 - - - - - - - - - - -
H2S 0.13 0.14 0.00 - - - - - - - - - -
C1 0.25 0.11 0.07 0.00 - - - - - - - - -
C2 0.01 0.13 0.09 0.00 0.00 - - - - - - - -
C3 0.09 0.13 0.08 0.01 0.00 0.00 - - - - - - -

DME 0.10 0.00 0.00 0.29 0.25 0.25 0.00 - - - - - -
C4 0.10 0.12 0.08 0.02 0.01 0.00 0.25 0.00 - - - - -
C5 0.10 0.12 0.07 0.02 0.01 0.00 0.25 0.00 0.00 - - - -

C6-9 0.11 0.12 0.05 0.03 0.02 0.01 0.20 0.00 0.00 0.00 - - -
C10-17 0.11 0.12 0.05 0.06 0.04 0.02 0.08 0.02 0.01 0.01 0.00 - -
C18-27 0.11 0.12 0.05 0.09 0.06 0.05 0.08 0.03 0.03 0.02 0.00 0.00 -
C28+ 0.11 0.12 0.05 0.12 0.09 0.07 0.08 0.05 0.05 0.03 0.01 0.00 0.00

DME is also soluble in the aqueous phase, and Henry’s law was used to determine the
fugacity in the aqueous phase. The phase of the gas that dissolves in the water is obtained
through Henry’s law as [33]:

fiw = yiw Hi, i = 1, . . . ., nc (15)

where Hi is Henry’s constant of component i and yiw is the mole fraction in the aqueous
phase of component i. Henry’s constant for the pressure change is calculated by:

ln Hi = ln H∗i +
vi(p− p∗)

RT
(16)

where H∗i is Henry’s constant of component i at a reference pressure (Pa) and temperature
(K) p∗, T and vi is the molar volume of component i. The values of the solubility properties
of DME in the aqueous phase were obtained from literature [34]. The phase behavior and
solubility in the aqueous solution were determined through fugacity obtained by PR EOS
and Henry’s law.
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2.2. Reservoir Modeling

The GEM compositional simulator developed by CMG was used for numerical simu-
lation. In this paper, the 2D homogenous cross-sectional reservoir model was designed to
analyze the sweep efficiency change according to the DME mole fraction. The properties
of the reservoir were obtained from the literature (Table 4) [31]. In oil-wet system, water
flooding is not effective for enhancing oil recovery [35]. Therefore, the oil-wet system was
chosen to show the improved performance of DME-CO2 mixed solvent. The end point
values and crossover saturation of relative permeability are measures of wettability [36].
The relative permeability obtained from the literature is shown in Figure 1 [37]. The relative
permeability of water is quite high at residual oil saturation and crossover saturation is
less than 0.5, which are good qualitative indications of oil wet conditions.

Table 4. Classification of cases according to DME content.

Case Injection Gas Contents

1 100% CO2 + 0% DME
2 90% CO2 + 10% DME
3 85% CO2 + 15% DME
4 75% CO2 + 25% DME
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The size of the reservoir was designed as 52 × 1 × 20 grids and each grid block was
3 m × 3 m × 1.5 m. In this paper, WAG was applied to enhance the oil recovery. The total
injection process was conducted for 12 years: 3 years for the secondary water flooding,
6 years for WAG (1:1.5 WAG ratio), and 3 years for the water flooding to produce the
residual DME (Figure 2).
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Four WAG cases depending on the mole fraction of DME (0% to 25%) were analyzed
(Table 4).

Other properties, including production pressure, were maintained to examine the
effect of the injection fluid. Reservoir properties and the operation conditions are shown in
Table 5.

Table 5. Reservoir initial conditions and operating conditions.

Properties Values

Initial Pressure (kPa) 13,789
Initial oil saturation 0.88

Porosity (%) 30
Permeability (m2) 4.9 × 10−14

Producing pressure (kPa) 11,031
Total injection (PV) 1.5

2.3. Viscous Gravity Number (Ngv)

Since the density of the gas used in the WAG was less than that of the reservoir fluid,
the difference between the density and gravity causes an override in which the injected gas
moves to the upper layer, which reduces the vertical sweep efficiency. The vertical sweep
efficiency was affected by the relationship between the viscosity and gravity. The change
in the vertical sweep efficiency with the addition of DME was quantitatively investigated
using the viscous gravitational number (Ngv), which can be expressed by [38]:

Ngv =
time for horizontal flow

time for vertical flow
=

kvkrs∆ρg cos αAL
qsµsh

(17)

where kv is vertical permeability, krs is relative permeability, ∆ρ is density difference
between injected and reservoir fluids, g is gravitational acceleration, A is cross sectional
area, L is length of the reservoir, qs is flow rate of the solvent, µs is solvent viscosity and
h is height of the reservoir.

If Ngv = 10, horizontal flow takes ten times longer than vertical flow. The guidelines
for determining which gravity or viscous force dominates are as follows:

Ngv < 0.1 : Viscous forces dominate;
0.1 < Ngv < 10 : Intermediate;

Ngv > 10 : Gravity dominate.

2.4. Minimum Miscible Pressure

The MMP is the minimum pressure at which the injected gas and oil can be mixed
under a specific reservoir temperature condition. If the reservoir pressure is less than the
MMP, the immiscible flooding process is applied. Conversely, if the reservoir pressure
is greater than the MMP, the miscible flooding process is applied. Though the main
mechanism of the effect of oil expansion and oil viscosity reduction in immiscible flooding
and miscible flooding is similar, the effect is greater in miscible flooding [39]. In addition,
in the case of miscible flooding, the displacement efficiency increases because of the
decrease in IFT between gas and oil [40]. In this study, the MMP between oil and gas
according to DME addition was investigated. The slim tube test is recognized to be the
most accurate experimental method for determining MMP. However, the slim tube test is
expensive and takes a long time to measure MMP [41]. To overcome the limitations, slim
tube test simulation has been widely used. Since slim tube test simulation is a cost-effective
method providing an accurate prediction [42]. Therefore, we used slim tube simulation in
this study.
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3. Results
3.1. Effects of DME Injection on Oil Recovery
3.1.1. Vertical Sweep Efficiency

The vertical sweep efficiency according to the mole fraction of DME was compared
using 2D reservoir modeling. The front of the sweep area was confirmed through the
change in the viscosity of the oil in contact with the injected gas. The steeper the slope of
the front contact in the sweep area, the more the injected gas contacts the fluid under the
reservoir. Figure 3 shows the oil viscosity when 0.5 PV was injected. When comparing
the slope of the front of sweep area, Cases 1, 2, 3 and 4 were 5, 3.75, 5, and 8, respectively.
The sweep efficiency increased with the addition of DME, as confirmed by the slope com-
parison. The contact area at breakthrough and the viscous gravity values were compared to
confirm the increase in sweep efficiency. When comparing the area of the swept grids when
the breakthrough occurred, Cases 1, 2, 3, and 4 were 6372 m3, 6867.6 m3, 7235.8 m3 and
8071.2 m3, respectively. Case 4 was 26.6% greater than Case 1. Table 6 shows the viscous
gravity number of all cases. In Case 1, the viscous gravity number decreased by as much
as 66.4% when DME was added. Decreasing the viscous gravity number increases the
viscous forces. The addition of DME is more advantageous to sweep the lower reservoir
fluid. As a result, the vertical sweep efficiency was significantly improved by the addition
of DME.
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Table 6. Comparison of the viscous gravity number.

Case Viscous Gravity Number (Ngv)

1 5.06
2 3.94
3 3.26
4 1.70

3.1.2. Displacement Efficiency

Oil saturation, oil viscosity, and MMP were compared to confirm the displacement
efficiency. Figure 4 shows the oil saturation at the end of the WAG cycle. After three
WAG cycles, the oil saturation in Case 1 remains relatively greater than Case 4. As the
content of DME increases, the MMP between the injection gas and oil decreases, which
has a greater effect on reducing the oil viscosity and IFT, both of which are advantageous
for oil flow. Figure 5 shows the oil viscosity after 0.6 PV injection. When the initial oil
viscosity was 2 mPa s, it decreased to 0.56 mPa s in Case 1 and to 0.36 mPa s in Case 4.
For Case 4, the lowest oil viscosity value was 35% less than that for Case 1. In addition,
in Case 4, the deep blue area, in which oil viscosity was less than 0.5 mPa s, was more
widespread. The deep blue area in Case 4 was 2902.8 m3, and in Case 1, the deep blue area
did not exist. The values at the middle of the reservoir were compared to evaluate the fluid
properties and residual oil component after displacement. As shown in Figure 6, after some
point, the oil viscosity of Case 4 was greater than that of Case 1 because the intermediate
component was displaced (Figure 7a). The mole fraction of the heavy component (C28+)
increases (Figure 7b) because the heavy component remains behind the flood front. MMP
was measured using a slim tube (Table 7). Figure 8 shows the IFT of the swept area in the
middle of the reservoir for the cases, where the IFT value of Case 4 is less than that of Case
1. The lowest IFT value of Case 4 was 0.012 mM/m. The values for Cases 1, 2, and 3 were
0.054 mM/m, 0.115 mM/m, 0.485 mM/m, which were 350%, 858%, and 3941% greater
than Case 4.
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3 12,079
4 9866
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3.2. Recovery

The oil recovery factor (RF) can be expressed as follows:

RF = EDEvEA (18)

where, ED is displacement efficiency, Ev is vertical sweep efficiency and EA is areal sweep
efficiency. Since is not considered in 2D cross-sectional system, oil recovery can be increased
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by improving ED and Ev. In Sections 3.1.1 and 3.1.2, it was confirmed that both ED and
Ev increased with the addition of DME. Figure 9 shows the oil recovery for each case
according to the DME content. For Case 1, the maximum oil recovery was 55%. Cases 2, 3,
and 4 showed recoveries of 60%, 64%, and 72%, respectively. As the mole fraction of DME
increased, the oil recovery increased. In Case 4, the recovery increased by 31% compared
with Case 1 because the displacement efficiency and sweep efficiency increased as the mole
fraction of DME increased. In addition, as DME is easily dissolved in water, it is recovered
with the production fluid. To improve the economics of the process, the produced DME
can be recovered through distillation and adsorption processes. Figure 10 compares the
cumulative amount of injected DME and produced DME in Case 4. It can be confirmed
that about 70% of the injected amount has been recovered and can be reused.
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4. Conclusions

A model using a mixed solvent of CO2–DME was developed to explain the change
in oil recovery when CO2 WAG and DME were added. To evaluate the reliability of the
compositional simulation, results from fluid modeling were matched with experimental
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data from real Weyburn W3 fluids. A cross-sectional 2D model was designed to examine
the sweep efficiency considering the gravity override phenomenon during WAG. Since
DME is an expensive solvent, a mixed solvent of DME and CO2 was used and the effect
was analyzed. Four cases with different DME addition ratios were modeled and the
oil recovery was analyzed through changes in the sweep efficiency and displacement
efficiency. DME in CO2 decreases the IFT and MMP, which increases the displacement
efficiency. Adding DME to the CO2 flood also increases the vertical sweep efficiency.
The developed compositional model illustrated that DME increases the sweep efficiency
and displacement efficiency. In addition, the vertical sweep efficiency and displacement
efficiency was presented quantitatively with viscous gravitational numbers, MMP, and IFT.
When the DME content was 25%, the oil recovery was 72%, a 31% increase over CO2 only.
This study confirmed the favorable effect of DME addition into the CO2 WAG process over
simple CO2 flooding. Since DME is an expensive solvent, the optimum design with an
integrative techno-economical model is required for successful field implementation of the
process. In addition, a full 3D model is required to analyze the effect of vertical and areal
reservoir heterogeneities on the oil recovery from actual fields.
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