IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received January 8, 2021, accepted January 24, 2021, date of publication January 28, 2021, date of current version February 5, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3055241

Finite State Machine-Based Motion-Free

Learning of Biped Walking

GYOO-CHUL KANG'-2 AND YOONSANG LEE 2
ICLO Virtual Fashion LLC., Seoul 06039, South Korea
2Department of Computer Science, Hanyang University, Seoul 04763, South Korea

Corresponding author: Yoonsang Lee (yoonsanglee @hanyang.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT)
under Grant NRF-2019R1C1C1006778 and Grant NRF-2019R1A4A 1029800, and in part by the Research Fund of Hanyang

University under Grant HY-2018.

ABSTRACT Recently, deep reinforcement learning (DRL) is commonly used to create controllers for
physically simulated characters. Among DRL-based approaches, imitation learning for character control
using motion capture clips as tracking references has shown successful results in controlling various motor
skills with natural movement. However, the output motion tends to be constrained close to the reference
motion, and thus the learning of various styles of motion requires many motion clips. In this paper, we present
a DRL method for learning a finite state machine (FSM) based policy in a motion-free manner (without
the use of any motion data), which controls a simulated character to produce a gait as specified by the
desired gait parameters. The control policy learns to output the target pose for each FSM state and transition
timing between states, based on the character state at the beginning of each step and the user-specified gait
parameters, such as the desired step length or maximum swing foot height. The combination of FSM-based
policy learning and simple linear balance feedback embedded in the base controller has a positive synergistic
effect on the performance of the learned policy. The learned policy allows the simulated character to walk
as instructed by the continuously changing the gait parameters while responding to external perturbations.
We demonstrate the effectiveness of our approach through interactive control, external push, comparison,
and ablation studies.

INDEX TERMS Character control, deep reinforcement learning, motion-free learning, locomotion control,

physically based animation.

I. INTRODUCTION
Creating natural and responsive motion is one of the most
important factors in bringing realism to virtual characters.
Physics simulation is one of the effective ways to achieve
this goal, as it always produces physically correct movements
interacting with the environment. However, to make a physi-
cally simulated character perform desired actions while main-
taining balance, we need a control algorithm that computes
the control signals, such as joint torques, at every moment
based on the state of the character and environment, as well
as the intended goal.

Designing such a control algorithm that reproduces human
locomotion skills has been one of the challenging top-
ics in computer graphics. Various approaches have been
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proposed for locomotion control, some of which use refer-
ence motions for naturalness of the generated motion [1], [2],
and some do not require reference motions and use other
components such as finite state machines [3] or sim-
plified dynamics models [4], [5] for generality of the
controller.

In recent years, deep reinforcement learning (DRL) has
received significant attention in the development of con-
trol algorithms. Formulating the DRL problem as finding a
policy for tracking the reference motions (a.k.a. imitation
learning) has been proven to be a powerful way to control
a character to perform various human skills with natural
movement [6]-[8]. Imitation learning-based approaches,
however, tend to generate the motions that are limited to
be near the reference motions. It is also not clear how
to apply these approaches to extinct or difficult-to-capture
animals.
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In motion-free learning that does not require reference
motions, resulting motions are affected primarily by the
design of the reward function, not by the specific style of
a given motion. However, motion-free learning is difficult
because it is not clear how to apply acceleration techniques
such as the initial state distribution [6] and the reward design
can become tricky. That is why the learning without motion
data often results in controllers generating unrealistic and
awkward gaits [9]. This low-quality motion problem can be
effectively tackled using a curriculum learning method that
allows for a high energy penalty [10], or by using realistic
torque limits or the metabolic energy function [11], [12].
These approaches also help the control policy to avoid falling
into the local minima during the learning process. For these
purposes, we adopt another type of component, a finite state
machine (FSM) based controller.

In this paper, we present a motion-free DRL method for
learning a controller for a physically simulated character
that produces a gait as specified by the desired gait param-
eters, without the use of any motion data. The control policy
representation is based on a FSM-based control algorithm
similar to SIMBICON [3]. Our policy learns to output the
target pose to be tracked for each FSM state and transition
timing between states based on the character state at the
beginning of each step and the given gait parameters. The
learning process is facilitated by a linear feedback law
embedded in the FSM-based controller. The combination of
FSM-based policy learning and simple linear feedback has
a positive synergistic effect. Using this combination results
in a controller that outperforms controllers using each item
alone. For example, our policy learned with the feedback law
responds better to external pushes than a controller using only
the feedback law by increasing the step frequency to take
more steps. The learned controller can generate a simulated
movement according to the specified gait parameters such as
the desired step length or maximum swing foot height.

We use a number of technical components to facilitate
effective learning of the FSM-based control policy. 1) The
simulation time interval between action queries is differ-
ent each time in our FSM-based DRL formulation, unlike
previous DRL-based controllers that use a fixed simulation
duration (e.g. 1/30s) as the interval. We use a simple reward
scaling method to address the problem in which the reward
for a certain length of simulation can be evaluated differently
depending on the number of RL time steps involved, which
can occur in our formulation. 2) We change the FSM-based
control algorithm in terms of the stance hip torque and
swing-up state duration to support a more natural and diverse
gait. 3) We introduce the FSM-based action range, which
provides an effective way to learn a policy for a stable gait
while avoiding the local minima, despite the absence of a
reference motion. We demonstrate the performance of our
controller and the effectiveness of the design choices through
interactive control, external push, comparison, and ablation
studies.
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Il. RELATED WORK

Designing locomotion control algorithms for physically sim-
ulated characters that generate natural human movements
has been a notorious challenge for decades. The balancing
mechanism, which is a mechanism for a simulated charac-
ter to maintain balance even under unexpected disturbances,
is the key for the design of a control algorithm. One of the
earlier approaches is to simplify the problem by representing
a locomotion cycle as a finite set of states and transitions
between them, along with manually designed balance feed-
back laws [3], [13], [14]. This approach has shown that
the combination of a FSM and manual feedback laws with
hand-tuned parameters can be an effective way to produce
robust locomotion, despite showing a somewhat marching-
like, stereotyped gait. Based on these studies, Wang et al.
proposed to optimize the parameters in the FSM states and
feedback laws with the objectives for naturalness and con-
trollability of the generated motion using stochastic optimiza-
tion [15], [16]. They showed that the stochastic optimization
can be an effective tool to optimize a FSM-based controller to
generate energy-efficient and natural movements, without the
use of motion capture data. Simplified dynamics models such
as an inverted pendulum or centroidal dynamics [17] have
been used in the design of locomotion control algorithms to
alleviate the complexity of full-body dynamics [4], [5], [18],
[19]. The use of motion capture data has been another popular
approach to design a controller that generates human-like
movements [1], [2], [20]. Although our control policy is also
based on a FSM, because it uses DRL rather than stochas-
tic optimization, a single controller instance can cope with
various situations such as various desired gait parameters or
external perturbations.

DRL has recently shown impressive progress in the devel-
opment of locomotion controllers. A popular approach is
to use DRL to find a policy that can reproduce reference
motions, which is an effective way to achieve the quality
of generated motions and the diversity of the actions per-
formed. Deep Q-learning [21] has been used to learn how
to schedule control fragments for short motion segments to
perform various tasks such as running, skateboarding, walk-
ing on a ball, and dribbling a basketball [20], [22]. Pol-
icy gradient methods, such as proximal policy optimization
(PPO) [23], have been widely used to find a tracking policy
on a continuous action space. It has been successfully adopted
to learn PD target poses to perform a variety of actions
mimicking the given reference motions while following the
specified task objectives [6]. By sampling the initial state
of each episode from the reference motion to preferentially
explore the states around the desired motion, this approach
not only provides naturalness to a simulated motion it also
allows efficient learning of the tracking policy. Learning a
control policy for a large set of unstructured motion capture
data can be facilitated by motion matching [8] or RNN [7]
based motion generators. In order to train a policy for more
challenging tasks, adaptive sampling [7], [24] or curriculum
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learning [10], [12] in task or environmental parameter spaces
have been proposed. Without using motion data, a con-
troller learned by DRL has often exhibited a non-human-like
gait [9]. To improve the quality of generated motion without
using a reference motion, a combination of the mirror symme-
try loss and curriculum learning that allows for a high-energy
penalty was proposed to learn a policy that produces human-
like, low-energy locomotion [10]. Curriculum learning in the
task parameter space with an adaptive curriculum can result
in a robust control policy for stepping-stone environments
without the use of motion data [12]. Our DRL framework
also does not use reference motion data to train a locomotion
controller. We employ a FSM-based control algorithm with
a linear balance feedback law to compensate for the absence
of reference motion data. Our framework trains a successful
locomotion control policy that can exhibit a natural gait for
various gait parameters.

There are two studies close to ours in that FSM and
reinforcement learning are used together, with the following
differences. Coros et al. proposed a policy that learns to
choose one of the predefined FSM controllers with different
gaits on a discrete action space [25]. The policy is learned
through value iteration over the trusted states that are care-
fully extended. Our policy is learned over a more expressive
continuous action space through DRL and does not need
a set of manually tuned controllers. Peng er al. proposed
a policy more similar to ours in that it outputs the target
angles directly to create a terrain adaptive gait using terrain
information [26]. However, it works in a 2D environment and
requires a number of FSM controllers to create specialized
actors in the mixture of actor-critic experts structure. Ours
works in a 3D environment without a set of pre-tuned FSM
controllers, and creates a gait by using user-specified gait
parameters.

IIl. FSM-BASED CONTROL

Our control policy representation is based on a FSM-based
controller that resembles SIMBICON [3]. The FSM has four
states for a single locomotion cycle, where each state has the
target angles of all actuated joints for PD control (Figure 1).
States 0 and 1 define the target poses for the right swing
phase, and states 2 and 3 define those for the left swing
phase. The character moves its swing leg forward during
states 0 and 2 (swing-up states), and lowers the swing leg
during states 1 and 3 (swing-down states) to make contact
with the ground. Note that the term ““left swing phase”” does
not refer to the phase where the left foot is in the air and the
right foot is in contact with the ground, but refers to the phase
in which the target poses are set to guide the swing of the left
leg. The target swing hip angles in all states are modified in
both the sagittal and coronal planes using a simple feedback
law:

04 = 040 + cad + ¢y, (D

where 6, is the modified target angle, 6, is the target angle
defined in the states, d is the horizontal distance from the
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FIGURE 1. The FSM has four states; states 0 and 1 for the right swing
phase, states 2 and 3 for left. Each state has a target pose for PD control.
agy is the swing-up state duration that is determined by our control policy.
Note that, although each target pose is shown as a planar biped only with
the root link and two legs for simplicity, each FSM state consists of the
target angles of all actuated DOFs.

stance ankle to the pelvis, v is the horizontal speed of the
pelvis, and ¢4 and ¢, are the balance feedback gains. The
joint torques are then computed from the modified target pose
using the PD control.

Note that, in principle, our control policy can be applied to
a general biped character with two legs and a pelvic part as the
root link, regardless of the structure of the remaining joints.
It can be a 3D character where the feedback law is applied
to a 3-DOF swing hip joint both on the sagittal and coronal
plane, or even can be a 2D character where it is applied to
a 1-DOF swing hip joint on the sagittal plane. We use 3D
characters for our results, and in this case, ¢4 and ¢, actually
consist of four parameters in the sagittal and coronal planes
(c;ag Lo ¢, ¢"). Remaining joints, such as knees,
ankles, and upper-body joints (if exist) are controlled by the
target angles in each FSM state using PD control.

In order to support more natural and diverse gaits, we mod-
ify the SIMBICON algorithm in terms of the swing-up state
duration and stance hip torque computation.

Swing-up state duration. In SIMBICON, a transition
between the states occurs when the swing foot hits the ground
(state 1 to 2 and 3 to 0) or a fixed time elapses (state O to
1 and 2 to 3). In our controller, the latter transition condition
is set as a variable a4, which is determined by the control
policy as a part of the actions. This enables the generation
of more diverse gaits because the duration of the swing-up
states considerably affects the characteristics of locomotion
behavior. The learned control policy chooses the best duration
for the swing-up states for the given gait parameters.

Stance hip torque computation. We compute the stance
hip torque from a target pose just like other joints, without
applying a virtual force to the root link. In SIMBICON, this
is calculated as the negated sum of the swing hip and root
link torque, which are computed using virtual PD control,

VOLUME 9, 2021



G.-C. Kang, Y. Lee: FSM-Based Motion-Free Learning of Biped Walking

IEEE Access

to ensure that only internal torques are used. This has the
advantage of reducing the number of hand-tuned parameters,
and thus it can be a simple way to find the stance hip torque
that generates a stable gait. However, we find that this method
tends to result in a less natural, marching-like gait when
applied to our control policy. By leaving the computation of
the stance hip torque as an area for DRL to learn, the learned
policy shows a more natural and smoother gait. Note that
our controller does not use SIMBICON’s virtual PD control
on the root link, and thus the character is actuated only by
internal joint torques.

IV. REINFORCEMENT LEARNING

We use reinforcement learning (RL) to control the charac-
ter equipped with the FSM-based control algorithm. In RL,
an agent observes an environment state s; and chooses an
action a, to take at every RL time step. After conducting a,,
the agent receives a reward r; = r(s;, a;) from the environ-
ment. The goal of RL is to find the policy mp(a | s) that
maximizes the cumulative reward:

J©6)=E [Z y'r(s, a»] : )

t=0

where 60 is the parameter of the policy and y € (0, 1) is
the discount factor for the rewards. In DRL, a policy & is a
deep neural network with the network parameter 6. We use
the proximal policy optimization (PPO) [23] to find the best
network parameter 6.

We use a single walking step as a RL time step to exploit the
discrete nature of the FSM-based control algorithm where
the FSM transitions and target pose updates occur mainly
based on steps. Thus, one RL time step contains two state
transitions in the FSM. Another alternative is to use each FSM
state as a RL time step, which would degrade the learning
performance due to the delayed reward because the reward
for the given gait parameters, such as the desired step length,
must be calculated for every two RL time steps. Another prob-
lem with this alternative is that one of the actions, the swing-
up state duration, only makes sense every two RL time steps,
because it is only used in the swing-up states.

A. STATE

The state s is composed of the dynamic state s; of the
simulated character, the user-specified gait parameter s, and
the binary indicator sy showing which leg is about to swing.
Note that s is computed at each RL time step, that is, at
the beginning of each walking step. With the support of the
balance feedback law (Equation 1), the learned policy can
find an action that creates a stable gait with only the state
at the beginning of each step.

The dynamic state s; includes the generalized position q
and velocity q of the root joint and the joints of both legs.
Additional joint states may be included depending on the
simulated character and environment. For example, if the
simulated character has upper-body parts, it may contain
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some of the upper-body joint states. The end-effector posi-
tions e with respect to the root frame are included to provide
more information about the current pose. The desired gait
parameter s, is the vector of user-specified desired values
for step length /4, step duration d;, and maximum swing foot
height during a step iy (Figure 2).

desired step duration d,

-

desired maximum

swing foot height h, desired step length |,

FIGURE 2. Schematic diagram of the desired gait parameter sp.

B. ACTION
The action a consists mainly of the two sets of target angles
a,, for the joints of both legs and other optional joints. It is
responsible for creating one walking step. Each set of target
angles corresponds to the swing-up and swing-down state
of the FSM. The target angles of the joints not included in
the action a are set to constants showing a fixed posture or
periodic movement. As described in Section III, the swing-
up state duration ay is also included in the action a.
FSM-based action range. When people walk, they repeat-
edly swing their swing leg up and down by adjusting the range
of motion of the hip and knee joints on the sagittal plane,
while their movements on other anatomical planes and the
motion of other joints remain within a certain range. This
means that the typical target angles for the swing-up and
swing-down states could differ for specific joints. Based on
this idea, we set the range of the target joint angle a, that
depends on the FSM state (see Table 1 for an example). In this
range, the target ranges for the hip and knee on the sagittal
plane vary depending on the FSM state, whereas the ranges
for the other DOFs are fixed. For example, the target swing
hip angle is set to have a positive value for the swing-up
state and a negative value for the swing-down state, which
results in flexion and extension of the swing hip, respectively.
This action range helps prevent the policy from being stuck
to the local minima during the learning process. Without the
action range, the policy only learns to stand still while slightly
moving body parts.

C. REWARD
The reward r is composed of five terms that allow the char-
acter to move forward while maintaining an upright posture
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TABLE 1. An examplar FSM-based action range for the Atlas character.
The character is in a standing position when the angle of all joints is 0°.
The sets of swing and stance leg joints are switched to the left or

right leg based on the FSM state.

Action range

Joint swing-up swing-down

(state 0, 2) (state 1, 3)
swing hip flexion(+) o _ono 200 _ °
/ extension(-) 07-90 307-0
swing knee flexion(-) o o oo
/ extension(+) -1007--70 2070
stance hip flexion(+) 30°—0°
/ extension(-)
stance knee flexion(-) 220°—0°
/ extension(+)
swing & stance hip -10° - 10°
abduction(+) / adduction(-)
swing & stance hip 2o _ 200
ext.(+) / int. rotation(-) 30730
swing & stance ankle s R
dorsi(+) / plantarflexion(-) -20°-20
swing & stance ankle 50 _50
inversion(+) / eversion(-)
back flexion(+) -30° — 30°
/ extension(-)

and satisfying the desired user-specified gait parameters with
minimum effort.

The first term Epyam penalizes the deviation in the
gait parameters of the current step from the desired gait
parameters:

Eparam = = |5 —my [ 3

where s, is the desired gait parameter vector and m,, is the gait
parameter vector measured from the simulation of the current
step.

The second term Ey, encourages the character to maintain
its upper-body upright:

Eup = Vroot * €vertical — I, 4

where Vro0t s the unit vector representing the current vertical
direction of the root link and €yepicar 1S the vertical axis vector
of the world frame.

The next term Efyq penalizes the deviation from the for-
ward direction:

Etwd = — |Clateral| , (5)

where claeral 1S the character’s pelvis position in the lateral
axis.

The effort term E¢r penalizes excessive joint torques dur-
ing the current step:

1
Ear=— /T Z 1ol dt, ©)

where i is the joint index, 7;(¢) is the torque for each joint at
time 7, and T is the time duration for the current step.
The total reward r is defined as follows:

r=(w Eparam + w2 Eup + w3 Efwd + w4 Eeff + Eqlive) - da,
(N

20666

where Ejjive 1S the alive bonus for an unterminated episode at
the current step and wy_4 are the weight for each term.

Reward scaling. In our formulation, the RL time step is
based on a step, not on a fixed-length time slot. One difficulty
with this is that the rewards from steps of different duration
are not evaluated equally in terms of the same simulation
time. Specifically, an agent taking more number of shorter
duration steps gains more reward than another agent with
less number of longer duration steps in episodes of the
same length. It means that sufficient rewards are given for
less-optimized shorter duration steps, compared to longer
steps, due to the higher number of steps. Thus, the policy
generates a less-optimized gait when instructed to generate
shorter steps.

The weighted sum of the rewards in Equation 7 is scaled
by the desired step duration d; to address this problem.
If the reward is not scaled by dy4, the cumulative reward
for an episode where d; is given small will be overrated.
For example, suppose that in two 5 second long episodes
with dy of 0.5 seconds for the episode e and 1 second for the
episode ey, all walking steps fully satisfy the given s, and the
weighted sum of the rewards for each step is 1. Scaling by d,
the reward for e is 5 = 1x0.5x(5/0.5) and thatforep is 5 =
1x1x(5/1) under the assumption that the discount factoris 1.
Without scaling, the reward for e; and e; is 10 = 1 x (5/0.5)
and ey is 5 = 1 x (5/1), respectively. Therefore, if d; is
small, the agent can obtain the same level of reward even if
the weighted sum of the rewards is smaller than when dj is
large. As aresult, the policy generates less-optimized motions
with respect to the reward terms in such cases. Scaling the
reward by d; allows us to equally evaluate the “quality” of
shorter and longer step duration steps in the same length of
simulation time.

An alternative is scaling the reward by the current step
duration measured from the simulation instead of its desired
value d;. This alternative, however, fails to make the policy
learn how to walk, probably because the learning process
focuses on creating long-duration steps in the short term.

D. NEURAL NETWORK TRAINING

The policy is represented by a deep neural network with three
fully-connected layers, where each hidden layer has 64 units.
We use the tanh activation for all hidden layers. The output
action is scaled to meet the FSM-based action range (Table 1)
based on the current state of the FSM. The value function
network has a structure identical to the policy network, except
for the output dimension of 1.

The PPO algorithm collects experience tuples to update
the policy and value network, from a number of episodes.
At the beginning of each episode, the character is initialized
to a standing pose with both arms down. The desired param-
eter s, is uniformly sampled from the predefined range at the
beginning of the episode and after 3 seconds, allowing the
policy to learn how to satisfy the variety of gait parameters
and transitions between them. The range of each desired
parameter should be reasonable, allowing it to be achieved
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by the character based on a learned policy. For example,
walking while satisfying both a desired short step duration
(e.g. 0.1s) and a desired long step length (e.g. 1.2 m) can be
physically difficult. Sampling such an unreasonable point in
the parameter space can only lead to waisted learning time.
We carefully set the range of parameters to [0, 0.5] for dg,
[da/3,da/3 + 0.2] for Iy, and [dy /4, da/4 + 0.15] for hy to
avoid such cases. The minimum and maximum values of d;,
la, and hy are used to normalize the gait parameter state s, for
network training. The dynamic state s; is normalized using
the joint angle and velocity limits of the simulated character.
The episode is terminated if the character is detected as falling
by checking the height of the pelvis, to discourage undesir-
able behaviors and collect more relevant tuples as discussed
in [6]. The maximum length of an episode is 6 seconds.

V. RESULTS

We use PyDart2 [27] for forward dynamics simulation with
a simulation frequency of 900 Hz. At each simulation time
step, the target swing hip angle in the queried action a is
adjusted by the balance feedback law (Equation 1). The
feedback gains ¢}, ¢,'¢, ¢, and ¢$°" are set to values
that allow the simulated character to walk steadily with our
implementation of SIMBICON. We found that the choice of
feedback gains is not a significant factor for the robustness of
our control policy if they are within a reasonable range. The
joint torques are computed from the adjusted target pose using
PD control at each simulation time step. Note that we use
PD control instead of stable PD [28] which is currently very
popular. The low-stiff nature of the FSM-based control algo-
rithm allows us to use more computationally efficient naive
PD control, as little effort is required to tune the PD gains and
time step size so that the controller can generate sufficient
torques to move the simulated character. Note that since
our SIMBICON implementation does not have any part for
adjusting the walking direction, the walking direction of the
SIMBICON-controlled character may change in certain cases
in the comparison results.

For DRL, we use an open-source implementation of the
PPO algorithm [29]. We use the Adam optimizer [30] to
update the network weights. The learning rates for the policy
and value networks are 1 x 10™* and a PPO clipping range
of 0.2 and a discount factor of 0.99 are used. Learning a
policy takes approximately 72 hours on a machine with a
16-core AMD Ryzen Threadripper 1950X CPU and Nvidia
Geforce RTX 2080 Ti GPU, with simulation running in par-
allel on 32 threads.

A. LEARNING “STANDARD” POLICIES

The Atlas character is used in most of our simulation results.
It has 33 DOFs including six unactuated DOFs with 28 links
of 120Kg in weight and 1.5 m in height. We use a publicly
available specification of the Atlas robot without a head [31]
and modify it to replace the inertia of the upper torso with the
no-backpack version inside the specification file. s; includes

VOLUME 9, 2021

the states of the root, lower-body joints, and back joint which
connects the root link and lower torso, and the position of five
end-effectors (the feet, hands, and upper torso). a, consists
of the target angles for the lower-body joints and back joint.
The target angles of the upper-body joints are fixed in an
upright position, except for the shoulder joints, where the
target angles are predefined for each FSM state to create a
slight arm swing movement. The FSM-based action range for
this chracter is listed in Table 1.

We refer to the policy learned using the components
described in the previous sections as the standard policy.
The balance feedback gains of ¢ = 0.5, &/ = 0.2,
" = 0.5, and ¢;" = 0.2 are used in the learning pro-
cess. All the policies used to create the results are learned
over 1050 iterations, and each iteration uses 16,384 expe-
rience tuples. If the evaluated cumulative rewards decrease
before 1050 iterations, we use the network with the highest
reward.

B. MANIPULATION OF DESIRED GAIT PARAMETERS

We verity the performance of the standard policy on varying
the desired gait parameters s,. In the accompanying video,
the desired and measured gait parameters are visualized
through the length of the colored bars (Figure 3).

step duraton

measured —_ !

desired —

. 14

desired //

measured

step length

FIGURE 3. Colored bars visualize the desired (bars with a tip) and
measured (bars without a tip) gait parameters. Measurements are taken
from the previous step simulation.

To create continuous changes in s;,, we use the increase &
decrease scenario where each parameter in s, is set to
the median of its range for 3 seconds, and then gradually
increases from the minimum to maximum and back again
to the minimum, for approximately 20 seconds. Under this
scenario, the policy allows the simulated character to walk
in a variety of ways, from short and quick steps to long and
slow steps. A user can also interactively change s, to change
the locomotion style of the simulated character. As shown in
the accompanying video, the simulated character can walk
steadily while changing its gait style as directed by the
user.

20667



IEEE Access

G.-C. Kang, Y. Lee: FSM-Based Motion-Free Learning of Biped Walking

C. EXTERNAL PUSHES
We investigate the robustness of the learned policy with two
types of push tests.

We apply pushes of 500 N with a duration of 0.1 seconds at
the torso from the front, rear, right, and left directions. A push
is applied every ten steps when a transition from state O to
1 occurs. The standard policy allows the simulated character
to continue walking while interactively changing the desired
gait parameters with these unexpected external pushes.

We compare the push-recovery capability of our stan-
dard policy and our implementation of SIMBICON. Our
SIMBICON implementation uses the same set of balance
feedback gains as those used in the standard policy. The
parameter s, for the standard policy is given consistently
to produce a gait that is similar to that of SIMBICON. The
600 N, 800N, 1000 N, and 1200 N external pushes, which last
0.1 seconds each, are applied to the back of the character con-
trolled by each controller every 10 to 15 seconds, providing
sufficient time to restore the balance and stabilize the cycles.

Table 2 summarizes the comparison results. Our policy
starts to fail from 1200 N, while SIMBICON starts to fail
from 800 N with the identical feedback gains. For the 1200 N
pushes, ours withstands one push and fails on the second
push but SIMBICON fails on the first push. The measured
rate of step frequency increase indicates that the ability to
adjust step frequency contributes this robustness. For all mag-
nitude pushing force, the step frequency increase rate of our
policy is higher than that of SIMBICON, meaning that our
policy increases the number of steps more than SIMBICON to
avoid falling down. The reason is that our policy can directly
increase the step frequency by selecting a smaller a;, whereas
SIMBICON only responds by flexing the swing hip joint
further based on its balance feedback law and thus adjusts
the step frequency indirectly. Another observation is that the
step frequency increase rate increases as the pushing force
increases for the both controllers. If the force is weak, the step
frequency may rather decrease. However, it is the same that
the increase rate increases as the force gets stronger. It can be
seen that our controller shows a higher rate of increase overall
and responds effectively to external force.

TABLE 2. Comparison of our standard policy and SIMBICON on the push
tests. The step frequency increase rate is measured on the first push of
each test, using the time to take five steps before and after the push.
Note that there is no measurement for SIMBICON with 1200 N push
because the character falls down right after the first push.

Number of pushes until the character falls
Controller (Step frequency increase rate after a push)
600 N 800 N 1000 N 1200 N
Ours Not falls Not falls Not falls 2
(-8.47%) (3.52%) | (15.26%) | (25.0%)
Not falls 2 2 1
SIMBICON (-25.16%) | (-1.64%) | (11.51%) (N/A)

This observation indicates that the balance feedback is only
a part of the push-recovery capability of our policy. This
implies that, despite the absence of external pushes during
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the learning process, our policy learns to find actions that help
maintain balance by referring only to the character state at the
beginning of each locomotion step.

D. BALANCE FEEDBACK

We first test the sets of feedback gains that are different from
those used in the learning process of the standard policy in
order to examine the resilience to changes in the feedback
gains. Then we investigates the contribution of the balance
feedback.

First, we apply the scaled balance feedback gains of 0.4,
0.6,0.8,1.2, 1.4, and 1.6 times that used to learn our standard
policy, to the simulated character that is controlled by the
standard policy (Table 3). We use the increase & decrease
scenario to test the robustness at various gaits. The character
simulated with 0.4x feedback gains falls quickly (within
about 5.3 s), but walks longer as the gain increases. It can con-
tinue walking without falling using the feedback gains scaled
by factors of 1.2x and 1.4x. As shown in the accompanying
video, both successful feedback gains lead to similar gaits.
This means that our policy can successfully find a target pose
that compensates for the excessive movement of the swing
leg due to the large feedback gain, to create a stable gait and
maintain balance.

TABLE 3. Resilience of our standard policy to the scaled balance
feedback gains of 0.4, 0.6, 0.8, 1.2, 1.4, and 1.6 times that used
to learn the policy under the increase & decrease scenario.

The amount of time until the character falls (sec)

0.4x 0.6x 0.8x 1.2x 1.4x 1.6x
5.29 11.73 20.06 Not Not 16.83
falls falls

Second, we compare our standard policy and SIMBICON
with the same set of the scaled feedback gains from 0.8x
to 1.6x (Table 4). Again, s, for the standard policy is set
to produce a gait similar to that of SIMBICON. Although
SIMBICON can balance a few more seconds (15.16s) over
our standard policy (11.46s) for 0.8x feedback gains,
the standard policy can maintain balance with a wider range
(1.2x-1.6x) of feedback gains than SIMBICON (1.2x-
1.4x) over the long run. Note that the standard policy is
successful over a wider range of feedback gains than that in
the first test because of the fixed s,.

TABLE 4. Comparison of our standard policy and SIMBICON on the
scaled balance feedback gains.

The amount of time until the character falls (sec)
0.8x 1.2x 1.4x 1.6x
Ours 11.46 Not falls Not falls Not falls
SIMBICON | 15.16 Not falls Not falls 53

Controller

Lastly, we investigate the contribution of the balance feed-
back law for maintaining balance. In the RL formulation
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where the state is only updated at the beginning of each loco-
motion step, the ability of the policy to maintain balance is
limited because it is difficult for the character to react to state
changes in the middle of a step. To investigate this aspect,
we train two policies: the no-feedback policy that is learned
without the balance feedback (using O for the feedback gains)
and the no-feedback-swingup policy that is learned with the
balance feedback disabled only in the swing-up states. Specif-
ically, in the no-feedback-swingup policy, the state changes
during a step are expected to be addressed by the balance
feedback in swing-down states.

The learning curves of the policies are shown
in Figure 4, which shows the average return of 10 test
episodes. Notably, the no-feedback-swingup policy learns
faster than the no-feedback policy, meaning that using the
balance feedback only in swing-down states helps the char-
acter quickly learn how to walk. However, the no-feedback-
swingup policy achieves a lower return than the standard
policy. As a result, as shown in the accompanying video,
not using the balance feedback at all or using it only in
swing-down states is not enough to learn a stable walking
controller. Indeed, both of the policies cannot maintain bal-
ance for a long time, even if they learn more than twice the
standard policy.

—— standard
no-feedback
—— no-feedback-swingup

144

12 4

101

Return

T T T T
400 600 800 1000
Iteration

T
0 200

FIGURE 4. Learning curves for the standard, no-feedback, and
no-feedback-swingup policies.

From the comparison with SIMBICON for external pushes
and scaled feedback gains, we can see that a policy that
takes only the character state at the beginning of a step can
contribute to maintaining balance. The ablation studies for
the balance feedback, however, shows that such a policy
alone without the balance feedback has difficulty taking full
responsibility for balancing. This means that FSM-based pol-
icy learning and simple linear balance feedback complement
each other to produce a more robust locomotion controller.

E. ABLATION STUDIES
We perform ablation studies to investigate the effectiveness
of our major design decisions.

VOLUME 9, 2021

Learning without the FSM-based action range results in
the no-action-range policy that cannot make the simulated
character walk. Nevertheless, Figure 5 shows that the no-
action-range policy learns faster in the early stages than the
standard policy. This is because learning to stand still without
falling is easier than learning to balance while taking steps.
Although the no-action-range policy quickly learns how to
not fall down, it only achieves a fairly lower return (about 7)
than the standard policy (over 10) because it does not satisfy
the desired parameters s, at all. As a result, the character
just maintains a standing position by slightly moving its body
parts (Figure 6, second row). Unlike the previous DRL-based
controllers that use reference motions, which learn to perform
the desired behavior effectively by preferentially exploring
the states around the reference motion, our controller does
not have any reference motion to track. Thus, it is easy to fall
into the local minima without any additional effort, such as
designing more sophisticated rewards. The FSM-based action
range provides a simple and effective way to create a success-
ful gait without falling into the local minima, by specifying
the range of possible actions according to the nature of each
FSM state.

14 4 —— standard
no-action-range
—— SIMBICON-stancehip
124 —— fixed-duration
101
c
S 89
D 4
o !
6 o
4
2 o
0 T T T T T
0 200 400 600 800 1000

Iteration

FIGURE 5. Learning curves for the standard, no-action-range,
SIMBICON-stancehip, and fixed-duration policies.

The SIMBICON-stancehip policy is learned using
SIMBICON-style stance hip torque calculation (see
Section III) instead of computing it from the target angle
output by the policy network. Interestingly, the return from
the SIMBICON-stancehip policy shows a value of around 4
from the beginning, and achieves near-peak values much
faster than the standard policy (Figure 5). This implies that
the SIMBICON’s stance hip torque computation is advanta-
geous for quickly finding a way to walk without falling down,
which is probably why it could be successfully applied to the
original work that manually tunes the control parameters [3].
However, this strategy turns out to produce a less natural,
marching-like gait when applied to our framework, and the
maximum return is lower than that of the standard policy. The
learned policy generates a SIMBICON-like gait that shows a
quick swing down of the swing leg (Figure 6, third row). It is
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FIGURE 6. The simulated results of the standard, no-action-range,
SIMBICON-stancehip, and fixed-duration policies (top to bottom). The
images are captured at 0.133 second time intervals for each column.

interesting to note that the change in stance hip control leads
to a change in swing-down movement. This result implies that
the movement of the stance hip can be an important factor in
the natural movement of the swing leg.

The fixed-duration policy is learned using a fixed duration
of 0.3 seconds for the swing-up states, as in SIMBICON.
This policy learns much slower than the standard policy or
aforementioned two variants of the policy (Figure 5). The
learned policy can make the character walk but with an exag-
gerated lateral movement of the upper-body and the simulated
step duration is almost constant regardless of the desired step
duration (Figure 6, fourth row). As described in Section III,
the introduction of the swing-up state duration as an action
allows the character to demonstrate various walking styles.

F. REWARD SCALING

To investigate the effect of reward scaling by d; (Equation 7),
we examine two policies: a policy learned with reward scaling
using the simulated step duration instead of desired duration,
and a policy learned without reward scaling.

It may seem more reasonable to use the simulated step
duration to eliminate the difference in the reward evaluation
based on the duration of a single step. However, the reward-
sim-duration policy learned using the simulated step duration
cannot make the character walk. This is probably because the
learning process focuses on creating long-duration steps in
the short term and, as a result, fails to learn how to balance,
because the simulated duration multiplied by the reward dom-
inates the other reward terms and the output action directly
affects the simulated duration.
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Without reward scaling, the no-reward-scaling policy can-
not sufficiently learn to satisfy the small d; (Figure 7). We test
this policy under a scenario in which each item of s, is
given as a minimum, which means that the desired gait is
walking with quick steps of a fairly short step duration.
The no-reward-scaling policy does not sufficiently satisfy
the given s, whereas the standard policy does satisfy it and
produces a stable and sustained gait.

FIGURE 7. Standard (top), no-reward-scaling (bottom) policies with the
minimum desired gait parameters. The images are captured at
0.133 second time intervals for each column.

Addtionally, we tested the number of steps for reward
scaling in the early stage of the study. But we found that
multiplying the number of steps guides the policy to always
generate quick and short steps because it dominates the
reward overwhelmingly over the others. The policy also failed
to learn to walk with rewards divided by the number of steps
as there was no incentive for long walks. Even if the agent
walks one or two steps and falls early, it is well rewarded for
achieving the desired parameters of that one or two steps.

G. MORE CHARACTERS

We train the standard policies for two more characters
(Figure 8). The same balance feedback gains used for the
Atlas character are also used for these two characters. The
trained policies control these characters to walk stably.

v

®

\

@

o™
e &=

FIGURE 8. The Humanoid (left) and Simple biped (right) characters.

The Humanoid character is similar to the one used in [32].
It has 42 DOFs with 15 links of 95 Kg. s; and a,, are designed
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similar to those of the Atlas character and the target angles of
the remaining upper-body joints are defined in the same way
as the Atlas. This character uses the same FSM-based action
range as the Atlas character.

The Simple biped character has 18 DOFs with 7 links of
70 Kg. s includes the states of the root and lower-body joints
and the position of two end-effectors (the left and right feet).
a,, consists of the target angles for the lower-body joints. This
character uses the same FSM-based action range as the Atlas
character except for the action range of the back joint.

VI. LIMITATIONS

As shown in the accompanying video, the learned policy does
not create a gait that matches the given desired gait parame-
ters very accurately. We guess one of the reasons for this is
that the policy network outputs the target pose to achieve the
desired gait parameters, but it is further modified by the bal-
ance feedback. It is possible that action selection based on the
character state at the beginning of a step may not sufficiently
consider the future modification of the target pose. It would
be helpful to apply strong levels of balance feedback when
there are external perturbations, and weak feedback when
maintaining a steady walking state to prioritize achieving the
desired parameters. As another reason, the proposed reward
scaling method can ‘“‘balance” the rewards of steps with
different duration, but cannot prevent the policy from taking
shorter steps to create a greater number of steps during a
given simulation time. To handle this problem, we need to
consider further how to reflect the simulated step duration
in the reward so that the policy does not learn only how to
increase the simulated duration of the current step.

We manually set the range of the desired gait parameters
to avoid spending time learning impossible combinations of
parameters and to reflect the correlation between the parame-
ters in an actual human step. Methods to automatically deter-
mine which part of the parameter space to learn intensively,
such as adaptive sampling [7], [24] or curriculum learning
in the parameter space [12], could be a more generalized
approach to tackle this issue. Another possible approach
is to sample feasible sets of gait parameters according to
the distribution of the gait analysis data of human subjects
publicly available from a previous study [33]. By adopting
these methods, the agent can effectively explore the gait
parameter space during the learning process, which will give
us more control over the simulated character with more gait
parameters, such as the facing or moving direction.

It is difficult to directly compare the learning speed of
other DRL-based methods with ours because there are many
different factors such as algorithms, hyperparameters, envi-
ronments, PL for implementation, simulation time length of
an experience tuple and so on. However, the number of expe-
rience tuples is comparable with other motion-free methods
(Ours: about 1.7x 107, Peng et al. [26]: 1 x 107, Xie et al. [12]:
6x107, Yueral. [10]: 1x 107 to 3x 107), which means that the
data efficiency is similar to that of previous studies. However,
it is also true that the wall time is longer than that in the other
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studies (Ours: about 72 hours, Peng et al. [26]: 20 hours,
Xie et al. [12]: 12 to 24 hours, Yu et al. [10]: 4 to 15 hours).
This may be partly due to the fact that all of the code is written
in Python and is insufficiently optimized, and thus unnec-
essary calculations may waste time in collecting experience
tuples. Insufficiently tuned hyperparameters within a limited
time could also have an effect.

VII. CONCLUSION AND FUTURE WORK

We presented a DRL framework for learning a FSM-based
policy that produces diverse gait styles, as directed by
user-specified gait parameters. Whereas most of the previ-
ous DRL-based controllers are trained to find actions for
all phases across a locomotion cycle, our approach allows
the agent to learn actions for only two moments in a cycle,
the beginning of each step. This characteristic, along with the
feedback law embedded in the FSM-based control algorithm,
allows our policy to learn robust locomotion. The learned
policy allows the simulated character to walk as instructed
even by the continuously changing gait parameters while
responding to external perturbations.

We think that applying additional objectives to the reward,
such as minimizing head movements or angular momen-
tum [15], could improve the quality of the motions generated
by our learned controller. Replacing a rigid-body articulated
model with a full-body musculoskeletal model [34], [35] and
learning the activation of all muscle-tendon units would result
in a control policy that is more energy-efficient in terms of
metabolic energy expenditure. Efficient motion-free learning
of an energy-efficient locomotion policy that can control a
wider range of gait parameters will be an interesting future
research topic.
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