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ABSTRACT In this paper, we present a novel Byzantine fault-tolerant consensus protocol for sharded
blockchain networks that does not rely on expensive leader-driven communication. The proposed protocol
selects a single block proposer at a time and uses threshold signatures as a voting mechanism to confirm the
validity of the proposed block. By using a gossip-like communication scheme, each node can collect and
recover the group signature within O(logN ) steps. With only one block proposer per consensus round, there
is no possibility of conflicting blocks and resultant forks. Therefore, our consensus protocol requires only
one round of one-way communication to achieve finality for each block. Our protocol guarantees safety and
liveness while tolerating up to f faulty participants among 2f + 1 nodes. Our performance study shows that
the proposed protocol enables hundreds of nodes to participate in the agreement process, and can finalize
large blocks in approximately 10 seconds.

INDEX TERMS Blockchain, Byzantine fault tolerance, consensus, transaction processing.

I. INTRODUCTION
In recent years, the popularity of blockchain technology has
increased at an unprecedented rate. This surge is partially
caused by the boom of cryptocurrencies such as Bitcoin [1],
Ethereum [2], and Ripple [3]. Although cryptocurrency is
currently one of the most important use cases, blockchains
can also be applied to supply chain management, healthcare,
smart factories, and digital content management [4]. Compa-
nies and developers are coming up with different use cases
and ideas wherein the distributed ledger technology could
provide a viable solution to key fundamental problems of data
immutability, replication, and security.

A consensus protocol is an important foundation on which
to build blockchain systems. With an adequate consensus
scheme in place, a blockchain system should be able to tol-
erate some faults without disturbing the process of reaching
consensus on new blocks. Depending on the use cases, two
approaches for blockchains exist: permissioned and permis-
sionless. Nodes in a permissioned blockchain system require
prior approval to join the network, whereas a permissionless
blockchain allows anyone to participate in the network.
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Several consensus protocols have been proposed in recent
years. The most widely-used consensus scheme for permis-
sionless blockchains is proof of work (PoW), which offers
good scalability to suit the open membership requirement of
permissionless blockchains such as Bitcoin and Ethereum.
By contrast, Byzantine fault tolerance (BFT) protocols are
the technology of choice for permissioned blockchains. Sev-
eral protocols have been proposed in recent years to over-
come the performance and scalability limitations of previous
BFT-based protocols, while maintaining resilience and secu-
rity guarantees [5], [6]. Some of the most prominent include
Zyzzyva [7], AZyzzyva [8], SBFT [9], and Tendermint [10].

Despite recent drastic advancements, blockchain technol-
ogy still faces several technical challenges to realize its initial
vision, including the attainment of a high transaction pro-
cessing performance necessary for real-world applications.
This problem can be mitigated by using sharded consensus
schemes, allowing independent transactions to be distributed
across a set of shards and processed in parallel [11]. Agree-
ment within a shard is locally managed via an intra-shard
consensus protocol, whereas global consensus is achieved by
an inter-shard protocol. Thus, sharding-based approaches can
achieve a high-performance standard of several thousands of
transactions per second (TPS).
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This paper presents a new protocol used for intra-shard
consensus as part of our long-term efforts to devise a high-
performance sharding protocol. Our ultimate goal of devel-
oping a high-throughput sharded blockchain technology is
carefully considered when designing the first phase of our
novel intra-shard consensus protocol. To ensure the network
scalability of blockchain systems, individual shards should be
able to host a given population. State-of-the-art technologies,
such as Elastico [12], OmniLedger [13], RapidChain [14],
Harmony [15], and Monoxide [16], typically target the shard
size of hundreds of nodes. Therefore, our intra-shard proto-
col is designed to accommodate several hundreds of nodes
per shard. A high adversarial power tolerance per shard,
together with an adequate reorganization protocol, are key
ingredients to ensure the security of the overall sharded net-
work. Moreover, we aim to provide low block confirmation
latency.

We propose Concordia, a BFT protocol for sharded
blockchain systems that is geared towards streamlined pro-
cessing of blocks. The operation of the consensus protocol
is organized in rounds. To create a block for each round,
a single block proposer is selected in a random and non-
interactive manner, meaning that consensus participants can
determine the identity of the next block proposer without
communicating with one another. Additionally, the proto-
col uses a threshold Boneh-Lynn-Shacham (BLS) signature
scheme [17] as the votingmechanism for the network to agree
on a valid block. To minimize the finalization time, each
block is finalized by only one round of signing. Correct nodes
can then obtain sufficient signature shares to validate a block
within O(logN ) steps and combine them into a single unique
group signature, requiring only one signature validation to
verify the block.

We make the following key contributions:
• We allow hundreds of nodes to participate in a consensus
process by using a threshold BLS signature combined
with a gossip communication method.

• The process of block finalization can be completed by
only one round of signature share exchanges. Thus, our
protocol provides strong consistency with a transaction
confirmation latency of approximately 10 seconds.

• Our protocol guarantees safety and liveness to the cor-
rect nodes as long as the adversary controls less than
50% of the voting power.

• The operation of our protocol is made smooth and seam-
less by eliminating costly view changes.

The reminder of this paper is organized as follows. In the
next section, we briefly discuss the technological background
of our work. Section III presents the overall design of Con-
cordia with a detailed description of its key components.
After presenting the basic security analysis of our protocol in
Section IV, we report and discuss our performance evaluation
results in Section V. Section VI summarizes the related and
future works. Finally, Section VII draws the conclusion for
this paper.

II. BACKGROUND
In this section, we review the technical background for our
proposed protocol, including sharded consensus networks,
fault-tolerancemodels, and signature aggregation techniques.

A. SHARDING
The most promising solution to the scalability problems of
blockchain systems is sharding. With this approach, the net-
work is divided into smaller groups (or shards), allowing each
of them to validate independent blocks. Thus, the process of
validating transactions is parallelized, and the throughput
of the system increases proportionally with the number of
shards, making the system scalable. Although this promising
mechanism appears to solve most current protocol problems,
it introduces additional issues that require completely new
approaches and solutions. The major requirements to build
a sharding protocol are:
• A method to create shards and reorganize nodes across
them, to ensure that the security of each shard is never
compromised, as well as a Sybil-resistant method to
generate identities.

• A consensus protocol to confirm blocks in parallel on
each shard, also referred to as an intra-shard consensus
protocol.

• A method to validate transactions that involve infor-
mation stored on ledgers managed by different shards.
These are referred to as ‘‘cross-shard transactions.’’

• A communication protocol to propagate blocks and
transactions between nodes of the same shard and across
shards.

All modules of the protocol must work in harmony with
others to obtain a reliable, fast, and secure protocol, capable
of scaling up the throughput of blockchain systems and open
a new broad range of applications. The work presented in
this paper mainly focuses on the creation of an intra-shard
consensus protocol to propose a solution to one of the key
components of sharding blockchain consensus protocols. The
remaining aspects will addressed in the future to eventually
create a high-performance blockchain sharding consensus
protocol built with Concordia.

B. FAULT TOLERANCE
Permissioned blockchains employ distributed consensus pro-
tocols that are based on an adversary model different from
that of mining-based consensus protocols. An attacker might
be able to prevent the network from reaching consensus by
disrupting communications among the nodes. Lamport [18]
established that, to tolerate f non-Byzantine faults, the net-
work should accommodate at least 2f + 1 replicas. Castro
and Liskov [19] showed that a total of 3f + 1 replicas
are needed to be able to tolerate Byzantine faults. These
thresholds have been proven, and together with the network
model, they establish the rules and limitations of distributed
consensus systems. The practical BFT (PBFT) protocol relies
on a weak synchronous network for liveness; however, when
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considering practical deployments, its adversary model is
considered as too strong, because malicious Byzantine fault
nodes rarely cause the entire network to break down. Thus,
a cross-fault-tolerant (XFT) protocol [20] was proposed
based on a more realistic model that provides safety and
liveness to the system. Byzantine faults are allowed to occur
in the network, while a majority of the nodes are able to
communicate synchronously.

C. THRESHOLD SIGNATURE SCHEME FOR SCALIBILITY
Threshold signature schemes can help consensus protocols
scale for larger-sized networks. Several distinct partial signa-
tures can be aggregated into a single signature so that multiple
proofs can be verified in a single operation.

The BLS signature scheme [21] utilizes the gap Diffie-
Hellman (GDH) groups, where the computational Diffie-
Hellman problem is hard, but the decisional Diffie–Hellman
problem is easy. The BLS signature scheme provides the
signature generation algorithm and the verification based on
a GDH group, G1, of prime order p1 and a generator, g1.
Generator g1, order p1, and a description of hash function
H are together considered as the global information. With
a key pair (ski, pki) for each party, signature σi of message
M is computed as H(M )ski . To verify the signature, the veri-
fier must check whether (g1, pki,H(M ), σi) is a valid Diffie-
Hellman tuple.

Derived from BLS, the threshold BLS signature
scheme [17] works in a non-interactive and leaderless way
since the signature share generation is congruent with BLS,
and the result of group signature recovery is a process of
calculating without interaction. The threshold BLS signa-
ture scheme consists of three algorithms: a key generation
algorithm, a signature generation algorithm, and a verifi-
cation algorithm. The key generation algorithm provides a
way to distribute the necessary keys to participants using a
distributed key generation (DKG) protocol. The signature
generation algorithm contains a signature share generation
protocol, which is the same as the BLS signature scheme
and a group signature recovery protocol, where the output
is the ‘‘Lagrange interpolation’’ of the signature shares. The
verification algorithm is identical to the BLS verification
algorithm, but using the group public key generated by the
DKG algorithm.

The key generation algorithm of the threshold BLS signa-
ture scheme we utilized is a discrete log-based DKG pro-
tocol [22]. This protocol outputs a private-public key pair
(ski, pki) for each party, and a group public key, pk , to verify
the generated group signature. To run a discrete log-based
DKG, a cyclic group, G2, of prime order p2 with a particular
generator, g2, is needed. Each node selects a random poly-
nomial, zi, and distributes the polynomial among n nodes.
The secret shares of each node si used to recover the unique
value s, are a pre-decided linear combination of zi. The group
public key, g2s, will be used to verify the group signature.
The execution of the DKG protocol takes time; however,
the protocol does not run frequently.

To accommodate a larger number of nodes into a consen-
sus network, we combine a t-of-n BLS threshold signature
scheme with a gossip-like communication protocol. Con-
sequently, our consensus protocol reduces the communica-
tion complexity substantially. As presented in the following
section, the aggregated signature is also utilized as the key
component for the randomness generation in our protocol,
serving as a verifiable random function to randomly select
a block proposer. Since the signature aggregation can be
performed by any participant, the responsibility of the block
proposer is limited to proposing a block. It is noteworthy that,
unlike in our proposal, leaders in other consensus protocols
are typically tasked with driving the entire communication
and consensus process.

III. CONCORDIA CONSENSUS PROTOCOL
We designed Concordia to be a protocol that streamlines the
process of reaching consensus on new blocks. We achieve
this goal by removing unnecessary complexity derived from
unrealistic assumptions, and dispensing with expensive fault
detection and view-change mechanisms, in exchange for
a straightforward protocol that achieves great performance
while ensuring security. We realize this vision by designing
a new accelerated voting mechanism using aggregated sig-
natures integrated with the gossip communication protocol,
together with a random block proposer selection method that
inherently prevents the formation of forks.

To create a highly efficient protocol, all steps and modules
of the protocol work together in a seamless manner. The
verification process is conducted by relaying signature shares
using a gossip-based messaging protocol. As the signature
shares for a block proposal propagate through the network,
they are recovered into the group signature that serves as the
block confirmation. The group signature is then utilized as
a randomness source to select a block proposer for the next
round. Thus, all components of our protocol are coherently
integrated with each another.

Concordia is designed to be used in networks where all
nodes are connected by a broadcast channel as well as reliable
point-to-point channels. The protocol provides safety and
liveness guarantees as long as more than f + 1 nodes are
correct and synchronous, where message exchanges between
two correct nodes are delivered and processed within delay
1. Additionally, we assume that the adversary is compu-
tationally bounded. Hence, it cannot break cryptography
algorithms’ security, including digital signatures and hash
functions.

A. OVERALL ARCHITECTURE
In general, permissioned consensus protocols can yield
higher transaction throughput than their permissionless coun-
terparts, but are limited to small-sized networks, owing to
their high communication complexity. Having small net-
works makes the system more vulnerable to adversarial
attacks such as Sybil or targeted attacks. These factors are the
opposite in the case of permissionless blockchain networks.
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FIGURE 1. Sharding-based consensus network architecture.

To reap the best of both worlds, hybrid consensus has been
proposed by which consensus committee members are ran-
domly selected among permissionless network nodes to run
a fast permissioned Byzantine agreement in each commit-
tee [23]. Various methods have been explored to establish
Sybil-attack-resistant identities, including a PoW scheme or a
cryptographic sortition function [12], [13], [24]–[27]. Thus,
the fast performance of permissioned consensus protocols
could be achieved without sacrificing the security and scal-
ability of permissionless open-membership networks. A sim-
ilar approach is adopted in our work.

As shown in Fig. 1, Concordia is designed to work in a per-
missioned environment that can be enabled by a management
layer that splits the network into synchronous committees,
forming parallel shards. The network is organized into a set
of consensus committees responsible for a segment of the
ledger where they process transactions independently using
Concordia. The systemworkswith an additionalmanagement
layer that produces identity blocks, that contain the identities
of all participants and the consensus shard to which they are
assigned to. When an identity block is created, it is relayed
across the network and is appended to each shard’s chain by
committing it together with the immediate next transaction
block. This event marks the beginning of a new epoch for
the entire system, with following transaction blocks being
derived from the fresh epoch randomness. An epoch is a time
period during which shard memberships are fixed, and nodes
cannot leave or join consensus shards. Thus, the sharding
management layer allows shards to implement a permis-
sioned consensus blockchain like Concordia, whereas the
overall system is open to any participant that can submit a
join request to the identity generation module.

A new node that wants to join the system, submits a Sybil-
attack-resistant proof, such as a PoW puzzle or a proof of
locked funds, to the sharding management layer. If the sub-
mitted proof is valid, the identity is added to the following
identity block. The shard assignation and reorganization is
performed in a random and progressive manner based on
the randomness generated on the previous epoch by the

FIGURE 2. Main components of Concordia.

sharding management layer. In other words, only a portion
of nodes are commanded to migrate to other shards to pre-
vent nodes from having to download new ledgers frequently.
There are several works on dynamic committee formation.
In Elastico [12], committee membership is based on the result
of a PoW puzzle, and in RapidChain [14], there is a reference
committee that randomly maps identities to shards using the
Cuckoo rule [28] to protect against slowly adaptive Byzantine
adversary.

B. CONCORDIA PROTOCOL
We aim to build a protocol that allows hundreds of nodes
to participate in the consensus procedure while offering low
finality latency. The consensus protocol proceeds in sequen-
tial rounds. Each round, a random block proposer is selected;
then, every participant is allowed to vote once, where the
signature share of the participant on the block is counted as a
vote for the validity of the block. As illustrated in Fig. 2, our
protocol consists of four main components.

• A distributed randomness generation scheme based on
the threshold signature generated in the immediately
previous round.

• A block proposer selection scheme based on the gener-
ated random seed.

• An accelerated block verification process embedded
with a gossip communication protocol.

• An efficient group signature recovery scheme, where the
group signature is the proof of block finalization.

The beginning of the consensus protocol starts with the
generation of key shares for all nodes; subsequently, the pro-
tocol proceeds in sequential rounds. Each round operates as
follows.

1) Nodes independently generate the round randomness
based on the collective signature of the last block.

2) Based on the round randomness, a block proposer is
selected.

3) The block proposer generates a block and gossips it to
all other nodes in the network.

4) As nodes receive the block proposal, they execute
the block verification and finalization process by
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appending their signature shares to the valid block and
gossiping newly received valid signatures.

5) When a node receives enough signatures (more than the
threshold), it recovers the group signature as the proof
of finalization of the block.

6) Nodes that (a) gather enough shares and recover the
final signature or (b) receive the finalized block with
the group signature, will gossip one last whisper with
the finalized block.

7) When nodes receive or generate the group signature,
they compute a new round randomness, triggering the
start of the next round.

Algorithm 1 Consensus Round Loop

while true do
// Iteration for round r ;
Rndr = GenerateRoundRandomness(r , σr−1);
Bpp = PickBlockProposer(Rndr );
if me = Bpp then

Br = GenerateBlockProposal(Br−1, data);
Gossip(Br );

// Block verification and finalization loop;
while !finalized do

sigShares, groupSig, Br = RcvNewInputs();
// ** Check if the block is legal;
if isValid(groupSig) then

σr = groupSig;
Gossip(Br , σr );
finalized = true;

else if count(sigShares) > f + 1 then
σr = RecoverGroupSig(sigShares);
Gossip(Br , σr );
finalized = true;

else
sigShares = AppendOwnSignature(Br );
Gossip(Br , sigShares);

r = r + 1;

The operation of the protocol is also presented in Alg. 1,
showing the process that needs to be executed to complete
each round of consensus. Further details for every stage are
described in the following subsections, where we present
our protocol step-by-step. We address the challenge of block
proposer determination in addition to block verification and
finalization to guarantee the safety of the system. The oper-
ation of our protocol is smooth and seamless even in the
presence of an adversary.

C. PROTOCOL SETUP
For a node to start processing transactions and validating
blocks, it needs a self-generated Rivest-Shamir-Adleman
(RSA) key pair that each node submits to the management
layer, as well as a private key share to execute the BLS

FIGURE 3. Calculation of each round randomness.

threshold signature scheme. Identities are provided by con-
sulting the identity block generated in each epoch and, using a
peer-discovery algorithm, participants in the same committee
are able to have network connectivity with each other. To gen-
erate the key shares for block validation, the committee needs
to run a DKG algorithm to generate the BLS key shares in a
decentralized manner.

We choose the threshold GDH signature scheme [17] for
partial signature share generation and aggregated signature
reconstruction, which is specifically based on the BLS signa-
ture scheme [21]. Our protocol makes use of three relevant
functions of the threshold BLS signature scheme: a signature
method to generate partial signature shares, a recovery algo-
rithm that reconstructs the full signature from a threshold of
signature shares, and a verify function to both validate the
signature shares and the full signature. Throughout the paper,
the signature recovery algorithm is used interchangeably with
signature aggregation. To generate and distribute the neces-
sary keys for the participants, we make use a previous study
that allowed a set of n parties to jointly generate a pair of
public and private keys without a trusted party [22].

D. DISTRIBUTED RANDOMNESS GENERATION
The distributed randomness generation protocol should
enable the participants to jointly produce an output that is ver-
ifiable, unbiased, and unpredictable across the system. To sat-
isfy this requirement, the distributed randomness generation
is built upon a secure and robust threshold BLS signature
scheme, which can tolerate any f malicious parties among
2f + 1 [17].
When the participants of the consensus procedure in the

current round receive the group signature, σr , they execute the
distributed randomness generation protocol to generate round
randomness Rndr+1 for the next round. As shown in Fig. 3,
we use the group signature, σr , of the current round as a
source of randomness, and combine it with the previous round
randomness, Rndr . For simplicity, the round randomness for
the very first round, denoted as Rnd0, is set to be the hash
value of the ‘‘genesis block’’. In subsequent rounds, Rndr+1
is calculated as the hash value of Rndr concatenated with the
group signature, σr . The calculation is performed as in (1).

Rndr+1 = H(Rndr || σr ) (1)

Concordia is robust, meaning that an adversary cannot
prevent the protocol from reaching consensus. Based on
the assumption that the majority of the nodes behave syn-
chronously, the required threshold of the signature scheme
is always satisfied. Thus, the recovery of the group signature
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FIGURE 4. Selection of a block proposer for round r .

for each round is unpreventable. The group signature will be
generated by all correct parties or received with very high
probability through the gossip protocol.

Furthermore, the output of the protocol is unpredictable
and unbiasable, whereas the result of the generation is con-
sistent. Rndr is a pre-known parameter; however, the group
signature, σr , is not revealed until the end of round r , making
it impossible to predict ahead of time. Even if one of the par-
ticipants finishes before the others and is the first to recover
σr , the node cannot temper the result of the recovery. The gen-
eration of Rndr+1 is computed based on verifiable common
inputs, guaranteeing that the output is always consistent.

Another benefit of this method is that upon receiving
the valid group signature, σr , the generation of Rndr+1 is
non-interactive, enabling nodes to swiftly start the following
round with no further communication.

E. BLOCK PROPOSER SELECTION
After execution of the key generation protocol, each node
has a public-private key pair, < PKi,SKi >, to sign and
verify messages in which the public key is known by all
nodes in the system. Before participating in the consensus
protocol, the nodes exchange the public keys as the identities
of participants. When a node gets the list of public keys,
the identities are ordered based on the public key hash value
from low to high. Thus, as illustrated in Fig. 4, all participants
have the same view of the list of the public keys with the
owner’s index.

The legal block proposer is chosen from the node list.
The participants determine the block proposer position, Bpp,
in the public key ordered list based on the round randomness,
Rndr. The block proposer position, Bpp, can be calculated
using (2), where m is the total number of nodes.

Bpp = Rndr mod (m− 1) (2)

The selection of the block proposer is based on Rndr
which, as introduced before, is unbiased and unpredictable.
As a result, the block proposer is determined in a secure
and random manner. Additionally, similar to how the round
randomness is generated, the settlement of the block proposer
is calculated by each node independently. Since the inputs for
the Bpp calculation are identical for all nodes participating
in the consensus, the result is consistent and can be easily

verified with the block proposer’s signature attached on the
proposed block.

The node whose identity corresponds to Bpp is selected
as the legal block proposer for the current round. The block
proposer gathers transactions to generate a block represented
by tuple (r, p, σr,Bpp, root, d), where r is the round number,
p is the hash pointer to the previous block, root is the Merkle
tree root of the transaction list, and d is the transaction data.
The block proposer then proceeds and gossips the block with
its signature share, σr,Bpp, appended. The process of block
generation is illustrated in Fig. 4.

F. BLOCK VERIFICATION AND FINALIZATION PROCESS
We employ a randomized gossip protocol to propagate blocks
and signatures throughout the network. After block gener-
ation, the block proposer randomly chooses log(N ) partic-
ipants to which to send the block with its signature share
attached. When a node receives a new block proposal,
it checks σr,Bpp to determine whether the block is legitimately
generated by the chosen block proposer. Additionally, nodes
evaluate the correctness of the following components to asses
the validity of the block.
• Previous pointer p: The previous pointer has to be equal
to the hash of the immediate predecessor block, which
was finalized during the previous round.

• Merkle root root: The Merkle root is verified as the
abstract of the transaction list.

• Data d : The transactions are verified against current user
states.

• Signature shares σr,i: Block proposals contain a list
of signature shares vouching for the validity of the
block. Each signature share’s validity is checked upon
reception.

If all conditions are met, a node would then gossip out the
received block with all previously gathered signature shares
and the node’s own share. As shown in Alg. 1, the pro-
cess of verifying the block repeats until the block collects
enough number (threshold) of valid approvals. When the
block obtains f + 1 signatures, it is considered to be verified.
The signature shares are then recovered into a single group
signature, which is the proof of finalization of the block. The
process of block verification is also depicted in Fig. 5.

As mentioned previously, the signature shares propagate
with the block. Thus, to gather enough signature shares, our
finalization protocol requires only one round of the signing
process, which relies on efficient one-way communication.
Additionally, the recovery of the group signature could be
done by any participant. Therefore, the block finalization
protocol runs in a completely decentralized and leaderless
manner, reducing the probability of single node failures.

The group signature, σr , is sufficient to be the proof of
the finalization of the block, not requiring further message
exchanges. The successfully recovered group signature, σr ,
proves that a sufficient number of participants signed the
block, and can be easily verified with the corresponding
group public key. When σr is gossiped out, σr is received
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FIGURE 5. Block verification and finalization process.

by all correct nodes within 1. Thus, σr is treated as the
proof of finalization of the block. Moreover, because correct
participants only sign one block per round, only one block
passes the verification and finalization process. As a result,
the protocol can provide consensus finality to the proposed
block for each round, inherently preventing the creation of
forks.

G. PROTOCOL OPERATION UNDER FAULTS
To guarantee the continuous operation of the consensus proto-
col, participants are forced to proceed to the following round
in case of a fault. Different from PBFT, where the leader (and
block proposer) remains fixed unless it fails, our protocol
forces a block proposer to change proactively, triggered by
the group signature.

In our protocol, a round can only have two possible out-
puts: a valid finalized block or a finalized empty block,
which has the same content as an ordinary block but without
containing any transaction. A valid block is finalized only
when (1) the block proposer acts correctly proposing a valid
block and (2) a majority of benevolent validators receive it
and sign it. If condition (1) is not met, meaning that the
block proposer sends an invalid block, it triggers other nodes
to determine the round as invalid, signing and gossiping an
empty block together with the invalid proposed block as a
proof of misbehaviour of the current block proposer. In con-
trast, if condition (2) is not satisfied, it means that either there
is a network problem, or a portion of validators have declined
to sign the block. In this case, validators timeout and propose
an empty block. Other nodes that timeout would also sign
the same empty block, eventually finalizing it and triggering
the start of the following round. Note that validators sign an
empty block strictly only when they timeout or if they have a
proof that the block proposer sent an invalid block.

Thus, we can guarantee that enough signature shares
are gathered, either for a valid block or an empty block,
and recovered into a group signature that will be used as
the source of randomness for the following round. As a
result, the responsibility of generating the next block will

be assigned to another node, making it impossible for the
adversary to prevent the continuous operation of the protocol.

IV. SECURITY ANALYSIS
In this section, we conduct a security analysis to prove that
our protocol provides safety and liveness to the blockchain
system. With a majority of the nodes being correct and syn-
chronous, our Concordia protocol guarantees:
• Safety: all correct nodes commit on the same identical
block for a particular consensus round.

• Liveness: all correct nodes eventually commit a block
and generate the round randomness for the following
round.

As introduced at the beginning of Section III, Concordia
works in a context where validators have to join a consen-
sus committee by submitting a Sybil-attack-resistant proof
to the management layer, thereby ensuring a random orga-
nization of the groups. Consequently, consensus conditions
among shards are akin to those present in a permissioned
network, inherently preventing the Sybil attack. Moreover,
in the improbable event of a prolonged stall of a consensus
committee due to quorum impossibility caused by the fail-
ure of a majority of benevolent nodes or a denial-of-service
attack, the stalling time is upper-bounded by the epoch time.
Furthermore, the system architecture allows for additional
mechanisms to detect committee failures and trigger commit-
tee reorganization that will be further considered in our future
work. Nevertheless, we argue in this section that Concordia
can guarantee security in all circumstances and liveness under
eventual synchrony, making it a reliable and trustworthy pro-
tocol set for real-world applications.

A. CONSENSUS SAFETY
To guarantee safety, the protocol needs a quorum of f + 1
nodes to fulfill the requirement of the threshold signature.

It is known that the threshold signature scheme is secure,
which means that the output of the scheme is unforgeable
and robust [17]. The threshold signature scheme has two
important properties:

VOLUME 9, 2021 13179



C. Santiago et al.: Concordia: A Streamlined Consensus Protocol for Blockchain Networks

• Uniqueness: the scheme allows any subset of f + 1
parties to jointly create the group signature. In other
words, the result of the partial signature shares recovery
is always the same, regardless of whom the signature
shares belong to.

• Verifiability: the group signature can be verified by any-
one using the unique fixed public key. The public key is
created and distributed by the network’s key generation
protocol at the very beginning of the consensus process.

Our consensus protocol does not rely on the correctness of
the block proposer to ensure safety. A malicious block pro-
posermight propose contradicting block proposals to perform
an attack against the network.
Claim 1: All correct nodes will commit on the same block,

even if a malicious block proposer generates contradicting
blocks.

To guarantee safety in such a situation, we allow correct
nodes to sign only once per round. Thus, either only one
of the blocks or none of the contradicting blocks obtains
enough partial signature shares to recover its group signature.
If the correct nodes commit on one of the blocks, the block is
finalized. If none of the blocks is finalized, the correct nodes
commit on an empty block.
Claim 2: If correct node i commits on block B, then all other

correct nodes commit on B.
If node i signs B, meaning that B is valid, all other correct

nodes also sign on B. Thus, B will be able to obtain enough
signature shares to recover the group signature, which could
be verified by any party using the unique fixed public key.
Thus, the group signature is enough to be the proof of final-
ization of the block. Once the group signature is dissemi-
nated throughout the network via gossiping, all correct nodes
receive the group signature and commit on B.

B. CONSENSUS LIVENESS
For liveness, we need a quorum of f + 1 correct nodes that
behave synchronously at any time, guaranteeing that two
subsets of synchronous nodes will always have at least one
joint member who participates in the agreement to prevent
the protocol from stalling.
Claim 3: Supposing that C is the size of a subset of correct

and synchronous nodes, that take part in the consensus in a
certain round. Liveness is guaranteed as long as C ≥ f + 1.
With a quorum of f + 1 out of 2f + 1 nodes, two quorums

always intersect in at least one correct node. Thus, if the
formation of the synchronous subset changes after gossiping
a valid block B, at least one of the correct nodes gossips block
B to the new subset of nodes. As a result, all correct nodes
obtain B and start the block verification process. Similarly,
if the correct subset changes after some nodes gossip out
the signature shares attached to B, at least one correct node
sends out Bwith the signature share attachments that could be
aggregated into the group signature. Owing to the uniqueness
property of the threshold signature scheme, the result of the
group signature is consistent regardless of who signs. If the
subset membership changes after the gossiping of the group

signature, at least one correct node will gossip out the group
signature to the new subset. Then, all correct nodes should
acquire the group signature and commit on block B.
Claim 4: If node i is correct, it terminates and obtains the

randomness seed for the next round even with f faulty nodes
present in the system.

Liveness does not rely on a correct block proposer. In other
words, liveness can be guaranteed under the influence of
adversaries. They could collude with one another to launch
three types of attacks: intentionally not proposing a valid
block, refusing to exchange signature shareswith other nodes,
and stopping the propagation of received messages. If a
malicious block proposer does not generate any block at all,
the correct nodes timeout and commit on an empty block.
If a malicious proposer generates an invalid block, the invalid
block would not pass the validity check. Therefore, correct
nodes also revert to an empty block and start the round
randomness generation, once the group signature is obtained.
If f malicious nodes refuse to exchange their signature shares,
the remaining f + 1 correct nodes would always be able to
surpass the threshold and recover the group signature. It is
possible for the correct nodes to fail to recover the group
signature if the adversary preventsmessages from being prop-
agated, which would be a rare event, given a proper neighbor
size of the gossip protocol. Nevertheless, in that unlikely
situation, correct nodes would also eventually timeout and
commit on an empty block.

C. RANDOMNESS CREATION
Our randomness creation protocol is based on a robust thresh-
old signature scheme. As long as f + 1 nodes participate in
the signature aggregation, a malicious node cannot prevent
the network from generating a valid group signature.With the
robust randomness seed, the adversary cannot manipulate the
process of the block proposer selection. Thus, it is guaranteed
that the block proposer is selected in an unpredictable and
unbiasedway. However, it does not guarantee that the selected
block proposer is always honest. An adversary might have
at most 1/2 chance per round to be selected as the block
proposer. Consequently, the probability that an adversary
controls n consecutive block proposer selections is upper-
bounded by the following equation:

P[X ≥ n] = 1/2n < 10−λ (3)

For instance, given λ = 6, the adversary can control at
most 20 consecutive rounds, meaning that the probability of
the adversary controlling more than 20 rounds is less than
10−6, which can be considered negligible.

D. SECURITY OF GOSSIP
Amalicious node could also reject to gossip out any message.
Consequently, if a valid block proposer randomly selects
log(n) malicious neighbors, the adversary can deny the block
reaching correct nodes. Using the hypergeometric probability
cumulative distribution function (4), we can model this sce-
nario and calculate the probability of a node selecting only
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FIGURE 6. Complement of hypergeometric CDF with total population size
of M = 500 and a Byzantine node population of K = M/2.

Byzantine neighbors from a pool of nodes containing half
malicious nodes.

p = F(x) =
x∑
i=0

(K
i

)(M−K
N−i

)(M
N

) (4)

Considering a neighbor selection size m, F(m) returns the
probability of drawing m Byzantine nodes of a possible K
Byzantine nodes, when drawing in groups of N size without
replacement from a total population ofM nodes. Fig. 6 plots
the complement of the hypergeometric cumulative distribu-
tion function (CDF) for different values of x. The result cor-
roborates that the probability is low enough to avoid problems
with security and performance.

In the rare event of a block proposer selecting only mali-
cious nodes as neighbors or a Byzantine node being selected
as the block proposer, correct participants eventually timeout,
triggering the process of validating an empty block and mov-
ing on to the following round.

In summary, the probability of an unsuccessful round is
bounded by the adversary fraction in addition to the proba-
bility of gossiping failures. Nevertheless, the security of the
network can never be violated at the expense of performance.
In the next section, we further analyze how the presence of the
adversary may affect the overall performance of the protocol.

V. PERFORMANCE EVALUATION
In this section, we evaluate our protocol by performing a set
of experiments and analyzing the results. The objective of
this evaluation is to assure the viability of our protocol and
evaluate its performance.

A. EXPERIMENTAL SETUP
We implemented a prototype of Concordia in Go,1 with all
the essential functionality and characteristics described in
this paper. We built on top of the Cothority2 framework.
We used Cothority’s networking module to implement the
message exchange and handling between hosts, and the sim-
ulation module to test the protocols and deploy them on our

1golang.org
2github.com/dedis/cothority

testbed to perform bigger-scale experiments, while collecting
performance metrics. Note that, in our prototype, there are
no clients, and the verification of transactions is emulated
by adding a delay that grows with the block size. Unless
otherwise specified, experiments consider the case where all
selected block proposers are benevolent, and behave syn-
chronously with a pre-configured 1 value.

To run the experiments, we used a varying size cluster of
computing optimized AWS EC2 c5.2xlarge instances, each
having 8 vCPUs and 16 GB RAM. On each of the instances,
we ran a virtualized Mininet3 topology with up to 14 hosts
running a node of the protocol.

The virtualized Mininet topology is used to modify the
characteristics of the links and emulate realistic network
conditions such as delays and bandwidth restrictions. For all
the experiments, we established 100 ms propagation delays
with 35 Mbps bandwidth links between each host to mimic
the conditions of a heterogeneous wide-area network.

To compare the capabilities of Concordia with other rele-
vant works, we also performed experiments with implemen-
tations of PBFT, XFT [20], FBFT [15], and ByzCoin. The
experiments were conducted using the same testbed under
identical restrictions.

B. CONSENSUS LATENCY AND THROUGHPUT
The most relevant metric that we use to evaluate the perfor-
mance of consensus protocols, is consensus latency: the time
it takes to complete a full round of the protocol. In other
words, it is the time needed to append a completely new
block to the blockchain. This latency is mainly affected by
two parameters: the number of nodes participating in the
consensus and the block size.

Depending on the block size used and the resulting con-
sensus latency, we can calculate the number of TPS that the
system can finalize to measure throughput.

For the first experiment, we created a fixed-size network
with 100 consensus nodes running on 10 separate instance
machines.We ran the protocol for 10 consecutive rounds with
block sizes ranging from 1 KB to 5 MB. It is important to
note that, due to the nature of our protocol, some nodes finish
a round before others; for all of our experiments we use the
same node as the source of our metrics.

As shown in Fig. 7, the consensus latency increases
steadily with the block size, achieving a finalization latency
of less than 10 seconds for block sizes of up to 1 MB among
250 participants. Owing to the network bandwidth limitation
of 35 Mbps on all node links and the propagation delays,
gossiping larger blocks introduces overheads that make the
consensus latency higher and more unstable. Additionally,
detailed results show that block propagation accounts for
more than 70% of the overall finalization time. This is a
clear bottleneck compared with the other steps of the proto-
col. Nonetheless, the results demonstrate that, because of the

3mininet.org
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FIGURE 7. Fault-free performance with different block sizes.

FIGURE 8. Latency vs. network size.

way we implement block propagation, we can handle large
block sizes while still achieving reasonable latencies.

The next experiment analyzes how the number of partici-
pants in the consensus protocol affects the consensus latency.
We progressively increased the number of hosts from 10 up
to 400 and replicated the same experiment with four different
block sizes. The results are shown in Fig. 8, which plots the
average latency of 10 rounds of the consensus protocol. As in
the previous experiment, we can see that the latency scales
well with the block size. As for the number of participants,
we see an almost linear increase of the latency, achiev-
ing acceptable values even for network sizes of 400 nodes.
Again, by using a gossip-based communication protocol,
nodes only need to send blocks to log(N ) nodes, achieving
similar block propagation times with the same network band-
width restrictions. However, as the number of participants
increases, the number of signatures needed to confirm a block
grows proportionally. This means that all validators need to
verify more partial signature shares, and the final signature
aggregation process also has a higher threshold. As a result,
validators need more computing time to validate signatures
on every gossip round, and the final signature aggregation is
also slower. Later in this section, we expand on this argument
and evaluate the delay introduced by the signature verification
and recovery processes.

FIGURE 9. Fault-free performance comparison.

Finally, to compare the results of Concordia with other
work, Fig. 9 shows the average latency needed to final-
ize a 1MB block with a varying network size for different
protocols.

The comparison includes the results obtained running
implementations of PBFT, XFT, FBFT, and ByzCoin; all of
them are implemented with the same tools and deployed in
the same test-bedwith identical restrictions.We choose PBFT
as the baseline protocol and representative of a traditional
consensus protocol for Byzantine environments. Moreover,
XFT serves as the reference for a Byzantine consensus pro-
tocol in a synchronous network. Finally, we use FBFT and
ByzCoin to compare our results with protocols that improve
on top of traditional ones by using collective signing andmore
efficient communication patterns. In the case of ByzCoin,
it uses Schnorr signatures with a tree-based communication
protocol. On the other hand, FBFT attempts to improve the
inefficient broadcast channels of PBFT by also using BLS
threshold signatures. The implementation we used of FBFT
uses random gossip as a message propagation protocol.

As expected, XFT and PBFT exhibited poor scalability
capabilities owing to the broadcast communication channels.
ByzCoin and FBFT significantly improve performance and
achieve good network size scalability. Concordia reduces the
latency even further by integrating the voting mechanism
with the communication protocol, which allows gathering
and validating signatures, as blocks propagate through the
network in a gossip pattern. Moreover, we allow to securely
reach block finality in a single round of voting, further reduc-
ing confirmation latency. Overall, our experiments show that
Concordia can be up to 4 seconds faster than the closest
performing tested protocol.

C. SIGNATURE AGGREGATION
To determine how much time is needed to recover and verify
the full BLS signature required to finalize a block, we ran
an additional experiment. We measured the time that a node
that has received f + 1 signatures, needs to compute the final
signature. For this purpose, the node verifies each of the sig-
nature shares and executes the recovery algorithm. Same as
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FIGURE 10. Signature scheme benchmarks for different network sizes.

in other experiments, we used the BN256 bilinear group [29],
and executed the protocol with a network size varying from
10 nodes up to 1000 nodes with a maximum of 500 signatures
to aggregate. Fig. 10 shows the time needed to verify the
partial signatures and the time needed to execute the recovery
algorithm.We decouple signature verification and recovery to
progressively verify signatures as they propagate through the
network. As soon as a validator gathers enough valid signa-
tures, the recovery algorithm can be executedwithout needing
to verify all the partial signature shares again. As seen in the
results, signature verification is considerably more expensive
in terms of latency than the recovery. Therefore, we can alle-
viate this problem by gradually verifying signatures, as they
are received.

D. PERFORMANCE UNDER ADVERSARIAL
POWER PRESENCE
Owing to the random nature of our block proposer selec-
tion method, the probability of selecting a malicious block
proposer in a certain round is directly related to the fraction
of adversary power in the network. As explained previously,
when an incorrect block is proposed, nodes discard it and
sign an empty block instead. This means that on those rounds,
no transactions are confirmed. Hence, the overall throughput
of the system is affected. This problem is not only present
in our protocol, but also in other consensus protocols such
as ByzCoin, Fig. 11 shows a comparison of the performance
reduction due to adversary power presence.

This experiment assumes that all malicious actors try
to propose incorrect blocks or not propose any blocks at
all. As expected, under this assumption, the performance is
directly affected in both cases of our proposal and ByzCoin.
Nevertheless, our protocol can keep operating with reduced
performance with up to 50% adversary power under our
network synchrony assumption.

VI. RELATED WORK
Bitcoin introduces PoW as the consensus mechanism by
which miner nodes solve a computational puzzle to win
the chance to append a new block. PoW is not capable of

FIGURE 11. Performance decrease comparison under different fractions
of adversarial power presence.

supporting instant consensus finality [30]; instead, it relies
on ‘‘multi-block confirmations’’ to provide only proba-
bilistic consistency guarantees when the adversary controls
less than 50% of the total computing power. As a result,
the transaction-confirmation latency of Bitcoin is nearly
1 hour. Moreover, the puzzle computation of the scheme
consumes a huge amount of electricity. As an alternative
to PoW, proof of stake (PoS) [31] can avoid the computa-
tional overhead. Stakeholders in the network have a chance
of winning the right to generate a new block, where the
winning probability is based on the amount of their stake.
Ouroboros [26] is a PoS-based permissionless consensus pro-
tocol for cryptocurrencies. The first version of Casper [32]
within Ethereum is a hybrid of PoW and PoS, while the
ultimate goal of the protocol is to replace the PoWmechanism
with a PoS scheme.

Since PBFT protocol found its place in blockchain sys-
tems, significant efforts have beenmade to explore better con-
sensus solutions. One promising direction is to optimize BFT
protocols for higher performance [33]. More specifically,
a set of protocols have been proposed to accelerate consensus
performance by adding a fast execution path under favorable
conditions [7]–[9]. For instance, Zyzzyva starts its execution
in a quick consensus mode before resorting to the expensive
two-phase case. Zyzzyva reduces the all-to-all communica-
tion complexity by having the client collect responses from
the replicas. This task of signature collection is assigned to
designated nodes, called collectors, in SBFT. Additionally,
the protocol employs threshold signatures to reduce the com-
munication cost of the BFT variants. However, the protocol
still requires two-round communications for signature aggre-
gations. Raft [34] and Tendermint are two popular variants
of Paxos and PBFT, respectively, that try to simplify the
more complex classic counterparts. Tendermint implements a
leader rotation mechanism and scalable transaction propaga-
tion using gossip. In contrast, Raft presents an ‘‘understand-
able consensus algorithm’’ that replicates transactions to all
validators, ensuring that they have the same sequence.

Algorand [27] is a consensus scheme based on a Byzantine
Agreement (BA) protocol. By combining it with VRFs [35],
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nodes are chosen to become committee members to partic-
ipate in the BA protocol and reach consensus on a set of
transactions. Dfinity [36] uses the BLS signature scheme as
part of its VRF. By using a decentralized random beacon
(DRB) protocol, Dfinity participants are allowed to agree on
a VRF and jointly produce one new output of the VRF in
every round. The agreement of the validator committee can be
proved by an aggregated verifiable BLS signature. However,
unlike Concordia, since one round of signing cannot be used
as a proof of block finalization, Dfinity does not provide full
consensus finality, being left vulnerable to fork possibilities.

A new fault model is proposed in XFT which limits the
extraordinary power given to an adversary in the original
PBFT settings. Its novelty is demonstrated by designing
a consensus protocol that embodies the model. However,
the protocol operation still relies on the all-to-all commu-
nication pattern, which adversely affects the scalability of
the protocol together with an inefficient leader election. It is
also noteworthy that the protocol introduced in [37] considers
a similar network timing model and settings to XFT. The
paper presents an efficient Byzantine consensus protocol in a
synchronous, authenticated communication network that can
tolerate up to t < n/2 corrupt nodes. However, it still faces
a similar problem, since it also makes use of the all-to-all
broadcast communications.

Despite all these efforts, the current technology still falls
short of the performance standard for real-world blockchain
systems capable of handling tens of thousands of transac-
tions per second. It is widely accepted that this level of
TPS can be attained by shard-based consensus protocols
such as OmniLedger, RapidChain, Harmony, and Monoxide.
OmniLedger uses ByzCoinX, which turns the ByzCoin’s
multicast model into a two-level tree for robustness. However,
the protocol needs to be run by two-level leaders, causing
extra communication overhead. Similarly, Rapidchain also
relies on a leader-based PBFT variant that tolerates up to 1/2
malicious nodes under a synchrony assumption. Although
Rapidchain presents a more efficient way to propagate large
blocks, it still has suboptimal communication complexity
that induces higher confirmation latency. Harmony features
FBFT as its intra-shard protocol component. As FBFT uses
BLSmulti-signatures to avoid broadcast channels, it achieves
better performance. However, as in ByzCoin and Rapid-
chain’s consensus protocol, Harmony adopts a leader-driven
communication pattern. The BLS signature scheme does
not directly implement consensus but changes the way for
the leader in a BFT protocol to collect and aggregate mes-
sages. Thus, Harmony still needs two rounds of signing to
achieve consensus. Finally, Monoxide stands out among sev-
eral research efforts to develop high-performance consensus
protocols based on a merged mining scheme. The protocol
offers great capacity with substantial throughput and presents
a method to deal with cross-shard transactions efficiently.
However, Monoxide uses PoW to select block proposers,
which entails allowing the possibility of forks and using
significant computational power for the mining.

This work has been conducted as a part of our long-term
project aiming to develop a high-performance sharding pro-
tocol.While designing a novel intra-shard consensus protocol
in the first phase, careful considerations weremade to achieve
our ultimate goal of a high-TPS sharded protocol. It is highly
desired that an intra-shard consensus protocol should provide
consensus finality to avoid block conflicts, which should help
to speed up cross-shard transaction processing. Thus, many
of today’s shard-based approaches employ a variant of BFT
protocols as their intra-shard consensus protocols. Concor-
dia distances itself from the rest in the sense that it is a
leaderless and forkless protocol that adopts BLS aggregated
signatures as the proof of finality. It is able to avoid block
conflicts and expedites transaction processing. Consequently,
our intra-shard protocol can provide consensus finality with
low latency, which will benefit further cross-shard transac-
tion processing. Already underway as the next phase is our
design and integration effort of key components of cross-
shard consensus systems such as cross-shard transactions,
shard reorganization, incentive mechanisms, and messaging
traffic optimization.

VII. CONCLUSION
Concordia streamlines the process of reaching consensus on
new blocks, being a highly efficient protocol that achieves
great performance while ensuring security. We proposed a
new block proposer selection method that inherently prevents
the formation of forks. Moreover, by combining the use of
a gossip-like communication protocol with a threshold BLS
signature scheme, consensus participants can verify and vote
on the validity of new blocks in a secure and scalable manner.
All components of Concordia are coherently and seamlessly
integrated with one another, making it a remarkably efficient
consensus protocol for high-throughput blockchain systems.

We implemented a prototype of the proposed protocol with
all of its major components in place, to evaluate both its
effectiveness and performance. Our evaluation study shows
that Concordia has better scaling capabilities in terms of the
number of nodes as well as processed transactions, being able
to process 2000 TPS with a confirmation latency of approxi-
mately 10 seconds in networks of hundreds of nodes. Owing
to its security, scalability, and throughput capabilities with
remarkably low confirmation latency, Concordia makes for
an excellent candidate for an intra-shard consensus protocol
for sharded blockchain systems.
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