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Misfolded polypeptides are selectively recognized
and transported toward aggresomes by a CED
complex
Joori Park1,2,*, Yeonkyoung Park1,2,*, Incheol Ryu1,2, Mi-Hyun Choi2, Hyo Jin Lee2, Nara Oh1,2, Kyutae Kim2,3,

Kyoung Mi Kim2,w, Junho Choe2,w, Cheolju Lee3, Ja-Hyun Baik2 & Yoon Ki Kim1,2

Misfolded polypeptides are rapidly cleared from cells via the ubiquitin–proteasome system

(UPS). However, when the UPS is impaired, misfolded polypeptides form small cytoplasmic

aggregates, which are sequestered into an aggresome and ultimately degraded by

aggrephagy. Despite the relevance of the aggresome to neurodegenerative proteinopathies,

the molecular mechanisms underlying aggresome formation remain unclear. Here we

show that the CTIF–eEF1A1–DCTN1 (CED) complex functions in the surveillance of either

pre-existing or newly synthesized polypeptides by linking two molecular events: selective

recognition and aggresomal targeting of misfolded polypeptides. These events are

accompanied by CTIF sequestration into the aggresome, preventing the additional synthesis

of misfolded polypeptides from mRNAs bound by nuclear cap-binding complex. These events

render cells more resistant to apoptosis induced by proteotoxic stresses. Collectively, our

data provide compelling evidence for a previously unappreciated protein surveillance pathway

and a regulatory gene expression network for coping with misfolded polypeptides.
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T
he quantity and quality control of eukaryotic gene
expression is coordinated at multiple steps1. After being
processed in the nucleus, newly synthesized mRNAs are

exported to the cytoplasm with their 50-cap bound to the nuclear
cap-binding protein complex (CBC), a heterodimer of cap-
binding protein 80 (CBP80, also known as nuclear cap-binding
protein 1 (NCBP1)) and either CBP20 (also known as NCBP2) or
NCBP3 (refs 2,3). In the cytoplasm, CBC is replaced by the
cytoplasmic eukaryotic translation initiation factor 4E (eIF4E)
in a translation-independent manner4. Both CBC and eIF4E
can recruit ribosomes5. CBC recruits ribosomes through an
interaction with CBC-dependent translation (CT) initiation factor
(CTIF), driving the first (or pioneer) round of translation2,5–9. On
the other hand, eIF4E-dependent translation (ET) uses eIF4G to
recruit ribosomes and enable protein synthesis in bulk10.

In mammalian cells, misfolded polypeptides may arise owing
to various intrinsic and extrinsic factors, including genetic
mutations, abnormal translation generating defective ribosomal
products (DRiPs), misfolding or aberrant modifications during
or after translation, failure of ribosome quality control and
environmental stresses11–16. Furthermore, truncated misfolded
polypeptides may be synthesized as byproducts of translation-
coupled mRNA surveillance pathways17–20, such as nonsense-
mediated mRNA decay, because this process necessitates at least a
single round of translation to survey the existence of a premature
termination codon along newly synthesized mRNAs17,21.

To cope with misfolded polypeptides, eukaryotic cells have
evolved highly sophisticated molecular mechanisms at several
levels12–16. Molecular chaperones such as heat shock proteins help
misfolded polypeptides refold into the appropriate three-
dimensional conformation. Alternatively, misfolded polypeptides
are degraded by the ubiquitin–proteasome system (UPS), preventing
their accumulation within cells. However, when these two initial
processes are overwhelmed or impaired, the misfolded polypeptides
are prone to forming small cytoplasmic aggregates22–24. Aggregates
of misfolded polypeptides are actively transported into a perinuclear
structure, the aggresome, via dynein-mediated retrograde transport
to the microtubule-organizing centre (MTOC). The aggresome is
then surrounded by the intermediate filament, vimentin and
eventually cleared by aggrephagy, a selective autophagic clearance
process14,25. Aggresome clearance by aggrephagy may play a
cytoprotective role in response to the accumulation of aggregates
containing misfolded polypeptides when chaperones and the UPS
are impaired26. In support of this, several previous reports
have revealed that aggresome formation correlates with cell
survival27–29.

Histone deacetylase 6 (HDAC6) is involved in the selective
recognition and movement of small cytoplasmic aggregates
containing misfolded polypeptides towards the aggresome27,30,31.
HDAC6 binds to unanchored ubiquitin C-terminal tails in the
misfolded polypeptides through its C-terminal binder of
ubiquitin zinc-finger/zinc-finger-ubiquitin-specific processing
protease (ZnF-UBP) domain, and associates with dynein
motors through its N-terminal dynein motor-binding
domain27,32. Through these interactions, HDAC6 functions as a
molecular adaptor to link misfolded polypeptide-containing small
cytoplasmic aggregates to dynein motors, triggering the efficient
movement of the aggregates to the aggresome.

Here we provide molecular and functional evidence that
explains how either pre-existing or newly synthesized misfolded
polypeptides are selectively recognized and form an aggresome
that is eventually eliminated by aggrephagy. We found that CTIF,
a scaffold protein in CT, is localized to misfolded polypeptide-
containing aggresomes. Mechanistically, CTIF associates with
both the eukaryotic translation elongation factor 1 alpha 1
(eEF1A1) and dynactin 1 (DCTN1) through its N-terminal

region, forming a functional complex called CTIF-eEF1A1-
DCTN1 (CED) complex. When the UPS is impaired, misfolded
polypeptides form small cytoplasmic aggregates. Under these
conditions, CTIF functions as a molecular adaptor that physically
links the small cytoplasmic misfolded polypeptide-containing
aggregates, which are selectively recognized by eEF1A1, to dynein
motors via DCTN1. These small cytoplasmic aggregates are
transported towards the aggresome via dynein-mediated retro-
grade movement. During this process, CTIF is also sequestered
into the aggresome with the misfolded polypeptides. As a
consequence, the efficiency of CT, which requires CTIF, is
reduced, preventing further expression of misfolded polypeptides
synthesized from mRNAs bound by CBC. Furthermore, down-
regulation of each CED component renders cells more vulnerable
to apoptosis induced by an accumulation of misfolded polypep-
tides. Collectively, these data provide molecular insight into a
previously unappreciated protein surveillance pathway by which
the cells cope with misfolded polypeptides.

Results
CTIF is localized in the aggresomes. Our previous report
revealed that endogenous CTIF is localized to the cytoplasmic
side of the perinuclear region, supporting our model that CTIF is
loaded onto the 50-end of newly synthesized mRNAs that are
being exported from the nucleus to the cytoplasm through the
nuclear pore complex6. In our previous report, as well as in this
study, we also observed that, in addition to the perinuclear region,
endogenous CTIF was concentrated in one or two punctate
cytoplasmic bodies that were closely juxtaposed to the outer
membrane of the nuclear envelope (Supplementary Fig. 1). The
endogenous CTIF-enriched cytoplasmic bodies overlapped with
g-tubulin (Fig. 1a), a component of MTOC33, but not with
DCP1A-enriched processing bodies (Supplementary Fig. 2a)
where mRNA-degrading enzymes are enriched34,35. MTOC is
the cellular site of aggresome formation, where small cytoplasmic
aggregates of misfolded polypeptides are sequestered and
eventually degraded by aggrephagy22–24. Therefore, using
various approaches, we determined whether the CTIF-enriched
cytoplasmic bodies are aggresomes.

Inhibition of the proteasome or autophagy is known to result
in the accumulation of misfolded polypeptides, which can lead to
aggresome formation22–24. The treatment of HeLa cells with the
proteasome inhibitor MG132 increased the size of endogenous
CTIF bodies (Fig. 1a,b) without affecting the number of CTIF
bodies per cell (Fig. 1a,c). Furthermore, treatment with the
autophagy inhibitor bafilomycin A1 markedly increased the size
of endogenous and FLAG-tagged CTIF bodies (Fig. 1d and
Supplementary Fig. 2b). Misfolded polypeptide aggregates are
selectively moved towards the aggresomes via dynein- and
microtubule-mediated retrograde transport22–24. In support that
CTIF bodies are aggresomes, treatment with the microtubule-
disrupting drug nocodazole markedly inhibited the formation of
endogenous and FLAG-tagged CTIF bodies (Fig. 1d and
Supplementary Fig. 2b).

Using aggresome marker proteins, we further determined
whether these CTIF bodies are aggresomes. Endogenous or
FLAG-tagged CTIF bodies significantly overlapped with
previously known aggresome components following MG132
treatment (Fig. 1e and Supplementary Fig. 3a,b): (i) endogenous
vimentin22; (ii) HDAC6 (ref. 27); and (iii) ubiquitin, the
localization of which was determined by monomeric red
fluorescent protein-tagged ubiquitin (mRFP-Ub)36. In addition,
CTIF bodies overlapped with previously known aggresome-
targeted misfolded polypeptides following treatment with MG132:
(i) polypeptidyl-puromycin (polypeptidyl-puro; Supplementary
Fig. 3c), which is a prematurely terminated translation product by
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puromycin treatment and, therefore, corresponds to DRiPs37,38;
(ii) a green fluorescent protein (GFP)-fused cystic fibrosis
transmembrane conductance regulator (CFTR)-DF508 (CFTR-
DF508; Supplementary Fig. 3d), which is a chimeric protein

composed of GFP and a mutant variant of CFTR harbouring
a single amino-acid (phenylalanine) deletion at position 508
(refs 22,27); and (iii) synphilin 1-GFP (SYN1-GFP;
Supplementary Fig. 3e), which associates with a-synuclein and
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Figure 1 | CTIF is localized to aggresomes. (a) Immunostaining for endogenous CTIF (red) and g-tubulin (green) in HeLa cells in the presence of either

DMSO or MG132. (b,c) Quantification of the change in the size (b) and number (c) of CTIF-containing cytoplasmic bodies. Immunostained images of the

cells in a were quantitated. The columns and error bars represent the mean and s.d. of three biological replicates. Two-tailed, equal-sample variance

Student’s t-tests were used to calculate the P values. **Po0.01. (d) Immunostaining for endogenous CTIF (red) in HeLa cells treated with the indicated

inhibitors for 12 h. (e) Immunostaining for endogenous vimentin (green) and CTIF (red) in HeLa cells. Nuclei were stained with DAPI (blue). Enlarged

images of the boxed areas are shown in the lower-right corner of each image. All results are representative of three independent biological replicates

(n¼ 3). Scale bar, 10mm.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15730 ARTICLE

NATURE COMMUNICATIONS | 8:15730 | DOI: 10.1038/ncomms15730 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


is targeted to cytosolic inclusion bodies38–40. CTIF bodies were
also co-localized with another type of aggresome-targeted
misfolded protein, GFP-250 (Supplementary Fig. 3f), which is a
fusion protein composed of GFP and a 250-amino-acid fragment
of a membrane transport factor p115, and forms aggresomes
independently of MG132 treatment41. All these data clearly
indicate that the observed CTIF bodies are aggresomes.

CTIF is complexed with DCTN1 and eEF1A1. To understand
the molecular mechanism underlying CTIF localization to the
aggresomes, we performed liquid chromatography-tandem
mass spectrometry (LC-MS/MS) using an immunoprecipitate
of FLAG-CTIF, and identified two cellular factors as CTIF-
interacting proteins (Fig. 2a): DCTN1, the largest subunit of
dynactin, which interacts with an intermediate chain of dynein
motor protein and microtubule, and is involved in the retrograde
movement of cargoes along microtubules42; and eEF1A1,
an alpha subunit of the eEF1 complex and a GTP-binding
protein responsible for the delivery of aminoacyl-tRNAs to the A
site of a ribosome43. Interestingly, eEF1A1 is also known to
directly bind both pre-existing and newly synthesized misfolded
polypeptides during and after translation, and could generate a
signal for aggresome formation36,44,45. The direct interactions
of CTIF with DCTN1 and eEF1A1 were demonstrated by
glutathione S-transferase (GST) pull-down experiments using
recombinant proteins (Supplementary Fig. 4a,b). Moreover, the
confocal microscopy results showed that DCTN1 and eEF1A1
overlapped with the CTIF aggresome upon MG132 treatment
(Supplementary Fig. 4c). These data indicate that DCTN1 and
eEF1A1 directly interact with CTIF and become enriched in
aggresomes with CTIF when the UPS is impaired.

CED complex shifts from the CT complex to aggresomes. CTIF
was originally identified as a CT component6. In this study,
we showed that CTIF is localized to the aggresome (Fig. 1) and
interacts with DCTN1 and eEF1A1 (Fig. 2a). We therefore
investigated the possible interplay between the CTIF-containing
CT complex and the aggresome. The results of
immunoprecipitations (IPs) using cell extracts treated with
RNase A showed that CT-specific factors (CBP80 and eIF4AIII)
and common factors for CT and ET (eIF3b, a component of the
eIF3 complex, and ribosomal protein S3 (rpS3), a component of
the small subunit of the ribosome), but not an ET-specific factor
(eIF4E), were preferentially enriched in the IPs of either
endogenous CTIF (Fig. 2b) or FLAG-CTIF (Supplementary
Fig. 5a). Interestingly, the observed enrichment of the tested
proteins was significantly abolished when the cells were treated
with MG132. In contrast, DCTN1 and eEF1A1 enriched in the
IPs were unaffected by treatment with MG132. Taken together
with the confocal microscopy results (Supplementary Fig. 4c),
these data indicate that, whereas CTIF, DCTN1 and eEF1A1
associate with the CT complex under normal conditions, they
dissociate from the CT complex and move towards the aggresome
when the UPS is impaired. In agreement with this conclusion,
CTIF and DCTN1 co-immunopurified with FLAG-eEF1A1
in a way that was unaffected by treatment with MG132
(Supplementary Fig. 5b). In contrast, a CT-specific factor
(CBP80) and a common factor for CT and ET (rpS3), but
not ET-specific factors (eIF4E and eIF4GI), preferentially
co-immunopurified with FLAG-eEF1A1 in a MG132-dependent
manner. Notably, DCTN1 and eEF1A1 were very weakly
co-immunopurified with eIF4GI, an ET-specific factor
(Supplementary Fig. 5c), indicating the specific association of
CTIF, DCTN1 and eEF1A1 with the CT complex under normal

conditions, and selective dissociation of these components from
the CT complex upon UPS impairment.

It should be noted that the reduced association of CT
components (CBP80 and eIF3b) with the CTIF complex upon
MG132 treatment was significantly reversed by downregulation of
either DCTN1 or eEF1A1 using specific small interfering RNAs
(siRNAs; Fig. 2c). Furthermore, the downregulation of DCTN1
and eEF1A1 abolished the interactions of CTIF with eEF1A1 and
DCTN1, respectively. These data indicate that DCTN1 and
eEF1A1 promote the release of CTIF from the CT complex upon
UPS impairment, and are necessary for the integrity of the
CTIF-eEF1A1-DCTN1 complex, hereafter referred to as the CED
complex. In the CED complex, CTIF functions as an adaptor
protein to link eEF1A1 and DCTN1, which was evident from the
IPs showing that downregulation of CTIF inhibited an interaction
between eEF1A1 and DCTN1 (Supplementary Fig. 5d,e).

CED complex dissociation from the CT complex upon MG132
treatment implies that the CED complex may be released from
mRNAs when the UPS is impaired. Indeed, the results of
endogenous CTIF IP showed that MG132 treatment triggered the
dissociation of CFTR-DF508 mRNA from CTIF (Fig. 2d). On the
other hand, fluorescent in situ hybridization revealed that
MG132 treatment did not significantly affect the intracellular
distribution of CFTR-DF508 mRNA, although CFTR-DF508
protein accumulated in an aggresome under the same conditions
(Fig. 2e). Therefore, we conclude that when the UPS is impaired,
the CED complex dissociates from mRNAs and moves towards
the aggresome without affecting the intracellular distribution
of the mRNAs.

CED-driven transport of misfolded polypeptides to aggresome.
Considering that (i) eEF1A1 binds to both pre-existing and newly
synthesized misfolded polypeptides, and generates a signal for
aggresome formation36,44,45; and (ii) that DCTN1 mediates the
movement of cargoes along microtubules42, the CED complex
may play an active role in the aggresome formation of misfolded
polypeptides. We examined this possibility using siRNAs against
each CED component and four different types of misfolded
polypeptides: polypeptidyl-puro (one of the DRiPs37,38; Fig. 3a,b);
CFTR-DF508 (Fig. 3c and Supplementary Fig. 6a); SYN1-GFP
(Supplementary Fig. 6b); and GFP-250 (Supplementary Fig. 6c).
It is well known that CFTR-DF508 and GFP-250 form
polyubiquitin-enriched aggresomes upon MG132 treatment and
polyubiquitin-deficient aggresomes in an MG132-independent
manner, respectively22,39,41.

The immunostaining results revealed that when each of
the CED components or HDAC6 was downregulated, MG132-
induced aggresomes containing polypeptidyl-puro, CFTR-DF508
or SYN1-GFP were significantly dispersed (Fig. 3a and
Supplementary Fig. 6a,b). Accordingly, the population of cells
containing dispersed small cytoplasmic aggregates was increased
by approximately two- to fourfold (Fig. 3b,c). In contrast,
downregulation of the nonsense-mediated mRNA decay-specific
factor, upstream frameshift 2 (UPF2), did not significantly affect
aggresome formation (Fig. 3c and Supplementary Fig. 6a).
Importantly, the polyubiquitin-deficient aggresome containing
GFP-250 was not dispersed by CTIF downregulation
(Supplementary Fig. 6c), indicating the preferential involvement
of the CED complex in aggresome formation of polyubiquitinated
polypeptides. Specific downregulation of the tested proteins by
siRNAs was confirmed by western blotting (Supplementary
Fig. 6d). Notably, the level of endogenous K63-ubiquitinated
polypeptides was not significantly changed by CTIF down-
regulation (Supplementary Fig. 6e). These results indicate that the
CED complex plays a critical role in efficient aggresome
formation of polyubiquitin-enriched misfolded polypeptides.
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Figure 2 | CTIF forms a complex with DCTN1 and eEF1A1 and is localized to the aggresome upon UPS impairment. (a) Silver staining of

immunoprecipitates of FLAG-CTIF in HEK293T cells. The indicated bands were excised and subjected to LC-MS/MS. Identified proteins in each band are

specified. Immunoglobulin heavy chain is marked with an asterisk (*). MW, molecular weight. (b) IPs of endogenous CTIF. Extracts of HEK293T cells

untreated or treated with MG132 for 12 h were obtained and then treated with RNase A before IP. IPs were performed using either a-CTIF antibody or

nonspecific rabbit IgG (rIgG). Western blotting of samples before and after IPs was performed using the indicated antibodies. Threefold serial dilutions of

total-cell extracts were loaded in the four left-most lanes. n¼ 2. (c) IPs of endogenous CTIF using the extracts of HEK293T cells depleted of eEF1A1 or

DCTN1. The cells were treated with MG132 for 12 h before harvesting. Total-cell extracts were treated with RNase A. n¼ 2. (d) RNA IPs of endogenous

CTIF. As in b, except that the extracts of HeLa cells stably expressing misfolded CFTR-DF508 were not treated with RNase A. Western blotting (upper) of

CTIF and qRT–PCR of CFTR-DF508 mRNAs (lower) were performed using samples from either before or after IP. The levels of CFTR-DF508 mRNAs were

normalized to the levels of GAPDH mRNA. The relative ratio of normalized CFTR-DF508 mRNAs obtained from the IPs using rIgG was arbitrarily set to 1.0.

Columns and error bars represent the mean and s.d. of three independent transfections and qRT–PCRs. n¼ 3. **Po0.01. (e) Immunostaining for CFTR-

DF508 protein (green), CFTR-DF508 mRNA (red) and GAPDH mRNA (yellow). n¼ 2. Scale bar, 10mm.
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Association between CED and small cytoplasmic aggregates.
Several previous reports have shown that eEF1A1 can bind to
both pre-existing misfolded polypeptides and newly synthesized
polypeptides, and it generates a signal for aggresome forma-
tion36,44,45. We also observed a specific interaction between
either eEF1A1 or CTIF and polypeptidyl-puro (Supplementary
Fig. 7a–c), which typify newly synthesized misfolded polypeptides
and DRiPs, because puromycin triggers premature termination
of translation. Intriguingly, the observed interactions with

polypeptidyl-puro were not affected by treatment with
nocodazole, which inhibited aggresome formation and as a result
triggered the accumulation of small cytoplasmic aggregates (Fig. 1d
and Supplementary Fig. 2b). Furthermore, downregulation
of eEF1A1 significantly inhibited the interaction of CTIF and
polypeptidyl-puro (Supplementary Fig. 7d,e). These results
indicate that (i) CTIF indirectly interacts with polypeptidyl-puro
via eEF1A1 and (ii) the CED complex associates with misfolded
polypeptides largely before aggresomal targeting and formation.
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To further confirm the conclusion detailed above,
we immunostained polypeptidyl-puro using the cells depleted
of either CTIF or eEF1A1 in the presence of MG132
(Supplementary Fig. 8). The results showed that each CED
component was co-localized with an aggresome containing
polypeptidyl-puro upon MG132 treatment. Consistent with our
observations that aggresomes are dispersed by the downregula-
tion of CED components (Fig. 3 and Supplementary Fig. 6), the
aggresome of polypeptidyl-puro was dispersed into the small
cytoplasmic aggregates by CTIF downregulation. Intriguingly,
the small cytoplasmic aggregates overlapped with each CED
component. In a reciprocal experiment, the aggresome was also
dispersed by eEF1A1 downregulation. However, CTIF partially or
marginally overlapped with the small cytoplasmic aggregates
of polypeptidyl-puro, supporting that CTIF associates with
misfolded polypeptides via eEF1A1. These results suggest that
CTIF is required for the efficient transport of misfolded
polypeptides associated with eEF1A1.

N-terminal region of CTIF is critical for CED formation.
To determine the minimal region within CTIF required for CED
complex formation and aggresomal targeting, we performed a
series of IPs using deletion variants of CTIF (Fig. 4a). The results
revealed that both DCTN1 and eEF1A1 were significantly
enriched in the IPs of FLAG-CTIF-WT, 12–598 and 1–305,
but not of 54–598 and 101–598 (Fig. 4b). In agreement with a
previous report that stem-loop–binding protein (SLBP) interacts
with the C-terminal half of CTIF46, SLBP was enriched in IPs of
all tested proteins except FLAG-CTIF (1–305). Consistent with
the IP results, FLAG-CTIF-WT and 12–598 were localized to the
aggresome in the presence of either dimethyl sulfoxide (DMSO)
or MG132 (Fig. 4c). In contrast, 54–598 and 101–598 exhibited
perinuclear localization even in the presence of MG132,
indicating that amino acids 12–53 of CTIF are critical for CED
formation and aggresomal targeting of misfolded polypeptides.

To further demonstrate the minimal region of CTIF
required for CED complex formation and aggresomal targeting
of misfolded polypeptides, we constructed MYC-GST fusion
proteins harbouring the N-terminal region of CTIF: MYC-
CTIF(1–53)-GST and MYC-CTIF(12–53)-GST (Supplementary
Fig. 9a). The GST pull-down results revealed that DCTN1
and eEF1A1 were enriched in the pull-down of MYC-CTIF
(1–53)-GST and MYC-CTIF(12–53)-GST, but not MYC-GST
(Supplementary Fig. 9b). Consistent with the GST pull-down
results, MYC-CTIF(1–53)-GST and MYC-CTIF(12–53)-GST,
but not MYC-GST, overlapped with g-tubulin (Supplementary
Fig. 9c). These results strongly indicate that a region spanning
amino acids 12–53 of CTIF is critical and sufficient for CED
formation and aggresomal targeting of misfolded polypeptides.

Sequestration of CTIF into the aggresome inhibits CT.
Throughout this paper, we observed a tendency that, whereas
CTIF was localized to the perinuclear region as well as the
aggresome under normal conditions, the majority of perinuclear
CTIF was redistributed to the aggresome upon MG132 treatment.
In particular, deletion variants of CTIF lacking amino acids 1–53
exhibited strong localization to the perinuclear region and were
not localized to the aggresome, compared with CTIF-WT (Fig. 4).
These observations suggest the intriguing possibility that
misfolded polypeptides may sequester the perinuclear CTIF into
the aggresome and consequently reduce CT efficiency.

To examine the possibility mentioned above, we performed
polysome fractionation assays and then analysed the relative
distributions of CBP80 and eIF4E. It is well known that MG132
treatment causes the accumulation of misfolded polypeptides in

the ER and activates PKR-like ER-localized eIF2a kinase,
leading to an inhibition of general translation through eIF2a
phosphorylation47. To minimize the inhibitory effect of MG132
on general translation via eIF2a phosphorylation, we employed
mouse embryo fibroblast (MEF) cells expressing eIF2a mutant
(A/A) harbouring the S51A substitution.

The results of polysome fractionation followed by western
blotting showed that MG132 treatment disrupted polysome
formation in a time-dependent manner (Supplementary Fig. 10a).
Intriguingly, whereas the relative distribution of eIF4E was not
detectably affected by MG132 treatment, a significant level
of CBP80 was shifted from the polysome fractions to the
subpolysome fractions upon MG132 treatment (Supplementary
Fig. 10). Notably, the relative distributions of exogenously
expressed GST-CTIF(54–598), which failed to form the CED
complex (Fig. 4), remained unaffected upon MG132 treatment,
compared with those of GST-CTIF-WT (Fig. 5). All the data
indicate that misfolded polypeptides trigger the release of
CTIF from the CT complex and, as a consequence, preferentially
inhibit CT.

CED renders cells more resistant to proteotoxic stresses. The
accumulation of misfolded and aggregated polypeptides is toxic to
cells, as observed in various neurodegenerative diseases22–24.
To determine whether the CED complex is involved in
the cellular response to proteotoxic stresses induced by the
accumulation of misfolded polypeptides, we investigated the
effect of downregulation of CED components on apoptosis
induced by overexpressed, misfolded CFTR-DF508 (Fig. 6a and
Supplementary Fig. 11). Consistent with the results of a previous
study27, MG132 treatment caused minimal apoptosis (B2% of
total cells) induced by stably expressed, misfolded CFTR-DF508.
However, downregulation of one of the CED components or
HDAC6 markedly promoted the CFTR-DF508-induced apoptosis
of cells (B8–23% of total cells). In contrast, downregulation of
UPF2 did not significantly affect misfolded CFTR-DF508-induced
apoptosis. These results suggest that the CED complex renders
cells more resistant to proteotoxic stresses induced by the
accumulation of misfolded and aggregated polypeptides.

To more clearly demonstrate the role of the CED complex
in apoptosis induced by the accumulation of misfolded
CFTR-DF508, we carried out complementation experiments
using HeLa cells stably expressing CFTR-DF508, CTIF siRNA
and siRNA-resistant (R) FLAG-CTIF (FLAG-CTIFR), either WT
or 54–598, which fails to interact with DCTN1 and eEF1A1
(Fig. 4). Specific downregulation of CTIF by siRNA and
comparable expression of FLAG-CTIFR-WT and 54–598 were
demonstrated by western blotting (Fig. 6b). As observed
in Fig. 6a, downregulation of CTIF markedly increased the
CFTR-DF508-induced apoptosis of cells (B27% of total cells).
The observed increase in apoptosis was significantly reversed
by the transient expression of FLAG-CTIFR-WT but not of
FLAG-CTIFR(54–598; Fig. 6c,d), indicating that the interactions
of CTIF with DCTN1 and eEF1A1 help cells to cope with
proteotoxic stresses induced by the accumulation of misfolded
polypeptide aggregates.

CTIF is enriched in intracellular inclusion bodies. Many
neurodegenerative diseases are characterized by the presence
of misfolded polypeptide-containing intracellular inclusion
bodies48–53. For instance, the intracellular Lewy bodies containing
aggregated a-synuclein, the inclusions of aggregated huntingtin
protein and the inclusions of copper–zinc superoxide dismutase
(SOD1) mutants are histological hallmarks found in Parkinson’s
disease (PD), Huntington’s disease and amyotrophic lateral
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sclerosis, respectively. The intracellular inclusion bodies are
biochemically and morphologically similar to the aggresome48,
and the formation of inclusion bodies is driven by a cellular
process that is analogous to the formation of aggresomes27.
Therefore, our results, which indicated the important role of CED
complex in aggresome formation, led us to examine whether
CTIF is enriched in the intracellular inclusion bodies of
neurodegenerative diseases. To this end, we first determined
whether CTIF is co-localized with inclusion bodies containing an
amyotrophic lateral sclerosis-linked G93A mutant of SOD1
(SOD1-G93A)54,55. Immunostaining showed that SOD1-G93A,
but not SOD1-WT, overlapped with CTIF in a MG132-
dependent manner (Supplementary Fig. 12).

We also performed immunohistochemical analysis using brain
sections from PD patients with an age-matched normal subject as
a control and antibodies against CTIF and a-synuclein (a marker
protein of Lewy bodies; Fig. 7a). Compared with the normal
control brain, Lewy bodies were identifiable with larger
a-synuclein-immunoreactive bodies throughout the cerebellar
molecular layer of the PD patient brain sections (Fig. 7a,
a-synuclein panel). Strong CTIF immunoreactivity was also
observed within large inclusion bodies in the cerebellar molecular
layer (ml) in the brains of PD patients (Fig. 7a, CTIF panel).
Using double immunofluorescence and confocal microscopic
analysis, we found that CTIF-immunoreactive structures in PD
patients co-localized with a-synuclein-immunoreactive bodies,

which were not detected in sections from the normal brain
(Fig. 7b). These data indicate that CTIF might be a component of
Lewy bodies.

Discussion
The presence of intracellular inclusion bodies containing
misfolded polypeptides is a hallmark of many neurodegenerative
diseases. Despite the importance of understanding the strategies
used by cells to cope with misfolded polypeptides, little is known
regarding how misfolded polypeptides form aggresomes and are
eventually eliminated from cells by aggrephagy. Here we found
that the CED complex plays a pivotal role in monitoring the
quality of misfolded polypeptides. On the basis of these results,
we propose a model for how eukaryotic cells cope with misfolded
polypeptides (Fig. 7c).

Newly synthesized mRNA with a 50-cap bound to CBC is
exported from the nucleus to the cytoplasm. During or after
export, the mRNA recruits ribosomes through CBC with the help
of translation initiation factors, including CTIF, eIF4AIII and
eIF3 (refs 2,4,6,8,9,56). After CBC replacement with eIF4E,
polypeptides are synthesized in the cytoplasm in bulk amounts.
If the newly synthesized polypeptides resulting from either CT or
ET are properly folded, and therefore considered normal, they
are correctly targeted to their precise intracellular locations
and perform their intended functions. If misfolded, however,

FLAG-CTIF-WT

FLAG-CTIF (1–305)

305 379 579 5981 12 54 101

FLAG

FLAG-CTIF (12–598)

FLAG-CTIF (54–598)

FLAG-CTIF (101–598)

CBP80 MIF4G

a c

FLAG-CTIF Merge

WT

12–598

54–598

101–598

WT

12–598

54–598

101–598

FLAG-CTIF Merge

DMSO MG132

b

SLBP40

130

C
T

IF
 (

10
1–

59
8)

C
T

IF
 (

W
T

)
C

T
IF

 (
12

–5
98

)
C

T
IF

 (
54

–5
98

)

C
T

IF
 (

1–
30

5)

pcDNA3-FLAG

FLAG-
CTIF (WT)
or mutants

DCTN1

β-actin

55

100

70

40

Before IP

C
T

IF
 (

10
1–

59
8)

C
T

IF
 (

W
T

)

– –C
T

IF
 (

12
–5

98
)

C
T

IF
 (

54
–5

98
)

C
T

IF
 (

1–
30

5)

After IP
(α-FLAG)

+ RNase A

40

40

eEF1A1

Figure 4 | N-terminal region spanning amino-acid residues 12–53 of CTIF is critical for CED complex integrity and aggresomal targeting.

(a) Schematic diagram of FLAG-tagged CTIF variants. CBP80-interacting region and MIF4G domain are specified by light grey and dark grey boxes,

respectively. (b) CTIF domain mapping by IPs using N-terminal serial deletions of CTIF in HEK293T cells. (c) Immunostaining of FLAG-tagged CTIF variants

(green) in HeLa cells in the presence of either DMSO or MG132. n¼ 3. Scale bar, 10mm.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15730

8 NATURE COMMUNICATIONS | 8:15730 | DOI: 10.1038/ncomms15730 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


the polypeptides are rapidly degraded by the UPS12–15.
However, when the UPS is impaired or overwhelmed,
misfolded polypeptides associate with the CED complex via a
direct association with eEF1A1 (Supplementary Figs 7 and 8),
resulting in two molecular events. First, the misfolded
polypeptides are released in association with the CED complex
from the CT complex (Fig. 2), are transported to an aggresome
via a DCTN1-mediated retrograde movement (Figs 3 and 4) and
are eventually degraded by aggrephagy. Second, aggresomal
targeting of misfolded polypeptides is accompanied by the release
of CTIF from the CT complex, resulting in preferential inhibition
of CT (Fig. 5), which might contribute to a reduction in the
level of misfolded polypeptides within the cells.

How does the misfolded polypeptide-associated CED complex
activate dynein-mediated retrograde transport? The association
between the CED complex and misfolded polypeptides would
trigger a marked remodelling of the CED complex, leading to a
conformational change in DCTN1 from an unfavourable to a
favourable structure for activating the dynein motor. The
favourable structure of DCTN1 may drive efficient recruitment
of dynein and promote processivity of the dynein motor. Indeed,
recent structural and single-molecule experiments have revealed
that, although DCTN1 contains a dynein-binding motif, a stable
interaction between the mammalian dynein motor and dynactin
requires a cargo adaptor, which links the motor complex to the
cargo57,58. Formation of the ternary complex (dynactin–dynein–
cargo adaptor) activates the dynein motor and converts it from a
nonprocessive to a highly processive motor57,58.

Several translation-coupled protein quality-control mechan-
isms have been characterized, which are typified by the
ribosome quality control complex (RQC)16,59. The RQC
selectively removes abnormal nascent polypeptides being
synthesized from stalled ribosomes, rather than pre-existing or
newly synthesized misfolded polypeptides. Although it is unclear
which step of translation is linked to translation-coupled protein

quality-control mechanisms including RQC, it may be
advantageous for cells to sense the synthesis of misfolded
polypeptides as early as possible. In this respect, the CTIF-
mediated coupling of CT and CED-mediated protein surveillance
would be more beneficial for cell proliferation and survival. In
agreement with this, downregulation of CTIF promoted apoptosis
induced by an accumulation of misfolded CFTR-DF508 (Fig. 6).

RQC and CED play a common role in the degradation of
abnormal polypeptides: nascent misfolded polypeptides and
either pre-existing or newly synthesized misfolded polypeptides,
respectively. However, it is likely that the pathways involving
these two complexes differ mechanistically. Indeed, our data
showed that CED-mediated aggresome formation was not
affected by the downregulation of listerin 1 (LTN1), an E3
ligase (Supplementary Fig. 13), which plays a critical role in RQC-
mediated polypeptide degradation by ubiquitinating nascent
polypeptides60. Therefore, CED-mediated protein surveillance is
a previously unappreciated protein quality-control mechanism in
mammalian cells.

HDAC6 has been identified as an adaptor molecule that links
polyubiquitinated small cytoplasmic aggregates and dynein motor
proteins27,30,31. When the UPS is impaired or overwhelmed,
polyubiquitinated small cytoplasmic aggregates associate with
HDAC6 via their unanchored ubiquitins or ubiquitin chains32,
and are then transported to aggresomes in a microtubule- and
dynein-dependent manner. The CED complex characterized in
this study might cooperate with HDAC6 to promote efficient
aggresome formation and the aggrephagy of misfolded
polypeptides upon UPS impairment. Multiple lines of evidence
in this study support the cooperativity of the CED complex
and HDAC6. First, CTIF was co-localized with HDAC6
(Supplementary Fig. 3a). Second, whereas a small amount
of HDAC6 was detected in the IP of CTIF, MG132 treatment
promoted the association between HDAC6 and CTIF
(Supplementary Fig. 5a). Third, downregulation of either CED
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components or HDAC6 commonly triggered the dispersion of
aggresomes containing polyubiquitin-enriched CFTR-DF508,
but not polyubiquitin-deficient GFP-250, into small cytoplasmic
aggregates (Fig. 3c and Supplementary Fig. 6a,c). These
observations suggest that the CED complex functions
cooperatively with HDAC6 to trigger the aggresome formation
of misfolded and polyubiquitinated proteins.

In addition to CED and HDAC6, the BCL2-associated
athanogene 3 (BAG3)-containing chaperone/co-chaperon
complex is known to recognize misfolded polypeptides and
transport them to aggresomes61,62. We observed that (i) MG132
treatment upregulated BAG3, consistent with a previous report62,
and promoted the association between endogenous BAG3
and FLAG-CTIF (Supplementary Fig. 14a), and (ii) the

polyubiquitin-enriched aggresome containing misfolded CFTR-
DF508 was significantly dispersed by BAG3 downregulation
(Supplementary Fig. 14b,c). Therefore, it is most likely that CED
may physically interact with and act in concert with HDAC6 and
BAG3 for efficient aggresome formation.

Clinically, aggresomes have received much attention owing to
their biochemical and morphological similarities to the misfolded
protein inclusion bodies observed in the cytoplasm of neuronal
cells affected by many neurodegenerative diseases. We also
observed that CTIF is considerably enriched in the Lewy bodies
found in neurons affected by PD (Fig. 7a,b). In light of their
similarities, therefore, aggresomes are thought to play a critical
role in both protein surveillance and the pathogenesis of
neurodegenerative diseases. Our findings for CED-mediated
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protein surveillance and aggresome formation could provide
molecular insight into the treatment of neurodegenerative disease.

Methods
Plasmid construction. The following plasmids have been described previously:
pcDNA3-FLAG-CTIF-WT, pcDNA3-FLAG-CTIF(1–305) and pCMV-Myc-CTIF6;
pcDNA3-FLAG-Dcp1a63; and pcDNA3-FLAG6,64.

The following plasmids were kindly provided as follows: pcDNA3-HDAC6-
FLAG provided by Tso-Pang Yao27; pCXbsr-mRFP-Ub and pEGFP-N1-SYN1
by Michael Sherman36,39; GFP-CFTR-DF508 (CFTR-DF508) by Ryan Tyler27;
GFP-250 by Elizabeth Sztul65; and pEBG expressing GST by Sung Key Jang
(Pohang University of Science and Technology, Pohang, Korea).

The plasmids pCNS-D2-dynactin 1 containing DCTN1 cDNA (NM_004082.4)
and pOTB7-eEF1A1 containing full-length human eEF1A1 cDNA (NM_001402.5)
were purchased from the Korea Human Gene Bank (Daejeon, Korea).
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To construct pCMV-Myc-DCTN1, pCMV-Myc (Clontech) was digested
with EcoRI and Acc65I and then ligated to two PCR-amplified fragments: an
EcoRI/BamHI fragment of the PCR-amplified 50-half of DCTN1 cDNA and a
BamHI/Acc65I fragment of the PCR-amplified 30-half of DCTN1 cDNA. The
EcoRI/BamHI fragment was amplified using pCNS-D2-dynactin 1 and two
oligonucleotides: 50-AAATATGCGGCCGCCCGAATTCGCATGGCACAGAGCA
AGAGGCACGTGTAC-30 (sense) and 50-GATACCTGTGGTCCAAAGGCCA
GTGCAGC-30 (antisense). A BamHI/Acc65I fragment was amplified using
pCNS-D2-dynactin 1 and two oligonucleotides: 50-GCAAGAAGATCCGAAGGC
GAATGCCAGG-30 (sense) and 50-GGGGTACCTTAGGAGATGAGGCGACTGT
GAAGCTGG-30 (antisense), where the underlined nucleotides specify the EcoRI
and BamHI sites. PCR amplification was carried out using the Advantage-HF2
PCR Kit (Clontech).

To construct plasmids p3� FLAG-eEF1A1 and pCMV-Myc-eEF1A1,
which encode FLAG-tagged and Myc-tagged full-length human eEF1A1 cDNA,
respectively, a NotI/KpnI fragment from p3� FLAG-CMV-7.1 (Sigma)
and an EcoRI/KpnI fragment from pCMV-Myc (Clontech) were ligated to a
PCR-amplified fragment that contained full-length human eEF1A1 cDNA and was
digested with NotI/KpnI and EcoRI/KpnI, respectively. The full-length human
eEF1A1 cDNA was amplified using pOTB7-eEF1A1 as a template and two
oligonucleotides 50-CGGAATTCCGGCGGCCGCTATGGGAAAGGAAAAGACT
CATATCAACATTG-30 (sense) and 50-GGGGTACCTCATTTAGCCTTCTGAGC
TTTCTGGGCAG-30 (antisense), where the underlined nucleotides specify the
EcoRI, NotI and KpnI sites, respectively.

For bacterial production of human DCTN1 and eEF1A1, the EcoRI/Klenow-
filled Acc65I fragment from pCMV-Myc-DCTN1 and the KpnI/Klenow-filled
NotI fragment from p3� FLAG-eEF1A1 were inserted into pRSET A (Invitrogen),
respectively.

To construct plasmids expressing a series of N-terminal deletions of CTIF,
a BamHI/BstEII fragment of pcDNA3-FLAG-CTIF-WT containing the 50-terminal
region of the full-length CTIF cDNA was replaced with a PCR-amplified fragment
that contained a 50-terminal deletion of CTIF cDNA and was digested with BamHI
and BstEII. The 50-terminal deletion fragment of CTIF cDNA was amplified using
pcDNA3-FLAG-CTIF-WT as a template and two oligonucleotides: 50-CGGGATCC
GAGGCAGGGAGCAGCCGCTCCCAGGAG-30 (sense) and 50-GTGTTTGGCAC
TGCCTGGCTGGTGGTC-30 (antisense) were used to construct pcDNA3-FLAG-
CTIF(12–598); 50-CGGGGATCCACCCAGTCCCACATCTCCCAGTGGAC-30

(sense) and 50-GGCACTGCCTGGCTGGTGGTCACC-30 (antisense) were used
to construct pcDNA3-FLAG-CTIF(54–598); and 50-CGGGGATCCGCGGCC
AACACCTTCGATTCCTTC-30 (sense) and 50-GGCACTGCCTGGCTGGT
GGTCACC-30 (antisense) were used to construct pcDNA3-FLAG-CTIF(101–598),
respectively. The underlined nucleotides specify the BamHI and BstEII sites,
respectively.

To construct pCMV-Myc-CTIF(1–53)-GST and pCMV-Myc-CTIF(12–53)-
GST, a BglII/NotI fragment of pCMV-Myc was ligated to two fragments: (i) a
PCR-amplified and BglII/XhoI-digested fragment containing a CTIF(1–53) or
CTIF(12–53) sequence; and (ii) a XhoI/NotI fragment of pEBG containing the
GST sequence. The PCRs were performed using pcDNA3-FLAG-CTIF-WT as a
template and two oligonucleotides: 50-GGAAGATCTCTATGGAAAACTCCTCT
GCAGCATCAGCC-30 (sense) and 50-CCGCTCGAGCCTCTCGCTCTCGCCATC
ACCCTCC-30 (antisense) were used to construct pCMV-Myc-CTIF(1–53)-GST;
and 50-GGAAGATCTCTGAGGCAGGGAGCAGCCGCTCCCAG-30 (sense) and
50-CCGCTCGAGCCTCTCGCTCTCGCCATCACCCTCC-30 (antisense) were used
to construct pCMV-Myc-CTIF(12–53)-GST. The underlined nucleotides specify the
BglII and XhoI sites, respectively. To generate pCMV-Myc-GST, a Klenow-treated
SalI/XhoI fragment of pCMV-Myc-CTIF(1–53)-GST was self-ligated.

To construct pEBG-CTIF-WT and pEBG-CTIF(54–598), the BamHI/Klenow-
filled ClaI fragment from pEBG was ligated to the BamHI/EcoRV fragment from
pcDNA3-FLAG-CTIF and pcDNA3-FLAG-CTIF(54–598), respectively.

To construct pcDNA3-FLAG-CTIFR-WT, which encodes an siRNA-resistant
(R) version of FLAG-CTIF, specific target sequences that anneal to CTIF siRNA
were mutated from 50-GAAGTGGAGATCGCACACA-30 to 50-GAGGTAGAAA
TAGCGCACA-30 , where italicized nucleotides specify the sites of silent mutations
that confer resistance to CTIF siRNA. To construct pcDNA3-FLAG-CTIFR

(54–598), a BamHI/BstEII fragment of pcDNA3-FLAG-CTIFR-WT was replaced
with a BamHI/BstEII fragment, which contained an N-terminal deletion fragment
of CTIF cDNA and was amplified by PCR. The PCR was performed using
pcDNA3-FLAG-CTIFR-WT as a template and two oligonucleotides: 50-CGG
GGATCCACCCAGTCCCACATCTCCCAGTGGAC-30 (sense) and 50-GGCACT
GCCTGGCTGGTGGTCACC-30 (antisense). The underlined nucleotides specify
the BamHI and BstEII sites, respectively.

Cell culture and transfection and cell line generation. HeLa and HEK293T cells
(purchased from ATCC) were cultured in DMEM (Hyclone) containing 10% fetal
bovine serum (Hyclone) and 1% penicillin/streptomycin (Hyclone). MEF cells
expressing eIF2a mutant (A/A) harbouring S51A substitution (a kind gift from
Sung Hoon Back, Ulsan University, Republic of Korea) were maintained in
DMEM supplemented with 10% fetal bovine serum, 1% penicillin/streptomycin
and 1� MEM non-essential amino acids (Gibco). Cells were transiently
transfected with the indicated plasmids using calcium phosphate or Lipofectamine
2000 (Invitrogen).

HeLa cells stably expressing CFTR-DF508 were generated by transfection of a
plasmid expressing GFP-CFTR-DF508 with Lipofectamine 2,000. Two days after
transfection, the cells were serially diluted and cultured in DMEM containing
0.8 mg ml� 1 Geneticin (G418; Gibco). Colonies were selected and maintained in
DMEM containing 0.4 mg ml� 1 G418. Stable expression of CFTR-DF508 was
confirmed by immunostaining and quantitative real-time PCR (qRT–PCR). All cell
lines were regularly cultured in DMEM containing plasmocin (Invivogen) and
tested for mycoplasma contamination using the MycoAlert PLUS Mycoplasma
detection kit (Lonza).

siRNA transfection. To downregulate endogenous protein using a specific siRNA,
the cells were transfected with 100 nM in vitro-synthesized siRNA (GenePharma)
using Oligofectamine (Invitrogen). The siRNA sequences for the control66, UPF2
(ref. 66) and CTIF6 have been described previously. Endogenous DCTN1, eEF1A1
and HDAC6 were downregulated using 50-r(CAGAGAAGGCAGAACUAAA)
d(TT)-30 , 50-r(CCCAGGACACAGAGACUUU)d(TT)-30 and 50-r(AGACCUAA
UCGUGGGACUGC)d(TT)-30, respectively. To downregulate endogenous LTN1
and BAG3, two different siRNAs targeting the same gene were used: 50-r(GGA
AGAAAGAGAAGCUAAA)d(TT)-30 for LTN1–1, 50-r(AGCCAAACCUCUUG
AAAUA)d(TT)-30 for LTN1-2, 50-r(AAGGUUCAGACCAUCUUGG)d(TT)-30 for
BAG3-1 and 50-r(UUUCUUCUAUAUUCUUACU)d(TT)-30 for BAG3-2.

Chemical treatments. Where indicated, the cells were treated with the following
chemicals: MG132 (5 mM; Calbiochem), bafilomycin A1 (100 nM; Calbiochem),
nocodazole (1 mM; Calbiochem) and DMSO (BioShop) for 12 h. To observe
polypeptidyl-puro, the cells were treated with MG132 for 12 h and treated with
puromycin (1 mg ml� 1 for immunostaining and 10 mg ml� 1 for IPs; Sigma) for 1 h
before cell fixation or harvesting.

RNA preparation and quantitative real-time PCR. Total RNAs were purified
using TRIzol Reagent (Invitrogen). qRT–PCR analyses were performed with cDNA
and gene-specific oligonucleotides with a LightCycler 480 SYBR Green I Master Kit
(Roche Diagnostics GmbH) using a LightCycler 480 II machine. The following
gene-specific oligonucleotides were used: 50-GGAGTACAACTACAACAGCC-30

(sense) and 50-CAGCAGGACCATGTGATCGC-30 (antisense) to detect CFTR-
DF508 mRNAs; and 50-TGGCAAATTCCATGGCACC-30 (sense) and 50-AGA
GATGATGACCCTTTTG-30 (antisense) to detect GAPDH mRNAs.

Fluorescence in situ hybridization. To determine the intracellular distributions
of mRNAs, HeLa cells stably expressing CFTR-DF508 were analysed using a
QuantiGene ViewRNA in situ hybridization Cell Assay (Affymetrix) according to
the manufacturer’s instructions. Briefly, the cells were fixed with 4% paraf-
ormaldehyde (Sigma) in PBS for 30 min at room temperature (RT) and then
permeabilized with detergent solution for 10 min at RT. Next, the cells were treated
with protease for 10 min at RT, and then treated with specific probes capable of
hybridizing to either GFP mRNA or GAPDH mRNA for 3 h at 40 �C. After
mRNA–probe hybridization, the cells were incubated for 30 min at 40 �C with
PreAmplifier Mix, Amplifier Mix and Label Probe Mix, sequentially. After the
RNA-fluorescent in situ hybridization assay, the GFP-positive aggresomes were
stained as described in the immunostaining section.

Antibodies. Antibodies against the following molecules were used for immunos-
taining, IPs and western blotting: CTIF6 (1:50 for immunostaining and 1:1,000 for
western blotting), CBP80 (ref #8 or #9983, Cell Signaling, 1:1,000), eIF3b (sc-16377,
Santa Cruz, 1:1,000), DCTN1 (p150glued; 610474, BD Biosciences, 1:12.5 for
immunostaining and 1:250 for western blotting), eEF1A1 (CBP-KK1; #05–235,
Merck Millipore, 1:1,000), eIF4E (C46H6; #2067, Cell Signaling, 1:1,000 or 610269,
BD Biosciences, 1:500), b-actin (A5441, Sigma, 1:10,000), GST (A190-122A,
Bethyl Laboratories, 1:8,000), His (27-4710-01, GE Healthcare, 1:3,000), FLAG
(OctA-Probe (D-8), 1:40; sc-807, Santa Cruz (rabbit polyclonal) and F1804,
Sigma (mouse monoclonal), 1:80 for immunostaining), FLAG M2-Peroxidase
(horseradish peroxidase; A8592, Sigma,1:5,000 for western blotting), HDAC6
(sc-11420, Santa Cruz, 1:1,000), eIF4AIII67 (1:1,000), rpS3 (ab140688, Abcam,
1:20,000), eIF4GI (a gift from S. K. Jang (Pohang University of Science and
Technology, Pohang, Korea), 1:5,000), UPF2 (ref. 67; 1:1,000), g-tubulin (sc-17788,
Santa Cruz, 1:20), Myc (9E10; OP10L, Calbiochem, 1:1,000 for western blotting
and sc-789, Santa Cruz, 1:40 for immunostaining), Vimentin (v5255, Sigma, 1:200),
DCP1A (D5444, Sigma, 1:50), GFP (sc-9996, Santa Cruz, 1:50), puromycin (12D10;
#MABE343, Merck Millipore, 1:400 for immunostaining and 1:10,000 for
western blotting), LTN1 (OAAB11604, Aviva, 1:500), SLBP68 (1:2,000),
K63-linkage-specific polyubiquitin (#5621, Cell Signaling, 1:1,000), a-Synuclein
(610787, BD Biosciences, 1:50), GAPDH (LF-PA0212, AbFrontier, 1:10,000),
BAG3 (10599-1-AP, Proteintech, 1:5,000), Alexa Fluor 488 goat a-mouse IgG
(A-11017, Invitrogen, 1:200), rhodamine-conjugated goat a-rabbit IgG (31670,
Invitrogen, 1:200), biotinylated goat a-Rabbit IgG (BA-1000, Vector Laboratories,
1:500), biotinylated goat a-mouse IgG (BA-9200, Vector Laboratories, 1:500),
Alexa Fluor 568 donkey a-mouse IgG (A10037, Invitrogen, 1:1,000) and Alexa
Fluor 488 donkey a-rabbit IgG (Hþ L; A-21206, Invitrogen, 1:500).
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Immunostaining. Immunostained HeLa cells were observed using either an
LSM 510 Meta or an LSM 700 confocal microscope (Carl Zeiss). HeLa cells were
fixed with 2% paraformaldehyde in PBS for 10 min and then permeabilized with
0.5% Triton X-100 in PBS for 10 min. The cells were incubated with 1.5% BSA
(Santa Cruz) in PBS for 1 h and then with primary antibodies in PBS containing
0.5% BSA for 1 h. Next, the cells were incubated with Alexa Fluor 488 or
rhodamine-conjugated secondary antibodies for 1 h, and nuclei were stained with
40 ,6-diamidino-2-phenylindole (DAPI; Biotium) for 5 min. The cells were then
mounted (Dako) and observed using a Zeiss confocal microscope. All procedures
were performed at RT.

Quantification of aggresome-containing cells. To quantify CTIF bodies, 100
cells containing CTIF bodies were counted and the size of each CTIF body was
measured using a Zeiss LSM Image Browser. To quantify the cells containing
aggresomes of polypeptidyl-puro or CFTR-DF508, 50–100 cells were counted.
Cell counting was performed in a blinded way by two experienced independent
investigators. The results obtained from at least two biological replicates were
independently counted.

IP and RNA-IP. IP and RNA-IP were performed using HEK293T cells or HeLa cells
stably expressing CFTR-DF508. Where indicated, cells were transfected with the
indicated plasmids by calcium phosphate precipitation. Two days after transfection,
cells were washed using ice-cold PBS and harvested by centrifugation at 3,000 g for
10 min at 4 �C. The pellet was resuspended with 500ml of NET-2 buffer (1 mM
phenylmethylsulfonyl fluoride (PMSF), 2 mM benzamidine, 150 mM NaCl, 0.05%
NP-40 and 50 mM Tris-HCl (pH 7.4)). And then, the cells were sonicated two times
with 30 bursts of 1 s each (Branson Sonifier 250, output control 3, duty cycle 30%).
Cell extracts were centrifugated at 13,800 g for 10 min at 4 �C. The supernatants were
pre-cleared with 50ml of protein G or A-agarose beads (Incosphram) for 90 min at
4 �C. While pre-clearing the supernatant, a specific antibody for IP was incubated
with 50ml of protein G or A-agarose beads for 90 min at 4 �C, and antibody-
conjugated beads were washed with ice-cold NET-2 buffer. Pre-cleared supernatants
were mixed with antibody-conjugated bead and incubated for 2 h at 4 �C. In the case
of IP of FLAG-tagged protein, FLAG antibody-conjugated agarose beads (Sigma)
were added. After incubation, the beads were washed five times and suspended in
100ml of 2� sample buffer (10% b-mercaptoethanol, 4% SDS, 100 mM Tris-HCl
(pH 6.8), 15% glycerol and 0.008% Bromophenol Blue). Co-immunopurified
proteins were analysed by western blotting.

RNA-IP was performed similarly to IP as described above, except that the
supernatants obtained after sonication were incubated with tRNA-saturated and
antibody-conjugated beads. After RNA-IP, the beads were suspended in 100 ml of
2� sample buffer. After quick spin-down, 80 ml of the supernatants was used for
the detection of co-immunopurified RNAs. The RNAs were extracted using phenol,
chloroform and isoamyl alcohol, and precipitated using ethanol. The remaining
supernatants were used for western blotting.

Western blotting. Cell extracts or immunopurified proteins were subjected to SDS–
polyacrylamide gel electrophoresis. And then proteins were transferred to Protran
Premium nitrocellulose (Amersham) and were probed by a specific antibody.

Polysome fractionation. MEF-eIF2a (A/A) cells were cultured in three 150-mm
culture dishes. When indicated, the cells were transiently transfected with plasmid
expressing either GST-CTIF-WT or GST-CTIF(54–598). Two days after transfec-
tion, cells were washed with 10 ml of ice-cold PBS containing 100 mg ml� 1

cycloheximide. After washing, cell extraction was resuspended with 1 ml of lysis
buffer (50 mM MOPS, 15 mM MgCl2, 150 mM NaCl, 100 mg ml� 1 cycloheximide,
0.5% Triton X-100, 1 mg ml� 1 Heparin, 0.2 U ml� 1 RNase inhibitor, 2 mM PMSF
and 1 mM benzamidine) and centrifuged. After harvesting, soluble fraction was
loaded onto the top of the pre-established sucrose gradient (10 ml of 10B50%),
and centrifuged at 36,000 r.p.m. in a Beckman SW-41 Ti rotor for 2 h at 4 �C. After
ultracentrifugation, gradients were fractionated and collected using the ISCO tube
piercer (Brandel) and fraction collector (Bio-Rad). Fractions were analysed by
western blotting, where the signal intensities of each fraction were quantitated and
analysed using the Multi Gauge software (version 3.0, Fujifilm).

LC-MS/MS. Immunoprecipitates of FLAG-CTIF-WT were analysed by
SDS–PAGE and stained with silver nitrate. In-gel digestion and LC-MS/MS were
conducted by ProteomTech, Korea.

GST pull-down assay. An in vitro GST pull-down assay was performed using
recombinant proteins. Each recombinant protein was expressed in Escherichia coli
BL21 (DE3) pLysS by adding 1 mM isopropylthiogalactoside when the OD at
600 nm reached 0.5. GST-tagged proteins and either His-eEF1A1 or His-DCTN
were incubated in 800ml of binding buffer (10 mM Tris-HCl (pH 8.0), 150 mM
NaCl, 1% (vol/vol) glycerol, 0.001% BSA, 0.1% Triton X-100, 1 mM PMSF,
2 mM benzamidine and protease inhibitor cocktail tablets) at 4 �C for 1 h.
After incubation, the mixture was added to Glutathione Sepharose 4B resin

(Amersham-Pharmacia Biotech) and further incubated for 1 h. The mixture was
washed five times with 1 ml of binding buffer. And then, the bead-bound proteins
were resolved by SDS–PAGE and analysed by western blotting.

TUNEL assay. Terminal deoxynucleotidyl transferase dUTP nick end labelling
(TUNEL) assay was performed using the in situ cell death detection kit (Roche)
according to the manufacturer’s instructions. Briefly, HeLa cells stably expressing
CFTR-DF508 were transiently transfected with the indicated siRNA. Two days
later, the cells were treated with MG132 for 12 h. The cells were fixed with 4%
paraformaldehyde in PBS for 30 min at RT, and endogenous peroxidase activity
was blocked using 3% hydrogen peroxide (Sigma) in PBS for 10 min at RT. The
cells were permeabilized with 0.1% Triton X-100 in PBS for 10 min at RT. DNA
strand breaks were then labelled with tetramethylrhodamine (TMR) red for 1 h at
37 �C. Nuclei were stained with DAPI for 5 min at RT. Cells were visualized using a
Zeiss confocal microscope (LSM 510 Meta). To quantify the apoptotic cells, more
than 100 cells were counted for each experiment. The results obtained from three
independently performed TUNEL assays were counted and analysed.

For the complementation assay, HeLa cells stably expressing CFTR-DF508
were transiently transfected with the CTIF siRNA. The following day, the cells were
re-transfected with siRNA-resistant pcDNA3-FLAG-CTIFR-WT or 54–598.

Immunohistochemistry. Formalin-fixed, paraffin-embedded human cerebellum
brain tissue samples of 5 mm thickness were obtained from Biochain. The PD
patient was 73 years old, and an age-matched normal subject was used as a control.
Brain samples were stained with haematoxylin and eosin to ensure the quality.

After deparaffinization, hydration and heat-induced antigen retrieval (10 mM
sodium citrate, pH 6.0, microwave boiling, 3 min� 5 times), the sections were
placed in 0.3% hydrogen peroxide in methanol for 10 min. After incubation in a
blocking solution (5% BSA, 0.3 Triton X-100 in PBS (pH 7.4)) at RT for 1 h, the
tissues were incubated with anti-a-synuclein antibody (1:50, BD Biosciences) and
anti-CTIF antibody (1:50) at 4 �C for 72 h. For immunohistochemistry, sections
were incubated in biotinylated secondary antibodies (a-rabbit IgG 1:500, a-mouse
IgG 1:500, Vector Laboratories) at RT for 1 h, and then incubated with an ABC kit
(Vector Laboratories) for 30 min. Sections were reacted with 3,30-diaminobenzidine
(DAB) (Vector Laboratories), and then dehydrated and coverslipped.

Double-immunofluorescent histochemistry. For double-immunofluorescent
histochemistry, slides were incubated with Alexa Fluor 568 donkey a-mouse IgG
secondary antibody (Life Technologies, 1:1,000) for the detection of a-synuclein
and Alexa Fluor 488 donkey a-rabbit IgG (Hþ L) Antibody for the detection of
CTIF at RT for 1 h. For visualization of the nuclei, sections were incubated with
0.2 ml ml� 1 40 ,6-diamidino-2-phenylindole (DAPI; Sigma) in PBS for 10 min. After
washing, the sections were mounted in Vectashield (Vector Laboratories).

Statistical analysis. Throughout the paper, quantitations are shown as
means±s.d.’s. Statistical analyses were performed with two-tailed, equal-sample
variance Student’s t-tests. In all cases, statistical significance was considered with
P valueo0.05.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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