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Copyright © 2015 Seungho Yang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

For a system randomly prepared in a number of quantum states, we present a lower bound for the distinguishability of the quantum
states, that is, the success probability of determining the states in the form of entropy. When the states are all pure, acquiring the
entropic lower bound requires only the density operator and the number of the possible states.This entropic bound shows a relation
between the von Neumann entropy and the distinguishability.

1. Introduction

Quantum mechanics does not allow determining the state
of a system by measuring a single copy of the ensemble.
Nevertheless, if some prior information is known, it is
possible to guess the state with a certain degree of confidence
even by a singlemeasurement. Given someprior information,
to what extent quantum states can be distinguished is an
intriguing issue from both fundamental and practical points
of view. For example, this problem is closely related to
efficiencies of quantum communication [1–3]. It is known
that the imperfect distinguishability plays a crucial role in the
security of quantum cryptography [3].

There are different approaches to the distinguishability of
quantum states [4–7]. In the minimum-error discrimination
problem [4], a set of known quantum states and preparation
probabilities are given, and one aims to distinguish the states
with the optimal probability of success. The optimal success
probability is an operationally well-defined measure for the
distinguishability of given states. However, it is a highly
demanding quest to find its analytical solution for general
sets of states, and the solution is only known for the sets
of two states [1]. Instead, upper bounds [8–12] and lower
bounds [13–15] have been provided to estimate the optimal
probability. On the other hand, there have been studies of
distinguishability between unknown quantum states using

programmable machines [6, 7]. In this case, ancillary systems
prepared in each of the unknown states are provided as an
input of the machine.

One may pay attention to the von Neumann entropy
as a quantity related to the distinguishability in light of
the capacity of a quantum state for embodying quantum
information. When a system is probabilistically prepared
in one of a certain number of quantum states, its state of
the statistical mixture is described by a density operator.
According to the quantum source theorem [16], the von
Neumann entropy of the system, which is given as a function
of the density operator, represents the capacity of the mixed
state to (asymptotically) carry quantum information. As
discussed in [17], onemay relate this capacity to the concept of
distinguishability because more information could be carried
when each state is more distinguishable. For this reason,
Jozsa and Schlienz considered the von Neumann entropy
as measure for distinguishability [17]. However, it is not
known whether this kind of distinguishability is linked to
the actual ability to distinguish quantum states by measure-
ments, namely, the success probability (distinguishability will
henceforth refer to the success probability). It seems that, at
least, the von Neumann entropy cannot pinpoint the success
probability of distinguishing given quantum states. This is
because the von Neumann entropy is determined only by the
density operator, and the density operator of a systemcan take
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arbitrarily many decompositions in general; thus it does not
contain information on which states the system could have
been prepared in.

We here present a lower bound for the distinguishability,
that is, the optimal success probabilities of distinguishing
between quantum states, as a function of entropies of the
system. For a system prepared in one of𝑁 pure states, we also
present a reduced form of the entropic bound which requires
the density operator and the number of possible states𝑁 for
its evaluation. It reveals a relation between the von Neumann
entropy and the distinguishability; the larger von Neumann
entropy guarantees the better distinguishability.

2. General Formulation

Consider a quantum system prepared in one of 𝑁 quantum
states with some probabilities.We denote themby {𝑝

𝑥
, 𝜌
𝑥
}
𝑁

𝑥=1
.

One wishes to identify which state the system has been
prepared in or, equivalently, to identify the value of 𝑥. The
value of 𝑥 is determined, using a generalized measurement
described by the measurement operator {�̂�

𝑥
}
𝑁

𝑥=1
. Therefore,

the probability of correctly identifying 𝑥 for a given 𝑥 is
Tr[�̂�
𝑥
𝜌
𝑥
], and the expected success probability is

𝑃
𝑠
=

𝑁

∑

𝑥=1

𝑝
𝑥
Tr (�̂�

𝑥
𝜌
𝑥
) . (1)

When maximized over all measurements, it becomes the
optimal success probability, which is denoted by 𝑃

∗

𝑠
. It

is the quantity which we consider as the degree of the
distinguishability of quantum states. As already mentioned,
however, the analytical form of 𝑃∗

𝑠
is known only for the two-

state case [1].
An equivalent way of describing the scenario is to con-

sider a classical-quantum system𝑋𝑄 in the state,

𝜎
𝑋𝑄

= ∑

𝑥

𝑝
𝑥
|𝑥⟩ ⟨𝑥| ⊗ 𝜌

𝑥
, (2)

where the indices 𝑥’s are encoded. Namely, one is given
the quantum system 𝑄 and wishes to determine the value
of 𝑥 by measuring 𝑄. In terms of entropic quantities, 𝑋
has uncertainty quantified by Shannon entropy 𝐻(𝑋) =

−∑𝑝
𝑥
log𝑝
𝑥
, and it has a correlation with the quantum

system.
One may expect an entropic lower bound from the

intuition that the correlation of 𝑄 with𝑋 would enhance the
distinguishability of the quantum states. For better under-
standing, let us first consider a fully classical case [18], where
the quantum system 𝑄 is replaced with a classical system 𝑌

and 𝜌
𝑥
= ∑
𝑦
𝑝(𝑦 | 𝑥)|𝑦⟩⟨𝑦|. Assume that we are given 𝑌 and

wish to determine the value of 𝑥 from𝑦. For given𝑦, themost
probable 𝑥 is the one that gives the maximum conditional
probability, max

𝑥
𝑝(𝑥 | 𝑦). Therefore, the optimal success

probability is attained by choosing them for all 𝑦, and it is

given as𝑃∗
𝑠
= ∑
𝑦
𝑝(𝑦)max

𝑥
𝑝(𝑥 | 𝑦). It can be lower bounded

in terms of the correlation between𝑋 and 𝑌 as follows:

𝑃
∗

𝑠
= ∑

𝑦

𝑝 (𝑦)max
𝑥

(𝑥 | 𝑦) ⩾ ∑

𝑦

𝑝 (𝑦)∑

𝑥

𝑝 (𝑥 | 𝑦)
2

= ∑

𝑥,𝑦

𝑝 (𝑥, 𝑦) 𝑝 (𝑥 | 𝑦) = ∑

𝑥,𝑦

𝑝 (𝑥, 𝑦) 2
log𝑝(𝑥|𝑦)

⩾ 2
∑
𝑥,𝑦
𝑝(𝑥,𝑦) log𝑝(𝑥|𝑦)

.

(3)

The first inequality follows by taking the average of 𝑝(𝑥 | 𝑦)

over 𝑝(𝑥 | 𝑦), and the second one follows from the concavity
of the exponential function. The exponent in the last line is
equal to the conditional Shannon entorpy𝐻(𝑋 | 𝑌) so that

𝑃
∗

𝑠
⩾ 2
−𝐻(𝑋|𝑌)

= 2
−𝐻(𝑋)+𝐻(𝑋:𝑌)

, (4)

where𝐻(𝑋 : 𝑌) is the classical mutual information between
𝑋 and𝑌.Therefore, with assistance from the random variable
𝑌 having the amount of correlation𝐻(𝑋 : 𝑌), one can guess
the random variable𝑋with probability (in logarithm) at least
−𝐻(𝑋) + 𝐻(𝑋 : 𝑌).

3. Entropic Lower Bound for
the Distinguishability of Quantum States

For the quantum case, we can still obtain a random variable
�̃� by applying a measurement (i.e., the outcome of the
measurement can be considered as random variable), and
applying (4) gives log𝑃∗

𝑠
⩾ −𝐻(𝑋 | �̃�). However, this bound

can be further sharpened by using the quantum entropies.
For a quantum system prepared in a density operator 𝜒

𝐴
, the

von Neumann entropy 𝑆(𝐴) is defined as 𝑆(𝐴) = 𝑆(𝜒
𝐴
) =

−Tr[𝜒
𝐴
log𝜒
𝐴
]. The conditional von Neumann entropy of a

bipartite system 𝐴𝐵 is defined as 𝑆(𝐴 | 𝐵) = 𝑆(𝐴𝐵) − 𝑆(𝐵).
Similarly, 𝐼(𝐴 : 𝐵) = 𝑆(𝐴) + 𝑆(𝐵) − 𝑆(𝐴𝐵) defines the von
Neumann mutual information [19]. In terms of the quantum
entropies, we present the quantum entropic lower bound.

Theorem 1. For a set of quantum states with preparation
probabilities {𝑝

𝑥
, 𝜌
𝑥
}
𝑁

𝑥=1
, the optimal success probability of

distinguishing the quantum states, 𝑃∗
𝑠
, is lower bounded as

𝑃
∗

𝑠
⩾ 2
−𝑆(𝑋|𝑄)

= 2
−𝐻(𝑋)+𝐼(𝑋:𝑄)

= 2
−𝐻(�⃗�)+𝑆(∑𝑝

𝑥
𝜌
𝑥
)−∑𝑝

𝑥
𝑆(𝜌
𝑥
)

.

(5)

Proof. For the proof, we employ the conditional min-entropy
[20], which has many applications in quantum cryptography.
The conditional min-entropy 𝑆min(𝐴 | 𝐵) of a system 𝐴𝐵 in a
state 𝜌

𝐴𝐵
is defined as

𝑆min (𝐴 | 𝐵)

= − inf
𝜎
𝐵
∈𝜋
𝐵

inf {𝜆 ∈R : 𝜌
𝐴𝐵

⩽ 2
𝜆

(1
𝐴
⊗ 𝜎
𝐵
)} ,

(6)

where 𝜋
𝐵
denotes the set of all quantum states of the subsys-

tem 𝐵. We derive the lower bound (5) from two properties
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of the conditional min-entropy. First, the conditional min-
entropy has an operational meaning that, for the classical-
quantum states in (2), the logarithm of 𝑃∗

𝑠
is equal to the

negative conditional min-entropy (see [21] for the details).
Therefore, for the classical-quantum state in (2),

log𝑃∗
𝑠
= −𝑆min (𝑋 | 𝑄) . (7)

It has also been shown in [22] that the conditional min-
entropy is always less than or equal to the conditional von
Neumann entropy, so we have

𝑆min (𝐴 | 𝐵) ⩽ 𝑆 (𝐴 | 𝐵) . (8)

Using (7) and (8), we obtain

log𝑃∗
𝑠
⩾ −𝑆 (𝑋 | 𝑄) , (9)

which is equivalent to the first line in (5). On the other hand,
the conditional vonNeumann entropy satisfies the chain rule,
𝑆(𝑋 | 𝑄) = 𝑆(𝑋) − 𝑆(𝑋𝑄). It enables the lower bound to be
written as a function of entropies of the system 𝑄. The von
Neumann entropies of 𝑋𝑄 and 𝑋 are evaluated as 𝑆(𝑋𝑄) =
𝑆(∑𝑝

𝑥
𝜌
𝑥
) − ∑𝑝

𝑥
𝑆(𝜌
𝑥
) and 𝑆(𝑋) = 𝐻(�⃗�). It then follows that

𝑆(𝑋 | 𝑄) = 𝐻(�⃗�) − 𝑆(∑𝑝
𝑥
𝜌
𝑥
) + ∑𝑝

𝑥
𝑆(𝜌
𝑥
), and this gives the

second line in (5).

Let us take a closer look into the form of the lower bound.
Its form is exactly of (4), but only 𝐻(𝑋 : 𝑌) is replaced
with 𝐼(𝑋 : 𝑄). The quantum mutual information is known
to capture all the correlations including both classical and
quantum parts [23, 24], so it is considered as a measure of
the total correlations. Hence, we see that the lower bound is
increased by the total correlation. For the classical-quantum
state 𝜎

𝑋𝑄
, we obtain 𝐼(𝑋 : 𝑄) = 𝑆(∑𝑝

𝑥
𝜌
𝑥
) − ∑𝑝

𝑥
𝑆(𝜌
𝑥
),

and Holevo’s theorem [25, 26] implies that 𝐻(𝑋 : �̃�) ⩽

𝑆(∑𝑝
𝑥
𝜌
𝑥
) − ∑𝑝

𝑥
𝑆(𝜌
𝑥
) = 𝐼(𝑋 : 𝑄) for any measurement on

the system𝑄 (�̃� is the outcome of a measurement on𝑄). The
minimum difference between 𝐼(𝑋 : 𝑄) and𝐻(𝑋 : �̃�), that is,
𝐼(𝑋 : 𝑄)−max𝐻(𝑋 : �̃�), is equal to quantum discord [27] of
𝜎
𝑋𝑄

.
On the assumption that the system is prepared in one of

𝑁 pure states {𝑝
𝑥
, 𝜓
𝑥
}
𝑁

𝑥=1
, the entropic bound can be reduced

to a form that only requires the density operator of the system
and the number of the possible states for its evaluation. Using
𝐻(�⃗�) ⩽ log𝑁 and 𝑆(𝜓

𝑥
) = 0, we have

𝑃
∗

𝑠
⩾
2
𝑆(∑𝑝

𝑥
|𝜓
𝑥
⟩⟨𝜓
𝑥
|)

𝑁
. (10)

Therefore, we see that the larger von Neumann entropy
guarantees the better distinguishability. Notwithstanding the
missing information on the component states and the prepa-
ration probabilities, the density operator of a systemalone can
provide a lower bound for distinguishability of𝑁 pure states.
Note thatwhenmany copies of quantum systems are prepared
in the same way, the density operator can be obtained
using the state tomography, but it is impossible to guess
the component states.The state-discriminationmachine with
unknown quantum states as an input [6, 7] is the case where it
is required to distinguish between unknown quantum states.

4. Other Lower Bounds and Examples

In this section, we compare the entropic lower bound to other
previously known bounds. One is the lower bound given
by the square-root measurement [13], and it is known to be
optimal for many cases in which the solutions are known [4].
The measurement operators of the square-root measurement
{𝜋
𝑖
}
𝑁

𝑖=1
are given as

�̂�
𝑥
= 𝑝
𝑥
𝜌
−1/2

𝜌
𝑥
𝜌
−1/2

, (11)

where 𝜌 = ∑
𝑥
𝑝
𝑥
𝜌
𝑥
. Therefore, a lower bound by the square-

root measurement is given as

𝑃
∗

𝑠
⩾

𝑁

∑

𝑥=1

𝑝
𝑥
Tr (𝜌
𝑥
�̂�
𝑥
) . (12)

Another one is the pairwise-overlap bound. For an
ensemble of pure states {𝑝

𝑥
, 𝜓
𝑥
}
𝑁

𝑥=1
, it has been given in [14]

as

𝑃
∗

𝑠
⩾

𝑁

∑

𝑖=1

𝑝
2

𝑖

∑
𝑁

𝑗=1
𝑝
𝑗


⟨𝜓
𝑖
| 𝜓
𝑗
⟩


2
. (13)

This was derived as a lower bound for the square-root
measurement bound, so it is always less than or equal to
the bound by the square-root measurement. It provides an
analytic form of lower bounds in terms of the pairwise
overlaps.

We now consider a few exemplary sets of pure states
{𝜓
𝑥
}
𝑁

𝑥=1
and compare the entropic bound in (10) with the

other two lower bounds. Let us first look at three 3-
dimensional pure states with equal probabilities:

𝜓1⟩ = sin 𝜃 |0⟩ + cos 𝜃 |2⟩ ,
𝜓2⟩ = |1⟩ ,

𝜓3⟩ = − sin 𝜃 |0⟩ + cos 𝜃 |2⟩ .

(14)

The entropic lower bound and the other two bounds are
calculated and plotted in Figure 1(a). In Figure 1(b), we
present the bound values with another set of states, where
only |𝜓

2
⟩ is replaced with (|0⟩ + |1⟩)/√2 from the previous

case. As shown in Figure 1, for both the sets of states, the
square-root measurement provides the tightest bounds. The
entropic bound is shown to be greater than the pairwise-
overlap bound for large regions.

The next example of the component states is four 2-
dimensional states with equal probabilities,

𝜓1⟩ = |0⟩ ,

𝜓2⟩ = sin 𝜃 |0⟩ + cos 𝜃 |1⟩ ,
𝜓3⟩ = |1⟩ ,

𝜓4⟩ = cos 𝜃 |0⟩ − sin 𝜃 |1⟩ ,

(15)

which satisfy ⟨𝜓
1
| 𝜓
3
⟩ = ⟨𝜓

2
| 𝜓
4
⟩ = 0. In this case,

the optimal success probability is known as 1/2 for any 0 ⩽
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Figure 1: (a) Lower bounds for the optimal discrimination probability for the states in (14). (b) Lower bounds for the same set but with |𝜓
2
⟩ =

(|0⟩ + |1⟩)/2. The entropic lower bounds are plotted as the solid curves. For comparison, the lower bounds by the square-root measurement
and the pairwise-overlap bounds are represented by the dashed and dot-dashed curves, respectively.

𝜃 ⩽ 2𝜋 [28]. The entropic bound gives 1/2, and the other two
lower bounds also give 1/2.

Finally, we consider a discrimination problem where the
component states are not given, but the density operator and
the number of possible states are given. Assume that a system
is prepared in one of 𝑁 𝑛-dimensional unknown states, but
the system is described by the density operator𝜌 = 1/𝑛.There
are arbitrarily many possibilities of choosing component
states and their preparation probabilities in constructing the
density operator. For instance, in the case where 𝑁 = 4 and
𝑛 = 2, we see that the four states in (15) with 𝑝

1
= 𝑝
3
= 𝑞/2

and 𝑝
2
= 𝑝
4
= (1−𝑞)/2 give rise to the same density operator

𝜌 = 1/2 for any 0 ⩽ 𝑞 ⩽ 1 and 0 ⩽ 𝜃 ⩽ 2𝜋. In this
case, the square-root measurement cannot be specified, so
one needs to take a minimization over all decompositions of
the density operator to obtain a lower bound. However, the
entropic bound provides 𝑃∗

𝑠
⩾ 𝑁
−1

2
𝑆(1/𝑛)

= 1/2 regardless of
the component states and the preparation probabilities.

5. Conclusion

We have presented an entropic lower bound for the opti-
mal success probability of distinguishing quantum states. It
provides a connection between the optimal discrimination
probability and quantum entropy, that is, between a practi-
cally relevant quantity and a primary function in quantum
information theory. When the quantum states are all pure,
the entropic bound is reduced to a form that requires less
information for its evaluation, namely, the density operator
and the number of the possible states. It shows that the von
Neumann entropy can lower bound the distinguishability of
𝑁 pure states.
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“Discriminating states: the quantum Chernoff bound,” Physical
Review Letters, vol. 98, no. 16, Article ID 160501, 2007.

[6] J. A. Bergou andM.Hillery, “Universal programmable quantum
state discriminator that is optimal for unambiguously distin-
guishing between unknown states,” Physical Review Letters, vol.
94, no. 16, Article ID 160501, 2005.



Advances in Mathematical Physics 5
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