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Electric-magnetic Duality Implies (Global) Conformal Invariance
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We have examined quantum theories of electric-magnetic duality-invariant vector fields enjoying
classical conformal invariance in 4-dimensional flat spacetime. We extend Dirac’s argument about
“the conditions for a quantum field theory to be relativistic” to “those for a quantum theory to
be conformal”. We realize that electric-magnetic duality-invariant vector theories, together with
classical conformal invariance defined in 4-d flat spacetime, are still conformally invariant theories
when they are quantized in a way that electric magnetic-duality is manifest.
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I. INTRODUCTION

Electric-magnetic duality is originally observed from
Maxwell equations, which describe one of the funda-
mental forces in nature. Under switching �E → �B and
�B → − �E, where �E is the electric field and �B is the mag-
netic field (without considering any electric and magnetic
sources), the Maxwell equations are invariant [1]. The
duality is extended to string theory, various kinds of field
theories of free massless fields with various spins, and
sometimes to those in curved spacetime, e.g., Maxwell
system in de Sitter spacetime [2–4]. It is also applied
to non-Abelian vector theories and it turns out that the
duality invariance comes into approximately exist upto
cubic order in the weak field expansion [5,6].

One of the interesting directions of developing electric-
magnetic duality is research on whether electric-
magnetic duality ensures that a certain classical stym-
metry of a system is retained when the system is quan-
tized (e.g., see [7]). In [7], the authors argue that a
classical vector field theory enjoying Lorentz symmetry
is still Lorentz invariant in its quantum theory under a
condition that electric-magnetic duality is retained when
it is quantized. The pioneering argument started from
a paper by Dirac [8] in 1962. In his paper, he discussed
this issue as follows. It is not manifest if a quantum
field theory keeps its classical symmetry (symmetry of
the classical Lagrangian and the equations of motion)
because of (e.g.) the ordering issue of the field variables
(due to the second quantization rule on them). Because a
state in quantum field theory can be changed to another
representation by a unitary transform and its dynam-
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ics can be described by a unitary time evolution, acting
symmetry generators (spatial translation, rotation and
boost, and temporal translation) on that state, then the
second quantization being consistent with the algebra of
the symmetry generators ensures that the symmetry is
retained in its quantum field theory.

More precisely, Dirac introduces a canonical pair of
quantum fields as ξ and η satisfying

[ξ, η′] = δ, (1)

where the prime denotes that the field variable depends
on the prime coordinate; i.e., η′ = η(x′) and δ = δd(x −
x′), being the d-dimensional δ-function so it is an equal-
time commutator.1 ξ may become a field variable in the
theory, and η is its canonical conjugate. From them, he
constructs a momentum density Ks and introduces an
energy density U , which provide the representation of
the symmetry generators, where the index s is a spatial
index.2 Such symmetry generators constructed from Ks

and U turn out to satisfy Poincare algebra if the energy
density satisfies the following commutation relation:

[U,U ′] = Kt,tδ + 2Ktδ,t, (2)

where A,s ≡ ∂A
∂xs .

By using this observation, the authors in [7] discov-
ered the following: Suppose a vector field theory in 4-d
flat spacetime which enjoys electric-magnetic duality and
Lorentz symmetry is quantized in a way that electric-
magnetic duality is manifest; more precisely, its second

1 For further discussion, even if we develop every mathematical
equation in d-dimension(spatial), in fact we restrict ourselves to
the d = 3 case only.

2 We will use s, t, r, and u to be spatial indices running from 1 to
3.
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quantization rule must be

[Ba
s ,Bb

t ] = εabεstuδ,u , (3)

where a, b = 1, 2 are SO(2) indices related to electric-
magnetic duality rotation, ε is a fully anti-symmetric
tensor, �B1 = �E and �B2 = �B. Then one can define the
momentum density and the energy density from the fields
Ba

s as

Kr = −1
2
BasBbtεabεstr and U = f(h, v), (4)

where

h =
1
2
BasBbtδabδst, v = KrK

r (5)

and f(h, v) satisfies the condition

(f,h)2 + 4hf,hf,v + 4v(f,v)2 = k, (6)

for some constant k. The momentum density gener-
ates the Lie derivative along a spatial vector field vi

as LvΦ(B) = [Φ,
∫

ddxvsKs] for some field Φ. Such an
energy density satisfies the commutation relation that
Dirac suggested in his paper. Therefore, one finds that
the vector field theory is manifestly Lorentz invariant
when it is quantized.

In this paper, we have extended such a discussion to
conformal symmetry. Our motivation is that U(1) vec-
tor field theory in 4−d flat spacetime, whose Lagrangian
density is comprised of its kinetic term only, is confor-
mally invariant, because its stress energy tensor vanishes.

Thus, one may ask if a quantum version of such kind of
classical field theory is still conformally invariant when
its second quantization rule manifestly enjoys electric-
magnetic duality transform.

In fact, we have shown that the theory is still confor-
mal by examining conformal algebra in a manner simi-
lar to that ued by Dirac. In Section II, we develop the
conditions that the momentum and the energy densities
satisfy. The energy density still satisfies Eq. (2); there-
fore, the momentum density and the energy density that
Dirac suggested also satisfy conformal algebra under the
condition that the conformal dimension of the en-
ergy density be d + 1. The simplest example for such
a case is U = h.

In Section III, we conclude that because a specific class
of the energy density, Eq. (4), whose conformal dimen-
sion is d + 1 obtained in [7] satisfies the same commuta-
tion relation, Eq. (2), then the conformal symmetry is re-
tained in such a quantum theory of the U(1) vector field,
which is manifestly invariant under electric-magnetic du-
ality rotation.

II. CONDITIONS FOR A 4-D QUANTUM
FIELD THEORY TO BE CONFORMAL

In this section, we extend Dirac’s argument about condi-
tions for a quantum field theory to retain Poincare sym-
metry to conformal symmetry.

Conformal algebra Conformal algebra in (d + 1)-
dimensional space time is given by

[D,Pμ] = −Pμ, [D,κμ] = κμ, [κμ, Pν ] = −2(gμνD + Lμν), (7)
[κρ, Lμν ] = (gρμκν − gρνκμ), [Pρ, Lμν ] = gρμPν − gρνPμ,

[Lμν , Lρσ] = gνρLμσ + gμσLνρ − gμρLνσ − gνσLμρ, and the others vanish,

where D is the dilatation, κμ is the special confor-
mal, Pμ is the translation and Lμν is the rotation and
the boost generator.3. gμν is (d + 1)-dimensional flat
spacetime metric, whose signature is chosen as gμν =
diag(+,−,−, ...,−).

The symmetry generators are sorted into two different
classes. The first class is a set of the generators for which
the quantum fields transform in the spatial directions,
and the second class is a set of those forcing them to
transform in the temporal direction. The former provides

3 The generators are given by

D = xμPμ, Lμν = xμPν−xνPμ, κμ = 2xμxνPν−xνxνPμ (8)

in terms of the translation generator, Pμ.

a unitary transform of the fields on a given spacelike
hypersurface, and the latter provides the dynamics of
the fields.

Momentum density We first examine the genera-
tors having fields that transform in spatial directions.
For this, we decompose these generators into spatial and
temporal parts as

Pμ → Ps, P0, Lμν → Lst, L0t, (9)

κμ → κs, κ0 and D → D(s) + D(t),

where we have defined the spatial parts of the symmetry
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generators in terms of a momentum density Ks as

Pt =
∫

Ktd
dx,

Lrs =
∫

(xrKs − xsKr)ddx,

D(s) = −
∫

xsKsd
dx,

κt =
∫

(−2xtxrKr + xrxrKt)ddx. (10)

To specify the field variables V
(1)
t and V

(2)
t and the

momentum density in our vector theory, we introduce

the variables ξs and ηs as

V
(1)
t = ηt, V

(2)
t = ξt, and Kt = ηuξu,t−(ηuξt),u, (11)

where ηs and ξs form a canonical pair as

[ξt, η
′
s] = δtsδ , (12)

with δts being Kronecker’s delta and δ being d-
dimensional delta function.

By using the canonical commutation relation of ξs and
ηs, we obtain the transformation rules for the field vari-
ables as

[V (1)
t , Pr] = V

(1)
t,r , (13)

[V (1)
t , Lrs] = xrV

(1)
t,s − xsV

(1)
t,r + (−δrtV

(1)
s + δstV

(1)
r ),

[V (1)
t , D(s)] = −xsV

(1)
t,s + (Δ1V

(1)
t ),

[V (1)
t , κs] = −2xsxrV

(1)
t,r + xrxrV

(1)
t,s + (2δtsxrV

(1)
r − 2xtV

(1)
s + 2Δ1xsV

(1)
t )

and

[V (2)
t , Pr] = V

(1)
t,r , (14)

[V (2)
t , Lrs] = xrV

(1)
t,s − xsV

(1)
t,r + (−δrtV

(1)
s + δstV

(1)
r ),

[V (2)
t , D(s)] = −xsV

(1)
t,s + (Δ2V

(1)
t ),

[V (2)
t , κs] = −2xsxrV

(2)
t,r + xrxrV

(2)
t,s + (2δtsxrV

(2)
r − 2xtV

(2)
s + 2Δ2xsV

(2)
t ),

where Δ1 = d−1 and Δ2 = 1, which are conformal dimensions of the field variables V
(1)
t and V

(2)
t , respectively. From

these, we can obtain the following relations:

[Kt, Pr] = Kt,r, (15)
[Kt, Lrs] = xrKt,s − xsKt,r − δrtKs + δstKr,

[Kt, D
(s)] = −xrKt,r + (Δ1 + Δ2 + 1)Kt

[Kt, κs] = −2xsxrKt,r + xrxrKt,s + 2δstxrKr + 2(Δ1 + Δ2 + 1)xsKt − 2xtKs,

which are the commutation relations of the conformal
algebra for the spacetime indices μ and ν to be restricted
to μ, ν = 1, 2..., d.

Energy density To complete the conformal algebra,
Eq. (7), we need to examine the temporal parts of the
generators. To do this, we define a local quantity, the
“energy density” U , and use it to express these genera-
tors as

P0 =
∫

Uddx, Lt0 =
∫

xtUddx, (16)

D(t) = 0, κ
(t)
0 =

∫
xsxsUddx.

This energy density is scalar under the spatial parts of
the symmetry transforms, and we suppose that it has a

conformal dimension ΔE , so it might transform as

[U,Pt] = U,t, [U,Lst] = xsU,t − xtU,s, (17)

[U,D(s)] = −xsU,s+ΔEU,

[U, κs] = −2xsxrU,r + xrxrU,s+2ΔExsU.

Such energy density commutation relations lead to

[P0, Pt] = 0, [P0, Lst] = 0, [Ps, Lt0] = −δstP0, (18)

[Lt0, Lrs] = δtsLr0 − δtrLs0, [D(s), P0] = −P0,

[D(s), L0t] = 0, [κr, L0t] = δrtκ0, [κ0, Lst] = 0,

[D(s), κ0] = κ
(t)
0 , [κ0, Pt] = −2L0t,

[κs, P0] = −2Ls0, [κ0, κs] = 0,

under the condition that the conformal dimension of
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the energy density be given by

ΔE = d + 1. (19)

These are the commutation relations between the tem-
poral and the spatial parts of the generators.

Finally, we need the commutation relations between
the temporal parts of the generators to complete our
discussion. They are given by

[P0, P0] = 0, [Lt0, Ls0] = Lst, [P0, L0t] = Pt, (20)

[κ0, L0t] = κt, [κ0, P0] = −2D(s), [κ0, κ0] = 0,

These are translated to the following equations by using
Eq.(16):

∫ ∫
[U,U ′]ddxddx′ = 0, (21)

∫ ∫
xtx

′
s[U,U ′]ddxddx′ =

∫
(xsKt − xtKs)ddx, (22)

∫ ∫
xt[U,U ′]ddxddx′ =

∫
Ktd

dx, (23)
∫ ∫

xsxsx
′
t[U,U ′]ddxddx′

=
∫

(2xtxsKs − xsxsKt)ddx, (24)
∫ ∫

xsxs[U,U ′]ddxddx′ = 2
∫

xsKsd
dx, (25)

∫ ∫
xuxux′

sx
′
s[U,U ′]ddxddx′ = 0. (26)

The remaining task is to find the commutation rela-
tion between the energy densities satisfying the above
relations. We start with the most general form of the
energy density commutation relation as Dirac suggested
[8]. It is

[U,U ′] = aδ + brδ,r + crsδ,rs + drstδ,rst + ..., (27)

where the coefficients in front of the δ-functions are func-
tions of xs only. If we switch U and U ′, based on their
anti commuting natures, we have

[U ′, U ] = aδ − b′rδ,r + c′rsδ,rs − d′rstδ,rst + ... (28)
= aδ − (brδ),r + (crsδ),rs − (drstδ),rst + ...

= δ(a − br,r + crs,rs − drst,rst + ...)
+ δ,r(−br + 2cru,u − 3drsu,su + ...)
+ δ,rs(crs − 3drsu,u + ...).

Because Eq. (27) and (28) add to zero, from that condi-
tion, we have

0 = 2a − br,r + crs,rs − drst,rst + ..., (29)
0 = 2crs,s − 3drst,st + ..., (30)
0 = 2crs − 3drsu,u + ... (31)
...

Eq. (29) gives a solution for a as

a = αr,r, where 2αr = br − crs,s +drst,st − ..., (32)

and Eq.(30) implies that cru,u is, indeed, a second deriva-
tive. Then,

∫
(2αr − br)ddx = 0 and (33)

∫
xs(2αr − br)ddx = 0,

because 2αr − br = −crs,s + drst,st − ...

→ (second derivative and higher)

By using these, we derive more useful relations as

∫
[U,U ′]ddx′ = αr,r, (34)

∫
x′

s[U,U ′]ddx = xsαr,r − bs. (35)

After all, we plug Eq. (27) into Eq. (22)-Eq. (24) to
fix the coefficients of the δ-functions(and their deriva-
tives) on the right-hand side of Eq. (27). The relation
on Eq. (34) directly solves Eq. (21). Eq. (23) gives

∫
Ktd

dx =
∫

xtαr,rd
dx =

∫
αtd

dx =
1
2

∫
btd

dx, (36)

where we have used Eq. (34). From this, we get the most
general form of the solutions αr and βr as

αt = Kt +βtr,r + ζ,t and bt = 2Kt + β̄tr,r + ζ̄,t, (37)

where βt, β̄t, ζ and ζ̄ are arbitrary functions of xs.
Eq. (22) provides

∫
(xsKt − xtKs)ddx =

∫
xt(xsαu,u − bs) =

1
2

∫
ddx(xsbt − xtbs) (38)

=
1
2

∫
ddx(2xsKt − 2xtKs + xsβ̄tr,r − xtβ̄sr,r + xsζ̄,t − xtζ̄,s).
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This relation restricts β̄st to be
∫

(β̄ts − β̄st)ddx = 0, (39)

and similarly
∫

(βts − βst)ddx = 0. (40)

Next, we consider Eq. (24), which is given by

2
∫

xsKsd
dx =

∫
xsxsαt,td

dx (41)

=
∫

2xt(Kt + βtr,r + ζ,t),

which provides the following:
∫

(βtt + dζ)ddx = 0. (42)

Moreover, Eq. (24) becomes∫
(2xtxsKs − xsxsKt)ddx =

∫
xsxs(xtαr,r − bt) (43)

=
∫

(2xtxsKs − xsxsKt)ddx +
∫
{xt(2βrr + 2(d + 2)ζ − 2ζ̄) + 2xs(βst + βts − β̄ts)}ddx.

Then, from this, we get
∫
{xt(2βrr + 2(d + 2)ζ − 2ζ̄) + 2xs(βst + βts − β̄ts)}ddx = 0. (44)

Finally we examine Eq. (26). Eq. (37) satisfies Eq. (26) under the condition that
∫
{2xtxu(2βut − β̄ut) + xsxs(2βtt − β̄tt + 2(2 + d)ζ − (2 + d)ζ̄ + cuu)} = 0. (45)

Minimal solutions for the coefficients in front of the
δ-functions on the right-hand side of Eq. (27) are given
by

2αt = bt = 2Kt and βst = β̄st = ζ = ζ̄ = crs... = 0. (46)

Therefore, the minimal solution of the commutation re-
lation between the energy densities that satisfies the con-
formal algebra becomes

[U,U ′] = Kt,tδ + 2Ktδ,t. (47)

III. CONFORMAL INVARIANCE AND 4-D
VECTOR THEORIES

The main result of the last section is Eq. (47).
Once we quantize our vector field theory as in Eq. (3)
and define the momentum and the energy densities as in
Eq. (4), then

[U,U ′] = −εδst(Ks + K ′
s)δ,t (48)

is satisfied where ε = 0 or − 1 [7]. The conformal alge-
bra is consistently constructed from the energy density
only when the conformal dimension of the energy den-
sity is ΔE = 4 in 4-dimensional spacetime. The simplest

candidate for this is U = h, because Ba
s has conformal

dimension 2.
The way of choosing the energy density is to find U =

f(h, v) as a solution to Eq.(6) under a constraint that
its conformal dimension be 4. The field strength Ba

s has
conformal dimension 2, then, h has conformal dimension
4, and v has conformal dimension 8.

The simplest solution is U1 = h = 1
2 ( �B2+ �E2), which is

nothing but free Maxwell theory. Another thoery satisfy-

ing Eq. (6) is U2 =
√

v =
√

( �B × �E) · ( �B × �E). The two
different theories can be interpreted as certain limits of
Born-Infeld electromagnetic theory (BI-theory). In [7],
the author obtained BI-theory as U3 =

√
1 + 2h + v − 1.

This theory is not conformal at all, but its strong/weak
field limits are conformal. A well-known fact is that free
Maxwell theory is the weak field limit of BI-theory. The
opposite limit, the large amplitude limit of the BI-theory
leads to U2. These theories correspond to certain IR and
UV fixed points of the BI-thoery, respectively.

ACKNOWLEDGMENTS

We would like to thank Alfred D. Shapere for the use-
ful discussion. J.H.O thanks his W.J . This work is sup-



-432- Journal of the Korean Physical Society, Vol. 67, No. 3, August 2015

ported only by the research fund of Hanyang University
(HY-2013).

REFERENCES

[1] S. Deser and C. Teitelboim, Phys. Rev. D 13, 1592 (1976);
S. Deser, J. Phys. A 15, 1053 (1982).

[2] M. Henneaux and C. Teitelboim, Phys. Rev. D 71, 024018
(2005) [gr-qc/0408101].

[3] S. Deser and D. Seminara, Phys. Lett. B 607, 317 (2005)
[hep-th/0411169].

[4] S. Deser and A. Waldron, Phys. Rev. D 87, 087702 (2013)
[arXiv:1301.2238 [hep-th]].

[5] S. Deser and D. Seminara, Phys. Rev. D 71, 081502 (2005)
[hep-th/0503030].

[6] D. P. Jatkar and J-H. Oh, JHEP 1208, 077 (2012)
[arXiv:1203.2106 [hep-th]].

[7] C. Bunster and M. Henneaux, Phys. Rev. Lett. 110,
011603 (2013) [arXiv:1208.6302 [hep-th]].

[8] P. A. M. Dirac, Rev. Mod. Phy 34, 592 (1962).


