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Boundary conditions for conformally coupled scalar in
AdS4
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Abstract

We consider conformally coupled scalar with φ4 coupling in AdS4 and study its various
boundary conditions on AdS boundary. We have obtained perturbative solutions of
equation of motion of the conformally coupled scalar with power expansion order by
order in φ4 coupling λ up to λ2 order. In its dual CFT, we get 2,4 and 6 point functions
by using this solution with Dirichlet and Neumann boundary conditions via AdS/CFT
dictionary. We also consider marginal deformation on AdS boundary and get its on-shell
and boundary effective actions.
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1 Introduction

Alternative quantization is studied by Breitenlohner and Freedman[1] in gauged supergravity
context and Klevanov and Witten et. al. [2, 3, 4] discussed this in AdS/CFT which gives
interesting conformal field theories as duals of the gravity theories defined in AdS space by
imposing various possible boundary conditions on AdS boundary.

For scalar field theories in AdS space[5, 6], the dual conformal field theory is known to be
unitary when its mass is in the region of −d2

4
≤ m2 ≤ −d2

4
+ 1, where d is dimensionality of

AdS boundary and m is mass of the scalar field. In this mass window, there are two possible
quantization schemes in the dual CFT, which are ∆+ and ∆− theories respectively, where

∆± = d
2
±

√

d2

4
+m2, the conformal dimensions of the boundary operator in each dual CFT.

Since the unitarity bound of the scalar operators in CFT is ∆ ≥ d
2
− 1, two point correlation

functions in both CFTs are positive definite 2.
The bulk scalar field shows near AdS boundary expansion as φ(r, xi) = φ(0)(xi)r

d−∆+ +
φ(1)(xi)r

∆+ as the AdS radial coordinate r → 0, where φ(0)(xi) becomes a source term in
the dual CFT whereas φ(1)(xi) is certain boundary composite operator according to standard
AdS/CFT dictionary. This is called ∆+ theory and achieved by imposing Dirichlet boundary
condition δφ(0) = 0. This gives standard quantization scheme to the dual CFT. Even in the
case that the scalar field mass in not in the mass range, ∆+ satisfies unitarity bound and so
Dirichlet boundary condition is always possible boundary condition.

Alternative quantization can be achieved by imposing Neumann boundary condition as
δφ(1) = 0. In this quantization scheme, the role of the source and composite operator in the
dual CFT is switched, so φ(0)(xi) becomes the boundary composite operator and φ(1)(xi) is the
source term. The corresponding CFT is called ∆− theory.

A way of imposing boundary conditions is to add boundary term on AdS boundary and
variational principle provides the boundary condition upto bulk equation of motion. Therefore,
once we define on-shell action as Ios = Sbulk+Sbdy and then the boundary condition is δIos = 0,
where Sbulk is boundary contribution of the bulk scalar field action upto the equation of motion
and Sbdy is boundary action. Dirichlet boundary condition is achieved by Sbdy = 0. Without
adding any boundary term, δIos =

∫

φ(1)δφ(0) = 0, so we can request δφ(0) = 0. Neumann
boundary condition is obtained by adding Sbdy = −

∫

φ(0)φ(1) to the bulk action. Then δIos =
−
∫

φ(0)δφ(1), so the boundary condition becomes δφ(1) = 0.

2There are many discussions about alternative quantization schemes in Dirac field[7], Rarita-Schwinger
field[8], U(1) gauge field[9] and SU(2) Yang-Mills field[10].
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In this paper, we study conformally coupled scalar field φ in AdS4 with φ4 interaction. Mass
of the conformally coupled scalar is m2 = −d2−1

4
. Therefore in AdS4, m

2 = −2 so ∆+ = 2 and
∆− = 1 which satisfy unitarity bound. Definitely two possible quantization schemes can be
applied to the conformally coupled scalar and there are various boundary CFTs obtained by
imposing various kinds of boundary conditions. One interesting property of this conformally
coupled scalar is that a suitable field redefinition transforms this theory into a massless scalar
field theory in half of flat space, R+. In our study, we mostly work in this R+ frame.

Conformally coupled scalar in AdS and their boundary CFTs are studied in several litera-
tures. In [11], the author have considered conformally coupled scalar in AdS space and their
boundary effective action with two derivative kinetic term by using derivative expansion(i.e.
by ignoring higher derivative terms). In [5, 6, 11], the authors have considered conformally
coupled scalar and its instanton solution. By looking at their solutions, they suggested that
the dual CFT theory shows φ6 interaction with standard(two derivative) kinetic term.

In these studies, however, the authors do not consider small coupling regime of the dual
CFTs. Derivative expansion provides basically the low momentum regime of the theory ignor-
ing higher derivative terms. Therefore, in [11], they obtained low energy effective action of the
dual field theory. Moreover, instanton solution cannot probe perturbative regime of theories
either.

In this note, we concentrate on the perturbative regime in the dual CFTs. We have obtained
the boundary effective action in dual field theories with its exact 2-point propagator and 3,4
point interaction vertices in the perturbative regime with power expansion order by order in the
small coupling λ, which is φ4 interaction coupling in the dual gravity theory. The couplings of
multi point functions in the dual CFTs are written in terms of a certain power of the coupling
λ. In fact, it turns out that the strength of the 2n+2 point function in the boundary effective
theory is proportional to λn.

We address the main results in detail. In section 2, we solve conformally coupled scalar
field equation of motion with power expansion order by order in λ. We obtain the solutions of
the equation of motion upto λ2 order. In section 3, by utilizing the bulk scalar field solutions,
we compute on-shell and boundary effective actions by imposing several different boundary
conditions. For Dirichlet boundary condition, we obtained 2,4 and 6-point functions in dual
CFTs. 2-point function(propagator) of the dual composite operators is given by

〈OpOq〉 = −|p|δ3(p+ q), (1)

which is proportional to the absolute value of 3-momentum p along the boundary directions.
4-point function is given by

〈OpOqOsOu〉 = − 3!λ

(2π)3
δ3(u+ q + s+ p)

|u|+ |q|+ |s|+ |p| , (2)

where u, q, s and p are 3-momenta along boundary directions too and O indicates the dual CFT
operator. This is exotic and non local boundary momentum dependent correlation function.
6-point function is too complex to address here, which is also external momenta dependent.

For Neumann boundary condition, the 4-point function of boundary composite operator
becomes

〈φ(0)
p φ(0)

q φ(0)
s φ(0)

u 〉 = 〈OpOqOsOu〉
|u||q||s||p| , (3)
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where φ
(0)
p is boundary value of the bulk scalar field φ and it becomes the dual field theory

operator in Neumann boundary condition.
We also consider another type of boundary condition, called marginal deformation[5] and

obtained its boundary effective action too.

2 Conformally coupled scalar in AdS4 and its perturba-

tive solutions

In this section, we solve the equation of motion of the conformally coupled scalar with φ4

interaction term with power expansion order by order in its coupling λ. We start with the
action

S =

∫

drd3x
√
gL(φ) +

∫

d3xLc.t.(φ) + Sbdy, (4)

where L is an action of conformally coupled scalar in AdS4, which is given by

L =
1

2
gµν∂µφ∂νφ− φ2 +

λ

4
φ4, (5)

Lc.t. is counter term Lagrangian and Sbdy =
∫

d3xLb is boundary action. (Euclidean) AdS4

metric is given by

ds2 = gµνdx
µdxν =

dr2 +
∑3

i=1 dx
idxi

r2
, (6)

where r = x0 is the radial coordinate of AdS space(r=0 is AdS boundary and r = ∞ is Poincar
horizon), xi is boundary directional coordinate and the spacetime indices i, j... run from 1 to
3. The action of conformally coupled scalar enjoys an interesting property as follows. Once we
define a new field f(r, x) = φ(r,x)

r
, then by using the explicit form of the background metric(6),

the action(4) is transformed into

S =

∫

drd3x

(

1

2
∂rf∂rf +

1

2
δij∂if∂jf +

λ

4
f 4

)

+

∫

d3x

(

Lc.t.(φ) +
f 2

2r

)

+

∫

d3xLb(φ), (7)

where the f2

2r
term may divergent as it approach AdS boundary. Once we take Lc.t. = −√

γ φ2

2
,

then this term is canceled with Lc.t., where γ is determinant of an induced metric γij from gµν
as

γij =
∂xµ

∂xi

∂xν

∂xj
gµν . (8)

Equation of motion is obtained by variation of the action(7), which is given by

0 = ∂2
rf + δij∂i∂jf − λf 3. (9)

By using Fourier transform,

f(x) =
1

(2π)
3
2

∫

e−ipixifp(r)d
3p (10)
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one can get this equation in momentum space:

0 = ∂2
rfp(r)− p2fp(r)−

λ

(2π)3

∫

d3[q, s, t]δ3(q + s+ t− p)fq(r)fs(r)ft(r), (11)

where d3[q, s, ..., t] ≡ d3qd3s...d3t 3.
We solve the equation perturbatively order by order in λ upto λ2 order. Namely, we try

the following ansatz:
fp(r) = f̄p(r) + λf̃p(r) + λ2f̂p(r) +O(λ3) (12)

In the zeroth order in λ, the equation becomes

0 = ∂2
r f̄p(r)− p2f̄p(r), (13)

and its solution is given by

f̄p(r) = f̄0,p cosh(|p|r) +
f̄1,p
|p| sinh(|p|r), (14)

where f̄0,p and f̄1,p are boundary momenta, pi dependent functions and |p| =
√

p21 + p22 + p23,
which are absolute value of momentum along boundary direction. This solution should be
regular everywhere, and for this we request that

f̄0,p +
f̄1,p
|p| = 0, (15)

Thus, the regular solution is given by

f̄p(r) = f̄0,pe
−|p|r. (16)

In the first order in λ, the equation is given by

0 = (∂2
r − p2)f̃p(r)−

1

(2π)3

∫

d3[q, s, t]δ3(q + s+ t− p)f̄0,qf̄0,sf̄0,te
−(|q|+|s|+|t|)r, (17)

where the last term is a source term from the zeroth order solution. The first order solution is
given by

f̃p(r) = f̃0,pe
−|p|r +

1

(2π)3

∫

d3[q, s]f0,p−q−sf0,qf0,s
e−(|p−q−s|+|q|+|s|)r

(|p− q − s|+ |q|+ |s|)2 − p2
, (18)

where the first term is homogeneous solution and the last term is inhomogeneous one.
Finally, we will obtain the second order solution in λ. The equation of motion is given by

0 = (∂2
r − p2)f̂p(r)−

1

(2π)6

∫

d3[t, q, s, v, u]δ3(t+ q + s− p) (19)

×f0,tf0,qf0,uf0,vf0,s−u−v
e−(|t|+|q|+|u|+|v|+|s−u−v|)r

(|s− u− v|+ |u|+ |v|)2 − s2
,

3We will use p, q, s, t, u, v, w to indicate 3-momenta along boundary directions.
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and its solution becomes

f̂p(r) = f̂0,pe
−|p|r +

3

(2π)6

∫

d3[t, q, s, u, v, w]f0,tf0,qf0,vf0,uf0,w (20)

× δ3(t+ q + s− p)δ3(w + u+ v − s)

[(|w|+ |v|+ |u|)2 − s2][(|w|+ |t|+ |q|+ |v|+ |u|)2 − p2]
e−(|w|+|t|+|q|+|v|+|u|)r,

where again the first term in the solution is homogeneous part and the last term is inhomoge-
neous one.

The homogeneous solutions in the first and the second order in λ can be absorbed in the
zeroth order solution. Therefore, we set f̃0,p = f̂0,p = 0. Moreover, we define a few complex
expressions as

αp(u, q, s) ≡ δ3(u+ q + s− p)

(|u|+ |q|+ |s|)2 − p2
, (21)

βp(t, q; v, s, u) ≡ δ3(q + u+ s+ t+ v − p)

[(|v|+ |s|+ |u|)2 − (v + s+ u)2]
(22)

× 1

[(|v|+ |t|+ |q|+ |s|+ |u|)2 − p2]

then, the form of the solution is much more simplified.

Near boundary expansion Near conformal boundary r = 0, our solution is expanded as

fp(r) = f0,p +
λ

(2π)3

∫

d3[q, s, u]f0,qf0,sf0,uαp(q, s, u) (23)

+
3λ2

(2π)6

∫

d3[t, q, s, u, v]f0,qf0,sf0,uf0,tf0,vβp(t, q; v, s, u)

+ r

[

−|p|f0,p −
λ

(2π)3

∫

d3[q, s, u]f0,qf0,sf0,u(|q|+ |s|+ |u|)αp(q, s, u)

− 3λ2

(2π)6

∫

d3[t, q, s, u, v]f0,qf0,sf0,uf0,tf0,v(|v|+ |t|+ |q|+ |s|+ |u|)βp(t, q; v, s, u)

]

+O(r2).

The first two lines are boundary value of the field fp(r) while the third and fourth lines are the

boundary value of ∂rfp(r). We define this boundary value of fp(r) to be f
(0)
p and the boundary

value of ∂rfp(r) ≡ f
(1)
p . One can rewrite f

(1)
p in terms of the boundary value f

(0)
p , which is

given by

f (1)
p = −|p|f (0)

p − λ

(2π)3

∫

d3[q, s, u]f (0)
u f (0)

q f (0)
s αp(u, q, s)(|u|+ |q|+ |s| − |p|) (24)

+
3λ2

(2π)6

∫

d3[q, u, t, v, w]f (0)
u f (0)

q f
(0)
t f (0)

v f (0)
w [α(2)

p (u, q; t, v, w)(|u|+ |q|+ |t+ v + w| − |p|)

− βp(t, q; v, w, u)(|v|+ |t|+ |q|+ |w|+ |u| − |p|)],
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where

α(2)
p (u, q; t, v, w) ≡

∫

d3sαp(u, q, s)αs(t, v, w) (25)

=
δ3(t + v + w + q + u− p)

[(|t|+ |v|+ |w|)2 − (t + v + w)2][(|t + v + w|+ |q|+ |u|)2 − p2]

3 Boundary conditions and effective actions

In this section, we discuss various boundary conditions and on-shell and boundary effective
actions followed by those boundary conditions. One can evaluate on-shell action by using
equation of motion from (7). This is given by

Ios = Sbulk + Sbdy =

∫

r=0

d3x
1

2
f(x, r)∂rf(x, r)−

∫

drd3x
λ

4
f 4(x, r) +

∫

d3xLb(f). (26)

By using Fourier transform defined in (10), one can write this in momentum space as

Sos =
1

2

∫

r=0

d3pfp(r)∂rfp(r)−
λ

4(2π)3

∫

r=0

d3[p, q, s, t]drfp(r)fq(r)fs(r)ft(r)δ
3(p + q + s+ t)(27)

+

∫

d3pLb(fp).

We define the boundary value of the bulk canonical momentum, ∂rf(r) as

Π−p =
δSbulk

δf
(0)
p

. (28)

With this canonical momentum, the on-shell action is now functional of the boundary value of
fp(r), f

(0)
p and its canonical momentum Π−p. In AdS/CFT context, the bulk on-shell action

becomes generating functional of the dual CFT as

Z[J ] = e−W [J(f
(0)
p ,Π

−p)] =

∫

D[f (0)
p ,Π−p] exp

[

−Sbulk(f
(0)
p )− Sbdy(f

(0)
p ,Π−p)

]

, (29)

where J is source which couples to certain boundary composite operator and W is the gen-
erating functional with the source term J . This generating functional is identified with the
on-shell action as W [J ] = Ios[f

(0)
p ,Π−p]. In standard quantization(∆+ theory), J = f

(0)
p and

the boundary composite operator becomes Π−p. In general, however, the source J is generic

function of f
(0)
p and Π−p.

The boundary condition is obtained by looking at saddle point of the on-shell action as

δIos[f
(0)
p ,Π−p]

δf
(0)
p

= 0, and
δIos[f

(0)
p ,Π−p]

δΠ−p
= 0, (30)

which gives the relation between f
(0)
p and Π−p and with this, one can rewrite the on-shell action

in terms of f
(0)
p only, which also gives the correct boundary condition in its saddle point.
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The boundary effective action is given by Legendre transform of the generating functional,
which if given by

Γ[σ] = −
∫

Jσ +W [J ], (31)

where σ is vacuum expectation value of the boundary composite operator. Followed by (31),
σ and J satisfy the following relations:

σ =
δW [J ]

δJ
and J = −δΓ[σ]

δσ
. (32)

Suppose that W and Γ are the generating functional and boundary effective action without
any boundary deformation. Let us deform this with boundary term Sbdy, and assume that σ
does not change by the deformation. The deformed boundary effective action may have a form
of

Γd[σ] = Γ[σ] +

∫

g(σ), (33)

where Γd is deformed boundary effective action and g is a function of σ. Deformed source Jd

will be given by

Jd ≡
δΓd[σ]

δσ
= J − dg(σ)

dσ
, (34)

Therefore, deformed generating functional Wd[Jd] = Γd[σ] +
∫

Jdσ is given by

Wd[Jd] = W [J ] +

∫

(g(σ)− σg′(σ)). (35)

In sum, the boundary deformation term is given by

Sbdy =

∫

(g(σ)− σg′(σ))

∣

∣

∣

∣

σ=
δW [J]

δJ

. (36)

Dirichlet boundary condition Dirichlet boundary condition is achieved without adding
any deformation term. Then, the boundary condition is obtained by finding saddle point of
the bulk action as

δIos = δSbulk =

∫

Π−pδf
(0)
p , (37)

Then the boundary condition is δf
(0)
p = 0. By plugging the on-shell solution into (27), one can

evaluate this on-shell action in terms of the boundary value of the field f(r) as

IDos = WD[f (0)
p ] =

1

2

∫

d3pd3qf (0)
p f (0)

q 〈OpOq〉+
1

4!

∫

d3[p, q, s, u]f (0)
p f (0)

q f (0)
s f (0)

u 〈OpOqOsOu〉(38)

+
1

6!

∫

d3[p, q, t, v, w, u]f (0)
p f (0)

q f
(0)
t f (0)

v f (0)
w f (0)

u 〈OpOqOtOvOwOu〉

where
〈OpOq〉 = −|p|δ3(p+ q), (39)
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〈OpOqOsOu〉 = − 3!λ

(2π)3
δ3(u+ q + s+ p)

|u|+ |q|+ |s|+ |p| , (40)

and

〈OpOqOwOuOtOv〉 =
9 · 5!λ2

(2π)6

(

δ3(t + v + w + q + u+ p)

[(|t|+ |v|+ |w|)2 − (t+ v + w)2][|t+ v + w|+ |u|+ |q|+ |p|] (41)

− δ3(t+ v + w + q + u+ p)

[(|u|+ |p|+ |q|)2 − (t + v + w)2][|t|+ |v|+ |w|+ |u|+ |q|+ |p|]

− 2/3 δ3(t + v + w + q + u+ p)

[|t|+ |v|+ |w|+ |u|+ |q|+ |p|][|t|+ |v|+ |w|+ |t+ v + w|][|t+ v + w|+ |u|+ |q|+ |p|]

)

.

This provides boundary momentum dependent 2,4, and 6-point functions in dual CFTs.
From the definition(28), we get canonical momentum of f (0):

Π−p =

∫

d3sd3qδ3(s− p)f (0)
q 〈OsOq〉+

1

3!

∫

d3[t, q, s, u]δ3(t− p)f (0)
q f (0)

s f (0)
u 〈OtOqOsOu〉 (42)

+
1

5!

∫

d3[p, q, t, v, w, u]f (0)
p f (0)

q f
(0)
t f (0)

v f (0)
w f (0)

u 〈OpOqOtOvOwOu〉

By Legendre transform (31), Boundary effective action is given by

ΓD(Π) = −1

2

∫

d3[p, q]
〈OpOq〉
|p||q| Π−pΠ−q +

1

4!

∫

d3[p, q, s, t]
〈OpOqOsOt〉
|p||q||s||t| Π−pΠ−qΠ−sΠ−t (43)

+
1

3!

∫

d3[p, q, s, t, u, v]Π−pΠ−qΠ−sΠ−tΠ−uΠ−v

(

1

2

∫

d3w
〈OpOqOsOw〉
|p||q||s||w| |w| 〈OwOtOuOv〉

|w||t||u||v|

+
1

20

〈OpOqOsOtOuOv〉
|p||q||s||t||u||v|

)

,

Neumann boundary condition Neumann boundary condition is achieved by adding bound-
ary deformation to the bulk action as

SN
bdy = −

∫

d3pf (0)
p Π−p, (44)

then the boundary condition is achieved by variation of the on-shell action

δIos = δSbulk + δSbdy = −
∫

d3pf (0)
p δΠ−p. (45)

Therefore, one can request δΠ−p = 0, which is Neumann boundary condition. Since adding
such boundary deformation provides effective Legendre transform from bulk action, then the
on-shell action has the same form with the boundary effective action in Dirichlet boundary
condition case. Moreover, its boundary effective action will be the form of the on-shell action
in Dirichlet boundary condition case too. In sum,

INos = WN [Π−p] = ΓD[Π−p], and IDos = WD[f (0)
p ] = ΓN [f

(0)
−p ]. (46)
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Marginal deformation Marginal deformation is achieved by adding the following boundary
deformation term:

SM
bdy = −α

3

∫

d3[p, q, t]

(2π)3/2
f (0)
p f (0)

q f
(0)
t δ3(p+ q + t), (47)

where α is a free real parameter. Then, followed by this, the boundary condition 4 is given by

0 =
δS

δf
(0)
p

= Π−p −
α

3

∫

d3[q, t]

(2π)3/2
f (0)
q f

(0)
t δ3(p+ q + t) (48)

On-shell action in marginal deformation case is

IMos = IDos[f
(0)
p ] + SM

bdy[f
(0)
p ] (49)

By using the procedure introduced in the beginning of this section to derive boundary effective
action from on-shell action and the source J , we get those as

ΓM(f (0)
p ) = −1

2

∫

d3pd3qf (0)
p f (0)

q 〈OpOq〉+
1

3

∫

d3[q, s, t]f (0)
q f (0)

s f
(0)
t 〈OqOsOt〉 (50)

− 1

3 · 4!

∫

d3[p, q, s, u]f (0)
p f (0)

q f (0)
s f (0)

u 〈OpOqOsOu〉

− 1

5 · 6!

∫

d3[p, q, t, v, w, u]f (0)
p f (0)

q f
(0)
t f (0)

v f (0)
w f (0)

u 〈OpOqOtOvOwOu〉,

JM
−p =

∫

d3qf (0)
q 〈OpOq〉 −

∫

d3[s, t]f (0)
s f

(0)
t 〈OpOsOt〉 (51)

+
1

3 · 3!

∫

d3[q, s, u]f (0)
q f (0)

s f (0)
u 〈OpOqOsOu〉

+
1

5 · 5!

∫

d3[q, t, v, w, u]f (0)
q f

(0)
t f (0)

v f (0)
w f (0)

u 〈OpOqOtOvOwOu〉,

where

〈OqOsOt〉 =
α

2

1

(2π)3/2
δ3(q + s+ t). (52)
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