
Topology and its Applications 194 (2015) 349–357
Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

The tangential Thom class of a Poincaré duality group

Yanghyun Byun
Department of Mathematics, Hanyang University, South Korea

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 June 2015
Received in revised form 21 August 
2015
Accepted 1 September 2015
Available online 9 September 2015

MSC:
20J06
57P10

Keywords:
Poincaré duality group
Tangential Thom class
Thom isomorphism

For each Poincaré duality group Γ there exists a class, which we call the tangential 
Thom class of Γ, in the group cohomology of Γ × Γ with a right choice of the 
coefficient module. The class has the crucial properties, even if stated in a purely 
algebraic language, which correspond to those of Thom class of the tangent bundle 
of a closed manifold. In particular the Thom isomorphism has been proved to exist 
by observing that certain two sequences of homological functors, one being the 
homology of Γ and the other that of Γ × Γ, being regarded as functors defined on 
the category of ZΓ-modules are homological and effaceable.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let Γ be a Poincaré duality group of dimension n in the sense of K.S. Brown (pp. 220-1, [1]). This means 
that Γ is of type FP and there is a homomorphism w : Γ → {±1} and a class [Γ] in the group homology 
Hn(Γ; Zw) so that there is the Poincaré duality isomorphism

· ∩ [Γ] : Hi(Γ;M) → Hn−i(Γ;Mw)

for any i ∈ Z and for any left ZΓ-module M . Here ZΓ denotes the integral group ring and Mw denotes the 
ZΓ-module whose underlying abelian group is M itself while its ZΓ-module structure is given by linearly 
expanding the rule

g ·m = w(g)gm

for any g ∈ Γ and any m ∈ M . In fact, ‘· ∩ [Γ]’ in the above maps into Hn−i(Γ; M ⊗ Z
w). Note that 

the integer group Z can be understood as a ZΓ-module by letting Γ act trivially. Then we may identify 
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the homology groups by the natural isomorphism M ⊗ Z
w ≡ Mw of coefficients, where we understand the 

module structure of M ⊗ Z
w is given by the diagonal action of Γ.

It is an interesting question whether the Eilenberg–MacLane space X = K(Γ, 1) is the homotopy type of 
a closed manifold for any Poincaré duality group Γ. However Poincaré duality does not guarantee that Γ is 
finitely presented according to M.W. Davis [4]. Even when this condition is imposed on Γ, the question is 
still open (cf. [5]). Also there is a Poincaré duality group Γ for which X can be chosen as a closed topological 
manifold but not as a smooth or PL manifold (see [6] and also [7]).

If X is a smooth n-manifold, then the diagonal submanifold Δ(X) ⊂ X ×X has a neighborhood N ⊂
X ×X which is diffeomorphic to the disk bundle of the tangent bundle of X. The decomposition X ×X =
(X×X�intN) ∪N provides a standard model for the so-called Poincaré embedding structure on the diagonal
for general Poincaré duality spaces. Of course here the manifold X should be closed for the notion of Poincaré 
embedding to be relevant. An obstruction to the existence of a Poincaré embedding structure on the diagonal 
for general Poincaré complexes, which is exact in dimensions ≥ 4, has been defined by J.R. Klein [8]. If 
there is a finitely presented Poincaré duality group for which the obstruction does not vanish, the example 
will be truly interesting. However it appears that there is no known example of Poincaré duality group Γ
for which the Klein obstruction for X = K(Γ, 1) does not vanish.

In general for any Poincaré complex of dimension n, its tangent spherical fibration may be defined as an 
(n −1)-spherical fibration which is a stable inverse to the Spivak fibration with the right Euler characteristic 
if n is even or with the right b-invariant if n is odd, which always exists and unique up to fiberwise homotopy 
equivalence [2].

In this paper we will show that the Poincaré duality of the group Γ implies automatically an algebraic 
tangential property of Γ in the sense that there is a cohomology class U defined by 2.1 below. It seems 
appropriate for one to call the class U the tangential Thom class. The terminology is partially justified by 
2.2, 2.3 and 3.1 below and also supported by 2.4 below since they make the class U appear to be a group 
cohomology version of the Thom class of the tangent bundle of a manifold. In fact U has been interpreted 
as the Thom class of a ‘tangential’ sphere fibration over K(Γ, 1) by 5.1 and 6.2, 3 in [3] in case K(Γ, 1) is 
the type of a finite complex whose universal cover is forward tame and simply connected at infinity.

We note that each of 2.2, 2.3 and 2.4 has a corresponding statement in [3, §6] even if the contexts are 
not the same. On the other hand the Thom isomorphism with U , which is established by 3.1 below, did not 
require any other argument in [3] than to show that U corresponds to the real Thom class of a spherical 
fibration. In this paper we prove 3.1 by showing that certain two sequences of homological functors are 
homological and effaceable. In fact one is the homology of Γ and the other is that of Γ × Γ, which are 
regarded as sequences of functors defined on the category of ZΓ-modules. Eventually this will imply that 
the two sequences are isomorphic to each other and prove that there is the Thom isomorphism.

2. The tangential Thom class

In this section we define the tangential Thom class of Γ. Then we will show that it has some properties 
which one expects from the Thom class of the tangent bundle of a manifold. The existence of Thom 
isomorphism demands more sophisticated notions for its justification and is postponed until the next section. 
The notations of the introduction are kept.

Every module in this paper is a left module with the only exception being implicit in the definition of 
the group homology for which we take the tensor P ⊗Γ M between left ZΓ-modules understanding that 
the needed right module structure of P comes from the involution of ZΓ which maps g to g−1 for any 
g ∈ Γ. Every tensor product in this paper means one between abelian groups if not otherwise specified by 
a subscript.
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Note that Γ ×Γ is also a Poincaré duality group with the homomorphism w×w : Γ ×Γ → {±1} defined 
by (w × w)(g, h) = w(g)w(h) for any (g, h) ∈ Γ × Γ and the class [Γ × Γ] = [Γ] × [Γ] ∈ H2n(Γ × Γ; Zw×w), 
where we understand the identification Zw ⊗ Z

w ≡ Z
w×w.

Let Δ : Γ → Γ ×Γ denote the diagonal homomorphism and let ΓΔ denote the set of left cosets, (Γ ×Γ)/ΔΓ. 
Then the free abelian group ZΓΔ is a Z(Γ × Γ)-module.

Also we introduce the homomorphisms wl, wr : Γ × Γ → {±1} defined respectively by wl(g, h) = w(g)
and wr(g, h) = w(h) for any (g, h) ∈ Γ × Γ.

Then we consider the homomorphism between ZΓ-modules

α : Zw → ZΓΔwr (2-1)

defined by α(k) = kΔΓ for any k ∈ Z
w, where ZΓΔwr is understood as a ZΓ-module by means of the ring 

homomorphism ZΓ → Z(Γ × Γ) induced by the diagonal homomorphism Δ. Note that

g · ΔΓ = (g, g) · ΔΓ = wr(g, g)ΔΓ = w(g)α(1) = α(g · 1)

and therefore α is indeed a homomorphism between ZΓ-modules. Since α is a homomorphism between 
ZΓ-modules when ZΓΔwr is regarded as a ZΓ-module by Δ, it follows that there is a homomorphism 
(cf. p. 79, [1]),

(Δ, α)∗ : Hn(Γ;Zw) → Hn(Γ × Γ;ZΓΔwr ).

In what follows we understand the identification Mwl ⊗ Z
w×w ≡ Mwr , where Mwl ⊗ Z

w×w is given the 
Z(Γ × Γ)-module structure by the diagonal action of Γ × Γ. Similar identifications will be often implicit 
throughout the paper when we take the cap or the cup products.

Definition 2.1. The tangential Thom class U is the class in Hn(Γ × Γ; ZΓΔwl) such that

U ∩ [Γ × Γ] = (Δ, α)∗[Γ] ∈ Hn(Γ × Γ;ZΓΔwr ).

Here we would like to note again that U above has in fact an interpretation as the Thom class of a 
spherical fibration when the situation is favorable as noted in the introduction, in the paragraph just above 
the last.

Let us regard ZΓ as a module over ZΓ itself in the obvious way. Then we have Hi(Γ; ZΓ) ∼= H̃i(Sn; Z) for 
any i ∈ Z, where H̃i(Sn; Z) denotes the reduced singular cohomology of the n-sphere (cf. pp. 220-1, [1]). We 
also have Hi(Γ; ZΓw) ∼= Hn−i(Γ; ZΓ) ∼= H̃i(Sn; Z), which can be seen by combining the Poincaré duality 
with (iii), (6.1), p. 72 in [1]. Note the natural isomorphisms

H0(Γ;ZΓ) ≡ Z⊗Γ (ZΓ) ≡ Z.

Then each of Hn(Γ; ZΓw) and H0(Γ; ZΓ) has a preferred generator which corresponds to 1 ∈ Z by the iso-
morphisms, Hn(Γ; ZΓw) ∼= H0(Γ; ZΓ) ≡ Z ⊗Γ(ZΓ) ≡ Z. In particular, the preferred generator of Hn(Γ; ZΓw)
depends on the choice of the fundamental class [Γ] ∈ Hn(Γ; Zw). Likewise we note that there are natural 
isomorphisms Hn(Γ; Zw) ∼= H0(Γ; Z) ≡ Z ⊗Γ Z ≡ Z and also call the generators of Hn(Γ; Zw) and H0(Γ; Z)
corresponding to 1 ∈ Z the preferred generators.

Let e denote the identity of Γ and consider the homomorphism ιl : Γ → Γ × Γ defined by ιl(g) = (g, e)
for any g ∈ Γ. Also we define the map

β : ZΓΔwl → ZΓw
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defined by β[g, h] = gh−1 for any [g, h] = (g, h)ΔΓ ∈ ΓΔ. Then β is in fact a homomorphism between 
ZΓ-modules if we regard ZΓΔwl as a ZΓ-module by means of ιl. Therefore for each i ∈ Z there is a 
well-defined homomorphism (cf. p. 79, [1]),

(ιl, β)∗ : Hi(Γ × Γ;ZΓΔwl) → Hi(Γ;ZΓw).

Now we may state a property of the tangential Thom class which corresponds to the fact that the 
pull-back of the Thom class of a spherical fibration to each fiber is a generator. The proof will be postponed 
until at the end of the section.

Theorem 2.2. The pull-back (ιl, β)∗U ∈ Hn(Γ; ZΓw) ≡ Z is the preferred generator.

On the other hand note that the identity map 1 : Zw → Z
wr is a homomorphism between ZΓ-modules if 

we provide Zwr with a ZΓ-module structure by means of the diagonal Δ : Γ → Γ × Γ. Therefore for each 
i ∈ Z there is a homomorphism,

Δ∗ : Hi(Γ;Zw) → Hi(Γ × Γ;Zwr ).

Consider the class Δ∗[Γ] ∈ Hn(Γ × Γ; Zwr ) and let u ∈ Hn(Γ × Γ; Zwl) be the class satisfying

u ∩ [Γ × Γ] = Δ∗[Γ]

which we call the diagonal cohomology class (cf. p. 125, [10] and [2]).
Also there is a homomorphism between Z(Γ × Γ)-modules

ε : ZΓΔwl → Z
wl (2-2)

defined by ε(
∑

g∈Γ ng[g, e]) =
∑

g∈Γ ng where ng are integers such that ng = 0 except for finitely many g’s. 
It follows that for each i ∈ Z there is a homomorphism

ε∗ : Hi(Γ × Γ;ZΓΔwl) → Hi(Γ × Γ;Zwl).

The following provides the main reason why U is referred to as being ‘tangential’, the proof of which is 
provided at the later part of the section.

Theorem 2.3. We have: ε∗U = u ∈ Hn(Γ × Γ; Zwl).

Note that ε : ZΓΔwl → Z
w can be regarded as a homomorphism between ZΓ-modules when ZΓΔwl

is given a ZΓ-module structure by means of Δ. Then there exists a homomorphism (Δ, ε)∗ : Hn(Γ ×
Γ; ZΓΔwl) → Hn(Γ; Zw). On the other hand we also note that X = K(Γ, 1) is the homotopy type of a 
finitely dominated complex since Γ is assumed to be of type FP. As an immediate consequence of 2.3 we 
have:

Corollary 2.4. We have for the Kronecker index

〈(Δ, ε)∗U, [Γ]〉 = χ(X),

where χ(X) denotes the Euler–Poincaré number of X.
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Proof. Consider the homomorphism Δ∗ : Hn(Γ × Γ; Zwl) → Hn(Γ; Zw). Note that (Δ, ε)∗U = Δ∗ε∗U =
Δ∗u, where the last equality comes from 2.3 above. Now the assertion follows by the same argument as 3.4 
in [2] (see also p. 130, [10]). �
Remark. We note that (Δ, ε)∗U in the above can be referred to as the Euler class of Γ. However we would 
like to note that there is another occasion in which the terminology is used to refer to an obstruction to a 
finiteness condition in a group cohomology theory [9].

In the rest of the section we prove 2.2 and 2.3 above. We would like to mention that they are in essence 
the contents of 6.2, [3]. However the two are written in a different context. In addition there is a slight 
improvement in 2.2 above in the sense that we do not assume anymore that w is trivial. We start from the 
following observation (cf. p. 254, [11]).

Lemma 2.5. Let f : G → H be a homomorphism between groups. Let N be a ZG-module and M , N ′ be 
ZH-modules, which are regarded also as ZG-modules by means of f . Let ρ : N → N ′ be a homomorphism 
between ZG-modules. Then for any a ∈ Hi(H; M) and any x ∈ Hj(G; N) we have that

(f, 1 ⊗ ρ)∗((f∗a) ∩ x) = a ∩ (f, ρ)∗x ∈ Hj−i(H;M ⊗N ′).

Proof. Let Δ : G → G × G and Δ′ : H → H × H be the diagonal homomorphisms. Choose projective 
resolutions P → Z and Q → Z respectively for G and for H and chain maps Δ� : P → P ⊗ P and 
Δ′

� : Q → Q ⊗ Q, where we understand P ⊗ P and Q ⊗ Q are given module structures by the diagonal 
action. We need to choose them together with f� : P → Q so that the following diagram commutes

P
Δ�−→ P ⊗ P

f� ↓ f�⊗f� ↓

Q
Δ′

�−→ Q⊗Q.

This can be done for instance by taking as the resolutions the singular simplicial chain complexes of the 
universal cover of the Eilenberg–MacLane spaces, as Δ� and Δ′

� the Alexander–Whitney diagonal approxi-
mations (cf. p. 250, [11]) and as f� the chain map induced by the lifting of a continuous map between the 
Eilenberg–MacLane spaces realizing f .

Now let α ∈ HomH(Qi, M) and ξ = p ⊗ n ∈ Pj ⊗G N . Let Δ�p =
∑

k pk ⊗ p′k ∈ (P ⊗ P )j . Then we have 
Δ′

�f�p =
∑

k f�pk ⊗ f�p
′
k by the commutativity of the above diagram. Therefore in Qj−i ⊗H (M ⊗N ′) we 

have:

(f, 1 ⊗ ρ)�(f �(α) ∩ ξ) =
∑

k

f�(p′k) ⊗ (α(f�pk) ⊗ ρ(n)) = α ∩ (f, ρ)�ξ.

This completes the proof. �
We also need the following, which is obvious. We omit the proof.

Lemma 2.6. Let G be a group and φ : M1 → M2, ψ : N1 → N2 be homomorphisms between ZG-modules. 
Then for any a ∈ Hi(G; M1) and any x ∈ Hj(G; N1) we have:

(φ⊗ ψ)∗(a ∩ x) = φ∗(a) ∩ ψ∗(x) ∈ Hj−i(G;M2 ⊗N2).

To prove 2.2 above we use 2.3 above and therefore we prove 2.3 first. Even if 2.3 is proved in 6.2 in [3]
in essence, we provide a proof for the convenience of the reader.
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Proof of 2.3. Recall the homomorphism ε : ZΓΔwl → Z
wl from (2-2) above. By applying 2.6 we have:

(ε⊗ 1)∗(U ∩ [Γ × Γ]) = ε∗(U) ∩ [Γ × Γ] ∈ Hn(Γ × Γ;Zwl ⊗ Z
w×w) ≡ Hn(Γ × Γ;Zwr ).

By definition it is enough to prove ε∗(U) ∩ [Γ × Γ] = Δ∗[Γ], where Δ∗ : Hn(Γ; Zw) → Hn(Γ × Γ; Zwr ) is as 
in the above.

It seems at this point necessary for us to provide notations for some natural identifications of coefficients: 
μ for ZΓΔwl ⊗ Z

w×w ≡→ ZΓΔwr and μ′ for Zwl ⊗ Z
w×w ≡→ Z

wr . Note that the map ε : ZΓΔwr → Z
wr is a 

homomorphism between the Z(Γ ×Γ)-modules. Then it is obvious that μ′(ε ⊗ 1) = εμ. Furthermore rewrite 
the definition of U in 2.1 above as follows:

μ∗(U ∩ [Γ × Γ]) = (Δ, α)∗[Γ] ∈ Hn(Γ × Γ;ZΓΔwr ).

Also note the identity εα = 1. Then we have in Hn(Γ × Γ; Zwr ),

μ′
∗(ε⊗ 1)∗(U ∩ [Γ × Γ]) = ε∗μ∗(U ∩ [Γ × Γ]) = ε∗(Δ, α)∗[Γ] = (Δ, εα)∗[Γ] = Δ∗[Γ].

This proves 2.3. �
The proof of 2.2 is much less straightforward which proceeds as follows:

Proof of 2.2. Let ε : ZΓw → Z
w denote the homomorphism satisfying ε(g) = 1 for any g ∈ Γ, which is a 

homomorphism between ZΓ-modules.
We begin by considering the commutative diagram:

Hn(Γ;ZΓw) ε∗−→ Hn(Γ;Zw)
∩[Γ] ↓ ∩[Γ] ↓

H0(Γ;ZΓ) ε∗−→ H0(Γ;Z).

Since it is obvious that the preferred generator of H0(Γ; ZΓ) ≡ Z ⊗ΓZΓ ≡ Z is mapped to that of H0(Γ; Z) ≡
Z ⊗Γ Z ≡ Z by ε∗, we conclude from this commutative diagram that the preferred generator of Hn(Γ; ZΓw)
is mapped to that of Hn(Γ; Zw) by ε∗.

Furthermore it is also clear that the diagram commutes:

Hn(Γ × Γ;ZΓΔwl) ε∗−→ Hn(Γ × Γ;Zwl)
(ιl,β)∗ ↓ ι∗l ↓

Hn(Γ;ZΓw) ε∗−→ Hn(Γ;Zw).

Since ε∗U = u by 2.3 above, it is enough to see that ι∗l u ∈ Hn(Γ; Zw) is the preferred generator.
We will show that (ι∗l u) ∩ [Γ] ∈ H0(Γ; Zw ⊗ Z

w) ≡ H0(Γ; Z) ≡ Z is the preferred generator.
By 2.5 above we have

(ιl, 1 ⊗ 1)∗((ι∗l u) ∩ [Γ]) = u ∩ ιl∗[Γ],

where (ιl, 1 ⊗ 1)∗ is the map H0(Γ; Zw ⊗ Z
w) → H0(Γ × Γ; Zwl ⊗ Z

wl). Now let 1∗ ∈ H0(Γ; Z) and [Γ]∗ ∈
Hn(Γ; Zw) respectively be such that 1∗ ∩ [Γ] is the fundamental class [Γ] ∈ Hn(Γ; Zw) and [Γ]∗ ∩ [Γ] is the 
preferred generator of H0(Γ; Z). It is easy to see that the homomorphism ιl∗ : Hn(Γ; Zw) → Hn(Γ ×Γ; Zwl)
maps [Γ] to [Γ] ×1 ∈ Hn(Γ ×Γ; Zw⊗Z) ≡ Hn(Γ ×Γ; Zwl), where 1 denotes the preferred generator of H0(Γ; Z). 
On the other hand consider the projection pr : Γ ×Γ → Γ to the second component. Then the homomorphism 
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p∗r : Hn(Γ; Zw) → Hn(Γ × Γ; Zwr ) maps [Γ]∗ to 1∗ × [Γ]∗ ∈ Hn(Γ × Γ; Z ⊗ Z
w) ≡ Hn(Γ × Γ; Zwr ). Now we 

have in H0(Γ × Γ; Z):

u ∩ ιl∗[Γ] = u ∩ ([Γ] × 1) = (−1)nu ∩ ((1∗ × [Γ]∗) ∩ ([Γ] × [Γ]))

= (1∗ × [Γ]∗) ∩ (u ∩ [Γ × Γ]) = p∗r([Γ]∗) ∩ Δ∗[Γ].

By applying 2.5 above again we have that

p∗r([Γ]∗) ∩ Δ∗[Γ] = Δ∗((Δ∗p∗r [Γ]∗) ∩ [Γ]) = Δ∗([Γ]∗ ∩ [Γ]) = Δ∗(1).

To summarize, we have that

(ιl, 1 ⊗ 1)∗((ι∗l u) ∩ [Γ]) = Δ∗(1) ∈ H0(Γ × Γ;Z),

which is the preferred generator. This is possible only if (ι∗l u) ∩ [Γ] = 1 ∈ H0(Γ; Z), which means that ι∗l u
is the preferred generator. �
3. The Thom isomorphism

Let M be a ZΓ-module which we regard also as a Z(Γ ×Γ)-module by means of the projection pr : Γ ×Γ →
Γ to the second component. We will show that, with the tangential Thom class, U ∈ Hn(Γ × Γ; ZΓΔwl), 
there exists a Thom isomorphism in the sense of 3.1 below. This completes the list of properties of the 
class U , the first two being 2.2 and 2.3 above, which make U deserve its name. Moreover this last property 
appears to demand the most nontrivial arguments of the three for the justification.

Theorem 3.1. For each i ∈ Z we have an isomorphism:

p∗r( · ) ∪ U : Hi(Γ;M) → Hi+n(Γ × Γ;M ⊗ (ZΓΔwl)).

We note again that M ⊗ (ZΓΔwl) is given the Z(Γ × Γ)-module structure by the diagonal action of 
Γ × Γ. Such diagonal actions must be understood in similar situations below. The statement of 3.1 above 
is motivated by 5.1, [3] which states H∗(Γ × Γ; ZΓΔwl) is naturally isomorphic to the integral cohomology 
of the Thom space of a spherical fibration. However it is under the assumption that K(Γ, 1) is the type of 
a finite complex whose universal cover is forward tame and simply connected at infinity. Also note that it 
appears far fetched to expect that a cohomology with coefficient M ⊗ (ZΓΔwl) might be isomorphic to the 
one with coefficient M . However 3.2 below mitigates this first impression to some extent.

Consider the diagonal homomorphism Δ : Γ → Γ × Γ. Also recall the homomorphism α : Zw → ZΓΔwr

from (2-1) above. Then for each i ∈ Z we have a well-defined homomorphism

(Δ, 1 ⊗ α)∗ : Hi(Γ;M ⊗ Z
w) → Hi(Γ ⊗ Γ;M ⊗ (ZΓΔwr )).

Then the following is the most technically demanding statement for one to justify in this paper.

Lemma 3.2. For each i ∈ Z, (Δ, 1 ⊗ α)∗ is an isomorphism.

Proof. We consider the two sequences of functors on the category of ZΓ-modules,

(Hi(Γ; · ⊗ Z
w))i∈Z and (Hi(Γ × Γ; · ⊗ (ZΓΔwr )))i∈Z.
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We will show that both sequences of functors are homological and effaceable if i > 0 in the terminology of 
K. Brown (p. 73 and p. 75, [1]). Furthermore we will show that (Δ, 1 ⊗α)∗ is an isomorphism if i = 0. Then 
by (7.3) on p. 75, [1], we may conclude that (Δ, 1 ⊗ α)∗ is an isomorphism for any i ∈ Z.

Firstly we show that both are homological. Given any short exact sequence of ZΓ-modules

0 → M ′ → M → M ′′ → 0

both of the sequences formed by taking tensor products over Z respectively with Zw and with ZΓΔwr are 
in fact short exact sequences since both Zw and ZΓΔwr are free abelian groups. Therefore both sequences 
of functors give rise to long exact sequences. Furthermore it is clear that both define functors from the 
category of short exact sequences of ZΓ-modules to the category of long exact sequence of abelian groups.

Secondly we show that both are effaceable if i > 0. Let F be a free ZΓ-module. Then F ⊗ Z
w is a free 

ZΓ-module since Zw is a free abelian group (see p. 69, [1]). We also assert that F ⊗ (ZΓΔwr ) is a free 
Z(Γ × Γ)-module: Since F ⊗ (ZΓΔwr ) ∼= (F ⊗ (ZΓΔ)) ⊗ Z

wr , it is enough to see that F ⊗ (ZΓΔ) is free. 
Furthermore it suffices to see that (ZΓ) ⊗ (ZΓΔ) is free. Note that we regard ZΓ as a Z(Γ × Γ)-module by 
means of pr : Γ ×Γ → Γ, which is in fact the rule kept throughout the section. Consider the homomorphism 
between abelian groups

ϕ : (ZΓ) ⊗ (ZΓΔ) → Z(Γ × Γ)

defined by ϕ(g ⊗ [h, k]) = (hk−1g, g). Clearly ϕ is well-defined and bijective. Furthermore ϕ is a homomor-
phism between Z(Γ × Γ)-modules since we have that

ϕ((l,m)(g ⊗ [h, k])) = ϕ((mg) ⊗ [lh,mk]) = (lhk−1m−1mg,mg)

= (l,m)(hk−1g, g) = (l,m)ϕ(g ⊗ [h, k])

for any g, h, k, l, m ∈ Γ. Thus ϕ is an isomorphism between Z(Γ × Γ)-modules. Therefore we conclude that 
if i > 0 the i-th functor vanishes on F for each of the two sequences of functors (see p. 72, [1]).

Lastly we show that (Δ, 1 ⊗ α)∗ : H0(Γ; M ⊗ Z
w) → H0(Γ × Γ; M ⊗ (ZΓΔwr )) is an isomorphism. Note 

that there is a commutative diagram

H0(Γ;M ⊗ Z
w) (Δ,1⊗α)∗−→ H0(Γ × Γ;M ⊗ (ZΓΔwr ))

≡ ↓ ≡ ↓
Z⊗Γ (M ⊗ Z

w) 1⊗(1⊗α)−→ Z⊗Γ×Γ (M ⊗ (ZΓΔwr )).

Since we have 1 ⊗ (m ⊗ ΔΓ) = 1 ⊗ (m ⊗ ((g, e)ΔΓ)) in Z ⊗Γ×Γ (M ⊗ (ZΓΔwr )) for any m ∈ M ad any 
g ∈ Γ, we conclude that (Δ, 1 ⊗α)∗ is surjective at dimension 0. On the other hand (Δ, 1 ⊗α)∗ is injective, 
in fact, at every dimension. Recall the homomorphism ε : ZΓΔwl → Z

wl from (2-2) above. Then note that 
the following homomorphism is well-defined:

(pr, 1 ⊗ ε)∗ : Hi(Γ × Γ;M ⊗ (ZΓΔwr )) → Hi(Γ;M ⊗ Z
w),

for each i ∈ Z. Then the composite (pr, 1 ⊗ ε)∗(Δ, 1 ⊗α)∗ is the identity on Hi(Γ; M ⊗Z
w). This completes 

the proof. �
Now we provide:

Proof of 3.1. Let a ∈ Hi(Γ; M). Then up to the natural identifications of the homology groups by natural 
isomorphisms between the coefficients we have the following identities in Hn−i(Γ × Γ; M ⊗ (ZΓΔwr )):
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(p∗r(a) ∪ U) ∩ [Γ × Γ] = p∗r(a) ∩ (U ∩ [Γ × Γ])

= p∗r(a) ∩ (Δ, α)∗[Γ]

= (Δ, 1 ⊗ α)∗(Δ∗p∗r(a) ∩ [Γ])

= (Δ, 1 ⊗ α)∗(a ∩ [Γ]).

Note that the third identity follows from 2.5 above. Since the duality maps are isomorphisms, our conclusion 
follows by 3.2 above. �
Remark. We note that an argument is missing in our discussions of the paper which shows that our tangential 
Thom class U ∈ Hn(Γ × Γ; ZΓΔwl) has a property by which U may be regarded as the Thom class of a 
spherical fibration inverse to the Spivak fibration. There is only circumstantial evidence, consisting of 2.1, 
2.2, 2.3, 2.4 and 3.1 above, which shows that U resembles the Thom class of the normal fibration of the 
Poincaré embedding structure on the diagonal Δ : X → X×X where X = K(Γ, 1). So far we are successful 
in this regards only when K(Γ, 1) is the type of a finite complex whose universal cover is forward tame and 
simply connected at infinity (see 4.1, 5.1, 6.2 and 6.3 of [3]).
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