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1 Introduction
About 70 years ago, Ulam [1] raised the well-known stability problem of functional equa-
tions. In the next year, Ulam’s problem was partially answered by Hyers [2] in Banach
spaces. Aoki [3] generalized Hyers’ theorem for additive mappings in the year 1950. In
the year 1978, a generalized version of the theorem of Hyers for approximately linear
mappings was given by Rassias [4]. During 1982-1989, Rassias [5—7] treated the Ulam-
Gavruta-Rassias stability on linear and non-linear mappings and generalized Hyers’ re-
sult. In 1994, a further generalization of the Rassias theorem was obtained by Gavruta [8],
who replaced the bound 6(||x||” + ||y||?) by a general control function ¢(x, y). The stability
problems of several functional equations have been extensively investigated by a number
of mathematicians, posed with creative thinking and critical dissent who have arrived at
interesting results (see [8-18]).

In the year 2010, Ravi and Senthil Kumar [19] investigated the generalized Hyers-Ulam

stability for the reciprocal functional equation

r@)r(y)

T+ 1)’ )

r(x+y)

where r: X — Y is a mapping on the spaces of non-zero real numbers. The reciprocal

function r(x) = ; is a solution of the functional equation (1.1).
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Later, Ravi ef al. [20] introduced the reciprocal difference functional equation

5ty @)
r<T>—r(x+y)—m (1.2)

and the reciprocal adjoint functional equation

x+y _ 3rlx)r(y)
r(T) +r(x+y)— m (13)

and investigated the generalized Hyers-Ulam stability for the above two functional equa-
tions (1.2) and (1.3).

Recently, Ravi et al. [21] discussed the generalized Hyers-Ulam stability for the general-
ized reciprocal functional equation

}"(Z Olixi) = H:ZI Zq(xl) (1.4)
i=1 Zzl[ai(njzl r(%)))]
J#i

for arbitrary but fixed real numbers o; #0, fori=1,2,...,m,sothat O <o =3 + g + -+ - +
Oy = Zlm=1 o; #land r: X — Y where X and Y are the sets of non-zero real numbers.

Very recently, Ravi et al. [22] obtained the general solution and investigated the gener-
alized Hyers-Ulam stability of a reciprocal type functional equation in several variables of
the form

[Tl r( +x) [0, )

S Ty e+ 3] S ) ey 0] + Om = D T ree)

k# k#

, (1.5)

where m is a positive integer with m > 3 in various normed spaces.

Remark 1.1 Ravi et al. [22-24] gave some counter-examples for the stability of reciprocal

functional equations in singular cases.

In this paper, we apply a direct method and a fixed point method to investigate the gen-
eralized Hyers-Ulam stability of the functional equation (1.5) in matrix non-Archimedean

random normed spaces.

2 Preliminaries

In this section, we recall some definitions and results which will be used later in the article.
A triangular norm (shorter t-norm) is a binary operation on the unit interval [0,1], i.e.,

afunction T': [0,1] x [0,1] — [0,1] such that for all 4, b, ¢ € [0, 1] the following four axioms

satisfied:

(1) T(a,b)=T(b,a) (commutativity);

(2) T(a,(T(b,c)) = T(T(a,b),c) (associativity);

(3) T(a,1) = a (boundary condition);

(4) T(a,b) < T(a,c) whenever b < ¢ (monotonicity).

Let K be a field. A non-Archimedean absolute value on K is a function | - | from K into
[0, 00) such that for any a, b € K we have
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(1) |a| = 0 and equality holds if and only if a = 0;
(2) lab| = |al|bl;
(3) la +b| < max{|al,|bl}.

The condition (3) is called the strict triangle inequality. By (2), we have |1| = |-1| = 1. Thus,
by induction, it follows from (3) that |n| <1 for each integer n. We always assume in ad-
dition that | - | is non-trivial, i.e., that there is an a( € K such that |ag| # 0, 1.

Let X be a vector space over a scalar field /C with a non-Archimedean non-trivial valua-
tion | - |. A function || - || : X — R is a non-Archimedean norm (valuation) if it satisfies the
following conditions:

(NA;) |lx|| = 0 if and only if x = 0;
(NAy) |lrx|| = |r|llx| for all » € K and x € X;
(NA3) [l + |l < max{lx[, llyll} for all x, y € X (the strong triangle inequality).

Then (X, || - ||) is called a non-Archimedean space.
Thanks to the inequality

o6 — 27l < max{lla, s =, : <) <m-1} (m>])

a sequence {x,,} is Cauchy if and only if {x,,,; — x,} converges to zero in a non-
Archimedean space. By a complete non-Archimedean space we mean one in which every
Cauchy sequence is convergent.

In 1897, Hensel [25] introduced a normed space, which does not have the Archimedean
property.

In the sequel, we adopt the usual terminology, notations, and conventions of the theory
of random normed spaces as in [26—29]. Throughout this paper, A* is the space of dis-
tribution functions, that is, the space of all mappings F : R U {—o0, 00} — [0,1] such that
F is left-continuous and non-decreasing on R, F(0) = 0, and F(+o0) = 1. D* is a subset of
A* consisting of all functions F € A* for which ["F(+00) = 1, where /" f(x) denotes the left
limit of the function f at the point x, that is, [7f(x) = lim,_, - f(£) . The space A* is partially
ordered by the usual point-wise ordering of functions, i.e., F < G if and only if F(¢) < G(¢)
forall tin R.

Definition 2.1 [29] A non-Archimedean random normed space (briefly, NA-RN-space)
isatriple (X, u, T), where X is a vector space, T is a continuous ¢-norm, and u is a mapping
from X into D* such that the following conditions hold:

(RN1) py(t) = &o(t) for all £ > 0 if and only if x = 0;
(RN2) prox(t) = ,u.x(ﬁ) forallx e X, a #0;
(RN3) sy (max{t,s}) > T(px(t), 1y(s)).

It is easy to see that if (RN3) holds, then we have
(RN4)  pyry (£ +8) = T (1 (£), 1y(5)).
Definition 2.2 Let (X, 4, T) be an NA-RN-space.

(1) Asequence {x,}in X is said to be convergent to x in X if, for every € > 0 and A > 0, there
exists a positive integer N such that p,, _(€) >1 - A whenever n > N.



Ebadian et al. Advances in Difference Equations (2015) 2015:314 Page 4 of 13

(2) A sequence {x,} in X is called a Cauchy sequence if, for every € > 0 and A > 0, there
exists a positive integer N such that py,_y, ., (€) >1 - A whenever n > N.
(3) An NA-RN-space (X, u, T) is said to be complete if and only if every Cauchy sequence

in X is convergent to a point in X.

We will also use the following notations. The set of all m x n-matrices in X will be de-
noted by M,, ,(X). When m = n, the matrix M, ,(X) will be written as M,,(X). The symbols
e; € My,(C) will denote the row vector whose jth component is 1 and the other compo-
nents are 0. Similarly, E;; € M,,(C) will denote the # x n matrix whose (i, /)-component is
1 and the other components are 0. The # x n matrix whose (i,j)-component is x and the
other components are 0 will be denoted by Ej;; ® x € M,,(X).

Let (X, |- ||) be a normed space. Note that (X, {|| - ||,}) is a matrix normed space if and only
if (M,(X), || - |l) is a normed space for each positive integer n and ||AxB||x < ||A|l|IBI/l1*]l
holds for A € My, x = [x;] € M,,(X) and B € M,,x, and that (X, {|| - || ,}) is a matrix Banach
space if and only if X is a Banach space and (X, {|| - ||,,}) is @ matrix normed space.

Let E, F be vector spaces. For a given mapping % : E — F and a given positive integer 7,
define A, : M,,(E) — M,,(F) by

hy ([xl]]) = [h(xl])]

for all [x;] € M,(E).
We introduce the concept of matrix non-Archimedean random normed space.

Definition 2.3 Let (X, u, T) be a non-Archimedean random normed space. Then:

1) (X,{u"},T) is called a matrix non-Archimedean random normed space if for each
positive integer 7, (M,(X), {;+"}, T) is a non-Archimedean random normed space and
wp(®) = n (i) forall £> 0, A € My, (R), & = [x] € M,(X) and B € M, x(R) with
Al - 1Bl # 0.

(2) (X,{u"™},T) is called a matrix non-Archimedean random Banach space if (X, u, T)

is a non-Archimedean random Banach space and (X, {u"},T) is a matrix non-

Archimedean random normed space.

Definition 2.4 Let £ beaset. A functiond : £ x £ — [0,00] is called a generalized metric

on & if d satisfies the following conditions:

(1) d(x,y) =0ifand only if x = y;
(2) d(x,y)=d(y,x) forallx,y € &;
(3) d(x,z) <d(x,y) +d(y,z) forallx,y,z € £.

We note that the only one difference of the generalized metric from the usual metric is
that the range of the former is permitted to include infinity.

The following theorem is very useful for proving our main results; it is due to Diaz and
Margolis [30].

Theorem 2.5 [30] Let (2,d) be a complete generalized metric space and let J : Q@ — Q be

a strictly contractive mapping with Lipschitz constant L < 1. Then for each given element
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x € Q, either
d(J”x, j”“x) =00

for all non-negative integers n or there exists a positive integer ny such that:

1) d(T"x, T"x) < oo for all n > ny;
(2) the sequence { J"x} is convergent to a fixed point x* of J;
(3) x* is the unique fixed point of J in the set

A:={y e Qld(JT"x,y) < oo};

@) dy,x*) < T forally e A.

Throughout this paper, we assume that X be a normed space and (Y, 1, T) be a matrix
non-Archimedean random Banach space.

We note that a mapping r : X — Y satisfies the functional equation (1.5) if and only if
there exists a reciprocal mapping r : X — Y satisfying the reciprocal functional equation
(1.1) [22].

For a mapping r: X — Y, define D,,r : X — Y and D,,r,, : M,(X"™) — M,,(Y) by

[T/%, r(e + )

D,,r(x1, ..., %) =

S e 7 + 2]
k€
_ [T7%, rexe)
Sty r@) [ iy r@)] + (m = 1) T, rloxe)
Kkt
l_[:znzz "([xlij] + [xeij])

Dot ([%15), 23] - (i) o= —
Yo T Tien r(fg] + [xai])]
ke
_ [Ti% r(xes])
S0 r(GeagD T Ty (k)] + 0m = D T il )

k#t

for all xy,...,%, € X and all x| = [xy;],...,%,, = [%j] € M,(X).

3 Generalized Hyers-Ulam stability of (1.5): direct method
Theorem 3.1 Let ¢ : X" — D™ be a function such that there exists o« € R with 0 < |a| < |2|

SMCh thﬂt
‘p’% ,,,,, me( ) Z Pxy,ptm ™ ( . )

orallx,,...,x, € Xandallt >0 and lim,_, o, T (¢_= « (2L ) =1forallx e X an
I dall dli 0 ( (251 u d

oKk+I ok+1 |m-1|

allt > 0. If a function f : X — Y satisfies the functional inequality

n

)

KDyl [xmgh(t)ZZ‘/’xw ,,,,, i (£) (3.2)
ij=1
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Sor all ¥, =[x, ..., %), = (%] € M, (X) and all t > 0, then there exists a unique reciprocal
mapping r: X — Y which satisfies (1.5) and the inequality

() 00 12]' L
E R COUY () YRS RS

forall x = [x;] € M,(X) and all t > 0.

Proof Let n =1. Then (3.2) is equivalent to

D pf ettnn) (E) = Oy, (£) (3.4)

forall xy,...,x,, € X and all £ > 0. Replacing x; by 7 fori=1,...,m in (3.4), we get

M_1_ 1 [fx)_lf €3 ](t) = (ﬂgg(t)
and so
1
'uf(x)f%f(%)(t)z(p% llll §<|m_1|t) (35

for all x € X and all £ > 0. Now, replacing x by 7 in (3.5), we obtain

1
Mf(%)_%f(z%)(t)zwz% ,,,,, = |m—1|t (3.6)
for all x € X and all £ > 0. By (3.5) and (3.6),

Hpi- L S (1) = T(Mf 11 (t) le( - 1 £(%) (t))

2

= T (ks 4O iy 4 (1219))

>T L 2,
=T\ 053\ et ) 53 o]

for all x € X and all ¢ > 0. Proceeding and using induction arguments on a positive inte-

ger j, we arrive at

[
10 f?;()>Tl=o<‘P2,T ,,,,, W<|m—1|t>> (3.7)

for all x € X and all £ > 0. For any positive integer ¢, x € X and ¢ > 0, we have

121
x x = x Q. x_ _x .
lelﬂf(zHl)_zizf(zz)(t) IJLZLV‘T f(2,+1 (t) _¢21+1 """ ot+1 ('m_1|t

X X t T X X t
3 g ® = T (B - i ®)

N 21", (3.8)
K=\ T e T \ | — 1 :
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forallx € X, all£>0and: > 0. Since lim,_, o 722, (¢ _x » (L5 4)=1forallx € X and

i1 ox+ ~ m=1]
all £ > 0, it follows that the sequence {2% f(37)} is a Cauchy sequence in the matrix non-

Archimedean random Banach space (Y, ;L(”), T). Hence, we can define a mapping r: X —
Y by

lim Mif(i)_y(x)(t) =1 (3.9)

J—>o0 2/

forallx € X and all £ > 0.
Moreover, letting j — oo in (3.7), we get

Hf)—r) () > T 9= x Ll t (3.10)
“f (x)—r(x = “1=0 AL 7 il |m—1|
forall x € X and all £ > 0. To show that r satisfies (1.5), replacing (x1, ..., %) by (5+,..., 5%)

in (3.4) and using (3.1), we obtain

2]/
i ¥ ox QO x J 1) —_—
Z%Dmf(ﬁ ..... 2*'7')(” z fl,...,ﬂ (|2| t) Z Pxpyiim (| |j L (3'11)

forallwx,,...,x, € X, forall positive integer j and all £ > 0. Since lim, _, o @4, ., xm((%)ft) =1,
we see that r satisfies (1.5), for all x1,...,x,, € X and all £ > 0.

We note that e; € My ,(R) means that jth component is 1 and the others are zero, E; €
M,,(R) means that (i, j)-component is 1 and the others are zero, and E; ® x € M,,(X) means
(n)

that (i, j)-component is x and the others are zero. Since ;.

pq®x(t) = Mx(t); we have

() (n) (m) Lii= - cii=
,u[xij](t) = MZZ/dEg@xg(t) > T(“Ei,®xi,(tti) hj=1,2,...,n) = T(Mx,-,(tt/) 1hj=1,2,...,n),

where ¢ = ZZFI t;j. So /Lg:?i](t) > Ty (5) 6 =1,2,...,m).
By (3.10),

o H=T L) =1
Il (8) = T\ Poptg)rtoy) Pol R

>T TO_OO Q % xjj &t thj=1,...,m
- U\ et \|m = 1|0

for all w = [x;] € M,,(X) and all £ > 0. Thus r: X — Y is a unique mapping satisfying (3.3),
as desired. O

Theorem 3.2 Let ¢ : X — D* be a function such that there exists « € R with 0 < |2] < |«|
such that

D2x1,.. 2% (6> Dty xm(|a|t) (3.12)

.....

n

)

KDyl [xmgh(t)ZZ‘/’xw ,,,,, i (£) (3.13)
ij=1
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Sor all ¥, =[x, ..., %), = (%] € M, (X) and all t > 0, then there exists a unique reciprocal
mapping r: X — Y which satisfies (1.5) and the inequality

t .
an [xl/] ~I'n [xl/] (t) > T(T (‘pth/ YYYY 21 x;j (W)) ‘L]= 1, .o .,l’l) (3.14‘)

for all x = [x;] € M,(X) and all t > 0.

Proof Let n=1.Then (3.13) is equivalent to

Dy (x1,0ner xm)(t) = Oxiye xm(t) (3.15)

for all xy,...,x,, € X and all £ > 0. The rest of the proof is obtained by replacing x; by x
fori=1,2,...,min (3.15) and proceeding further by similar arguments as in Theorem 3.1.
O

Corollary 3.3 Let y € {-1,1} be fixed. Let f : X — Y be a mapping and let there exist real
numbers q # -1 and 6 > 0 with —y < qy such that

t

(019 + - =+ + i 19)

Mo (ki) ) Z 1 +>r 6
Sor all x; =[xy, ..., %, = (%] € M(X) and all t > 0. If

lim T°° ( d
=00 N f ok Omlm — 1] al|a(|2]<aar)

y-1 —y+l ) =1
) (|2|Kq+K+1)T

forall x € X and all t > 0, then there exists a unique reciprocal mapping r: X — Y such
that

T(T O(W):i,j:l,Z,...,n) for)/zl,

t+ P

(n)
I g (8) =

T(T'IOZOO t+5’m}’12\Wl*lHﬁxl‘inﬂ\’q*”l ) : l’] = 1’ 2’ b "n) fOr y = _1
Sor all x = [x;] e M,(X) and all t > 0.

Proof 1f we choose ¢y, »,,(t) = m, for all £ > 0 and all xy,...,x,, € X, then
by Theorem 3.1, we arrive at

(n) 0 t o
Poeg-raieg (E) = T(Tro (49%%1”2,-”4 ) thj=12,., ”)
t + |2|zq+q+z

for all x = [x;] € M,(X), all £ >0 and y =1, and using Theorem 3.2, we arrive at

t
) >T\ T 1L,j=12,...,n
’ufn (N AEM)] ( ) < <t+0mn2|m 1|”xll||q|2|lq+l+l> J >

forall x = [x;] € M, (X),all£>0and y = -1. O
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4 Generalized Hyers-Ulam stability of equation (1.5): fixed point method
Theorem 4.1 Suppose that the mapping f : X — Y satisfies the inequality

n

(n)

o1yt ®) 2 D st O (4-1)
ij=1

Sor all X, = [xil, ..., %, = [%my] € M, (X) and all £ > 0, where ¢ : X" — D" is a given func-
tion. If there exists L <1 such that

1
¢x71 ,,,,, me(t)Z%l ..... xm(mt> (4.2)

forall xy,...,x, € X and all t > 0, then there exists a unique reciprocal mappingr:X — Y
which satisfies (1.5) and the inequality

) 1-L .
147Gl (E) = T(‘f’xi/ ~~~~~ "t’i(mt> L= 1”) (4-3)
Sor all x = [x;] €e M,(X) and all t > 0.
Proof Let n=1. Then (4.1) is equivalent to
IDpf Getoinn) (£) = Dy (£) (4.4)

for all xq,...,x,, € Xand all £ > 0.
Define a set S by

S ={h:X — Ylhis afunction}
and introduce the generalized metric d on S as follows:

d(g,h) = inf{k eR,: Mg(x)_h(x)(kt) > ¢y (1), Vx € X,Vt > 0}, (4.5)

where, as usual, inf ) = +o0. It is easy to show that (S, d) is complete (see [27], Lemma 2.1).
Define a mapping o : S — S by

o h(x) = %h(g) (xeX) (4.6)

for all # € S. We claim that o is strictly contractive on S. For any given g, € S, let €4, €
[0, 00] be an arbitrary constant with d(g, /1) < €g,. Hence

dg,h) <€ = ew-hx)(€pnt) > Py, (), YxeX,VE>0

.....

= Wi -tu (€ant) = 63,5 (1218),  VxeX,VE>0

,,,,,

= dlog,oh) <Legy,.
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Therefore, we see that
dlog,oh)<Ld(g,h), forallg,heS

that is, o is strictly contractive mapping of S, with the Lipschitz constant L < 1.
Now, replacing x; by 5 fori=1,...,m in (4.4), we get

1 1
Mf(x),éf(%)(t)zflb% ,,,,, §<|m_1|t>2¢x ..... x(mt)

forallx € X and all £ > 0. Hence (4.5) implies that d(f, o f) < L|2||m —1]| < co. Hence by ap-
plying the fixed point alternative Theorem 2.5, there exists a function r : X — Y satisfying
the following:

(1) risa fixed point of o, that is,

r(x) = lr(f> (4.7)

for all x € X. The mapping r is the unique fixed point of ¢ in the set

M ={geSld(f.g) < oo}.
This implies that r is the unique mapping satisfying (4.7) such that there exists € €
(0, 00) satisfying

Wf)-r(x) (€8) = by, 1(2), VX €X,VE>0.

(2) d(o"f,r) = 0 as n — oco. Thus we have

lim jo g (8 =1 (4.8)

n—00

forallx € X and all £ > 0.
(3) d(r,f) < ﬁd(f,af) which implies

d(r,f) < % (4.9)

From (4.2), (4.4), and (4.8), we have

.....

We note that e; € My ,(R) means that the jth component is 1 and the others are zero, E;; €
M,,(R) means that the (i,j)-component is 1 and the others are zero, and E; ® x € M,(X)
means that the (,j)-component is x and the others are zero. Since ugqm(t) = ux(t), we
have

) o) ) o B o
,u,[zil_](t) = M%{szlfi@xi/(t) > T(“Efy@xi;(tﬁ) v =12,0,n) = Ty (ty) 16 =1,2,...,n),

where t =Y. | £;. So ngji](t) > T(y () j=1,2,...,m).
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By (4.9),
. o AV
”fn([x,;l)—rn([x,«;l)(t)— HiGi-rep\ 2 | # 0] = Lees

1-L
>T gl ———————t ), j=1,...,
= <¢x,, ..... xl}<n2L|2||Wl—l| > L] }1)

for all x = [x;] € M,,(X) and all £ > 0. Thus r: X — Y is a unique reciprocal mapping satis-
fying (4.3). O

Theorem 4.2 Suppose that the mapping f : X — Y satisfies the inequality

n

)

KDy (1), [xmz-,-])(t)zz%w vvvvv i () (4.10)
ij=1

Sor all x; =[x, ..., %, = [Xmy] € M (X) and all t >0, where ¢ : X" — D* is a given func-
tion. If there exists L <1 such that

2
¢2x1 ,,,,, 2Xm (t) = d’xl ,,,,, X (ut) (411)

forall xy,...,x, € X and all t > 0, then there exists a unique reciprocal mappingr:X — Y
which satisfies (1.5) and the inequality

o) O>T L A PP (412)
an([xv])*rn([xi/]) = ¢in """ Xij n2|2||m — 1] hj=L..n :
Sorall x = [x;] e M,(X) and all t > 0.
Proof The proof is similar to the proof of Theorem 4.1. g

Corollary 4.3 Let y € {—1,1} be fixed. Let f : X — Y be a mapping and let there exist real
numbers q # =1 and 6 > 0 with —y < qy such that

) (t) > !
PGl Gl 4 3 Ol + -+ i |9)

Sorall x; = [x15],...,%,, = [%mi] € My(X) and all t > 0. Then there exists a unique reciprocal
mapping r: X — Y such that

(2171 -1 Liil -
ne 0> T Demlmtgy o/ =b2-on) fory =1,
Pl = T( (-[2(7" )¢ 15,j=1,2,...,n) fory=-1

(=120 1)e+0mn? (2] [m—1 llx;19

Sorall x = [x;] e M,(X) and all t > 0.

Proof If we choose ¢y, . x, () = WM, for all £ >0 and all x4,...,x,, € X, then
by Theorem 4.1, we arrive at

) =T (121 - 1ye 5,j=1,2,...,n
gD =rn(lxgD V7 = (|2]a+1 —1)t+9mn2|2||m—1|||xij||q hj=bh4 ..
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forallx = [x;] e M,(X),allt>0,y =1,L = [2|791, and using Theorem 4.2, we arrive at

) (1- 2|7t .
t)y>T :,j=1,2,...,n
an([xij])—rn([xij])( )= ((1 — 1219t + Omn?|2||m - 1] o119 J

for all x = [x;] € M,,(X),all£>0,y =-1and L = [2]7".. O
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