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In a scattering process, the final state is determined by an initial state and an S-matrix. We focus on 
two-particle scattering processes and consider the entanglement between these particles. For two types 
initial states, i.e., an unentangled state and an entangled one, we calculate perturbatively the change of 
entanglement entropy from the initial state to the final one. Then we show a few examples in a field 
theory and in quantum mechanics.
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1. Introduction

Entanglement is a characteristic feature in a quantum theory. 
The entanglement in quantum field theories has been studied ex-
tensively in the past decade. When one considers a sub-system A
and its complement A, the entanglement entropy between A and 
A is defined by the von Neumann entropy S E = − trA ρA logρA
with the reduced density matrix ρA . Calabrese and Cardy have 
systematically studied it in a conformal field theory with the use 
of a replica trick [1]. The other remarkable recent progress is the 
holographic derivation of entanglement entropy suggested by Ryu 
and Takayanagi [2,3]. Following it, one can obtain an entangle-
ment entropy by calculating S E = A/(4G N ), where A is the area 
of a minimal surface whose boundary is the boundary of the sub-
system A. In other words, the holographic entanglement entropy 
provides us with a geometric understanding of entanglement.

Then there is the other geometric interpretation of entangle-
ment entropy conjectured recently by Maldacena and Susskind [4]. 
Its original purpose was to resolve the firewall paradox [5].1 This 
conjecture states that an Einstein–Rosen–Podolski pair, i.e., a pair 
of entangled objects, is connected by an Einstein–Rosen bridge (or 
a wormhole). Therefore the conjecture is symbolically called the 
ER=EPR conjecture. From the point of view of the AdS/CFT cor-
respondence, some examples supporting the ER=EPR conjecture 
have been shown. An entangled pair of accelerating quark and 
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anti-quark was studied in Ref. [7]. Investigating the causal struc-
ture on the world-sheet minimal surface that is the holographic 
bulk dual of such a quark and anti-quark on the AdS boundary, 
Ref. [7] has found that there exists a wormhole on the minimal 
surface and that any open strings connecting the quark and anti-
quark must go through the wormhole. Therefore the entanglement 
of the accelerating quark and anti-quark coincides with the exis-
tence of the wormhole. Furthermore, Ref. [8] considered Schwinger 
pair creation of a quark and an anti-quark and confirmed that 
there is a wormhole on the string world-sheet of their bulk dual. 
Ref. [9] focused on a pair of scattering gluons as an EPR pair. Since 
Ref. [10] had shown the minimal surface solution corresponding 
to the gluon scattering, Ref. [9] calculated the induced metric on 
the minimal surface and found a wormhole connecting the gluon 
pair. One can then naturally guess that, in a scattering process,2 an 
interaction induces the variation of entanglement from an incom-
ing state to an outgoing one. We know these states are associated 
with each other by an S-matrix. So the question is how the vari-
ation of entanglement entropy and the S-matrix are related. In 
this paper we attack this problem by a perturbative analysis in 
a weak coupling λ. In order to evaluate the entanglement entropy, 
it is useful to calculate Rényi entropy by the replica trick when 
one can calculate it exactly. For instance, Ref. [12] explicitly cal-
culated the time evolution of the entanglement entropy between 
two free scalar field theories with a specific interaction. However, 
this method is often unavailable for a perturbative analysis. There-
fore we apply the method developed by Refs. [13,14], in which the 
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entanglement between two divided momentum spaces was stud-
ied perturbatively.

In Section 2, we consider the variations of entanglement en-
tropy from two kinds of initial states; one is an unentangled initial 
state and the other is an entangled one. In Section 3, we evaluate 
the variation of entanglement entropy in the field theory with a 
φ4-like interaction. We also consider the time-dependent interac-
tion in quantum mechanics. Section 4 is devoted to conclusion and 
discussion.

2. Perturbative calculation of entanglement entropy

Since we are interested in a scattering process of two particles, 
A and B, and their entanglement, let us consider the Hamiltonian 
with an interaction:

H = H0 + λH int, H0 = H A ⊗ 1 + 1 ⊗ H B . (2.1)

It is usually difficult to divide the total Hilbert space H to HA ⊗
HB due to the interaction. However an initial state far in the past 
and a final state far in the future in a scattering process can be re-
garded as states generated by an asymptotically free Hamiltonian. 
Furthermore, although a field theory in general includes arbitrary 
multi-particle states in its Hilbert space, we concentrate only on 
an elastic scattering of two particles such as A + B → A + B with 
a weak coupling. That is to say, we restrict the Hilbert space to 
the (1 + 1)-particle Fock space, in which the initial and final states 
are. Since such a restriction usually violates unitarity for local in-
teraction terms, we assume in this paper specific theories that do 
not produce states of more than 1 + 1 particles at lower orders of 
perturbation (see an example in Section 3.1). Then the unitarity is 
approximately recovered at a weak coupling. Under this assump-
tion, we can divide the Hilbert space of the initial and final states 
to HA ⊗ HB , and these states are denoted by a (1 + 1)-particle 
state generated by the free Hamiltonian H0, namely, a state of a 
particle A and B with momentum p and q:

|p,q〉 := |p〉A ⊗ |q〉B . (2.2)

One can express the infinite time evolution from the initial state 
to the final one in terms of S-matrix by definition,

lim
t→∞〈fin|e−iHt |ini〉 = 〈fin|S|ini〉, S := 1 + iT. (2.3)

T is a transition matrix in O(λ) which is induced by the interac-
tion. Then the final state is described as

|fin〉 =
∫

dkdl |k, l〉〈k, l|S|ini〉, (2.4)

in which we used the completeness relation of (1 + 1)-particles’ 
states, i.e., (1)(1+1)-particles = ∫

dkdl |k, l〉〈k, l|, and an inner prod-
uct of states, i.e., 〈k, l|p, q〉 = δ(k − p)δ(l − q). Although the norm 
〈p, q|p, q〉 =: V has an infinite volume, we shall fix a normalization 
at the stage of a reduced density matrix. Here we comment that 
one can easily formulate the case of discrete spectra by replacing ∫

dkdl with 
∑

k,l . As an example we shall show in Section 3.2 the 
theory with a time-dependent interaction in non-relativistic quan-
tum mechanics.

The total density matrix of the final state is ρ(fin) = |fin〉〈fin|, 
and we obtain the reduced density matrix ρ(fin)

A by taking trace 
of ρ(fin) with respect to the particle B, i.e., ρ(fin)

A = trB ρ(fin) up to 
normalization. In the case of (2.4) we can write down the reduced 
density matrix as

ρ
(fin)
A = 1

∫
dkdk′

(∫
dl〈k, l|S|ini〉〈ini|S†|k′, l〉

)
|k〉〈k′|, (2.5)
N

where N is a normalization constant determined by trA ρ
(fin)
A = 1, 

namely,

N =
∫

dkdl |〈k, l|S|ini〉|2. (2.6)

Then the entanglement entropy between A and B in the final state 
is

S(fin)
E = − trρ(fin)

A logρ
(fin)
A , (2.7)

and the variation of entanglement entropy from the initial state to 
the final one is

�S E = S(fin)
E − S(ini)

E , (2.8)

where S(ini)
E is the entanglement entropy of the initial state. We 

shall calculate these entanglement entropies perturbatively.
The replica trick allows us to calculate a Rényi entropy, 

S(n) = 1
1−n log trA ρn

A . The entanglement entropy is given by 
the n → 1 limit of Rényi entropy, namely, S E = limn→1 S(n) =
− limn→1

∂
∂n trA ρn

A . Therefore the method to derive an entangle-
ment entropy via a Rényi entropy is often useful. However, we are 
confronted with a problem when we analyze a quantum theory 
with a coupling λ in terms of perturbation. When one obtains a 
perturbative expansion of trA ρn

A , the term of order λn relevantly 
contributes to the entanglement entropy because the operation 
limn→1

∂
∂n acts on λn and yields a term of λ log λ order. In other 

words, the higher order terms in the Rényi entropy are responsible 
for the convergence of the entanglement entropy under the n → 1
limit. Hence any λn-order terms in trA ρn

A are necessary in order to 
obtain a meaningful entanglement entropy. In this paper, instead 
of the replica trick, we apply the perturbative method developed 
by Ref. [13] for calculating an entanglement entropy.

2.1. Unentangled initial state

Let us consider the simplest single state with fixed momenta 
p1 and q1 for the initial state of particle A and B,

|ini〉 ∼ |p1,q1〉. (2.9)

The normalization of states will be properly fixed later in normal-
izing a density matrix so that trA ρ

(fin)
A = 1. This initial state is 

obviously unentangled, i.e., S(ini)
E = 0. Then we can describe the 

final state (2.4) as

|fin〉 =
∫

dkdl |k, l〉Skl;p1q1

= Sp1q1;p1q1

V 2
|p1,q1〉 + iλ

∫
k 
=p1

dk
Tkq1;p1q1

V
|k,q1〉

+ iλ

∫
l 
=q1

dl
Tp1l;p1q1

V
|p1, l〉

+ iλ

∫
k 
=p1
l 
=q1

dkdlTkl;p1q1 |k, l〉, (2.10)

where we introduced an infinite spacial volume V := ∫
dx eix·0 =

δ(0) due to the divergence of norms, i.e., 〈p|p〉A = 〈q|q〉B = δ(0). 
The integral 

∫
k 
=p dk means 

∫
dk(1 − V −1δ(k − p)). Skl;pq and Tkl;pq

denote S- and T-matrix elements,

Skl;pq := 〈k, l|S|p,q〉, Tkl;pq := 1 〈k, l|T|p,q〉. (2.11)

λ
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S includes an identity 1, while T is given by an interaction with 
coupling λ. Therefore the possible lowest orders of (2.11) with re-
spect to λ are

Spq;pq ∼ O(λ0), Sp′q′;pq|(p′,q′) 
=(p,q) ∼ O(λ),

Tkl;pq ∼ O(λ0). (2.12)

We employ the method developed by Ref. [13] in order to per-
turbatively calculate the entanglement entropy. Since Eq. (2.10) is 
rewritten as

|fin〉 = Sp1q1;p1q1

V 2
|p̃1〉A ⊗ |q̃1〉B

+
∫

k 
=p1
l 
=q1

dkdl

(
λ2 Tkq1;p1q1Tp1l;p1q1

Sp1q1;p1q1

+ iλTkl;p1q1

)
|k, l〉,

(2.13)

with

|p̃1〉A = |p1〉A + iλV

∫
k 
=p1

dk
Tkq1;p1q1

Sp1q1;p1q1

|k〉A,

|q̃1〉B = |q1〉B + iλV

∫
l 
=q1

dl
Tp1l;p1q1

Sp1q1;p1q1

|l〉B , (2.14)

we can calculate the reduced density matrix (2.5) as

ρ
(fin)
A = 1

N1

( |Sp1q1;p1q1 |2
V 3

|p̃1〉〈p̃1|

+ λ2 V 2
∫

k,k′ 
=p1

dkdk′Mkk′ |k〉〈k′|
)

,

Mkk′ = 1

V 2

∫
l 
=q1

dl

(
λ
Tkq1;p1q1Tp1l;p1q1

Sp1q1;p1q1

+ iTkl;p1q1

)

×
(

λ
Tk′q1;p1q1Tp1l;p1q1

Sp1q1;p1q1

+ iTk′l;p1q1

)∗
. (2.15)

N1 is the normalization factor which is fixed by trA ρ
(fin)
A = 1, 

namely,

N1 = |Sp1q1;p1q1 |2
V 2

+ λ2 V 2
∫

k 
=p1

dk Mkk. (2.16)

Here we recall (2.12) and it leads to Mkk′ ∼ O(1). After a pertur-
bative expansion, the reduced density matrix (2.15) becomes

ρ
(fin)
A =

(
1 − λ2

∫
k 
=p1

dk Mkk

)
1

V
|p̃1〉〈p̃1|

+ λ2
∫

k,k′ 
=p1

dkdk′ Mkk′ |k〉〈k′| +O(λ3), (2.17)

Mkk′ = 1

V 2

∫
l 
=q1

dlTkl;p1q1T
∗

k′l;p1q1
+O(λ) (k,k′ 
= p1) (2.18)

When the eigenvalues of Mkk′ at leading order are denoted by mk , 
we obtain∫

dk Mkk = trA Mkk′ =
∫

dk mk, (2.19)
k 
=p1 k 
=p1
up to O(λ). Therefore the entanglement entropy of final state (2.7)
becomes

S(fin)
E = −

(
1 − λ2

∫
k 
=p1

dk mk

)
log

(
1 − λ2

∫
k 
=p1

dk mk

)

−
∫

k 
=p1

dk (λ2mk) log(λ2mk) +O(λ3)

= −λ2 logλ2
∫

k 
=p1

dk mk + λ2
∫

k 
=p1

dk mk(1 − logmk)

+O(λ3). (2.20)

Only the T-matrix elements Tkl;p1q1 with k 
= p1 and l 
= q1 con-
tribute to the entanglement entropy of the final state at leading 
order. Of course, since the entanglement entropy of the unen-
tangled initial state (2.9) vanishes, the variation of entanglement 
entropy (2.8), �S E , is equal to S(fin)

E itself in (2.20).

2.2. Entangled initial state

Let us consider an entangled initial state,

|ini〉 ∼ u1|p1,q1〉 + u2|p2,q2〉, (2.21)

with p1 
= q1, p2 
= q2, u2
1 + u2

2 = 1, u1,2 
= 0 and u1 ≥ u2. The en-
tanglement entropy of this state is

S(ini)
E =

2∑
j=1

|u j|2 log |u j|2. (2.22)

We can write down the final state in terms of the S-matrix (or 
T-matrix),

|fin〉 = Sp1q1

V 2
|p1,q1〉 + Sp2q2

V 2
|p2,q2〉

+ iλ
Tp1q2

V 2
|p1,q2〉 + iλ

Tp2q1

V 2
|p2,q1〉

+ iλ

∫
l 
=q1,q2

dl
2∑

j=1

Tp jl

V
|p j, l〉

+ iλ

∫
k 
=p1,p2

dk
2∑

j=1

Tkq j

V
|k,q j〉

+ iλ

∫
k 
=p1,p2
l 
=q1,q2

dkdlTkl|k, l〉, (2.23)

where

Skl := u1Skl;p1q1 + u2Skl;p2q2 ,

Tkl := u1Tkl;p1q1 + u2Tkl;p2q2 . (2.24)

Note that Sp1q1 = u1 V 2 + iλTp1q1 and Sp2q2 = u2 V 2 + iλTp2q2 . 
Firstly we diagonalize the first line in (2.23) by the use of

Q=
(

Sp1q1 iλTp1q2

iλTp2q1 Sp2q2

)
,

W =
(

iλTp2q1 Sp2q2 − ζ2
Sp1q1 − ζ1 iλTp1q2

)
,

WQW −1 =
(

ζ1 0
0 ζ

)
, (2.25)
2
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where

ζ1 + ζ2 = Sp1q1 + Sp2q2 ,

ζ1 − ζ2 =
√

(Sp1q1 − Sp2q2)
2 − 4λ2Tp1q2Tp2q1 . (2.26)

Following this diagonalization, the basis is transformed as( |p1〉
|p2〉

)
= W t

( |p̂1〉
|p̂2〉

)
,( |q1〉

|q2〉
)

= W −1
( |q̂1〉

|q̂2〉
)

. (2.27)

Then we can rewrite the final state (2.23) as

|fin〉 =
2∑

j=1

ζ j

V 2
|p̂ j, q̂ j〉 + iλ

∫
l 
=q1,q2

dl
2∑

j=1

A j(l)

V
|p̂ j, l〉

+ iλ

∫
k 
=p1,p2

dk
2∑

j=1

B j(k)

V
|k, q̂ j〉

+ iλ

∫
k 
=p1,p2
l 
=q1,q2

dkdlTkl|k, l〉, (2.28)

where

A1(l) = iλTp1lTp2q1 + Tp2l(Sp2q2 − ζ2),

A2(l) = Tp1l(Sp1q1 − ζ1) + iλTp2lTp1q2 ,

B1(k) = iλTkq1Tp1q2 − Tkq2(S p1q1 − ζ1)

det W
,

B2(k) = −Tkq1(S p2q2 − ζ2) + iλTkq2Tp2q1

det W
. (2.29)

Furthermore we can rearrange the basis so that

|fin〉 =
2∑

j=1

ζ j

V 2
|p̃ j〉A ⊗ |q̃ j〉B

+
∫

k 
=p1,p2
l 
=q1,q2

dkdl

(
λ2

2∑
j=1

A j(l)B j(k)

ζ j
+ iλTkl

)
|k, l〉, (2.30)

where

|p̃ j〉A = |p̂ j〉A + iλ
V

ζ j

∫
k 
=p1,p2

dk B j(k)|k〉A,

|q̃ j〉B = |q̂ j〉B + iλ
V

ζ j

∫
l 
=q1,q2

dk A j(k)|k〉B ( j = 1,2). (2.31)

As a result, we obtain the reduced density matrix (2.5) after a sim-
ilarity transformation,

ρ
(fin)
A = 1

N2

(
2∑

j=1

|ζ j|2
V 3

|p̃ j〉〈p̃ j|

+ λ2 V 2
∫

k,k′ 
=p1,p2

dkdk′Rkk′ |k〉〈k′|
)

, (2.32)

Rkk′ = 1

V 2

∫
dl

(
λ

2∑
j=1

A j(l)B j(k)

ζ j
+ iTkl

)

l 
=q1,q2
×
(

λ

2∑
j=1

A j(l)B j(k′)
ζ j

+ iTk′l

)∗
. (2.33)

The leading term of Rkk′ does not depend on A j and B j but on Tkl

(k 
= p1, p2, l 
= q1, q2). Using the normalization trA ρ
(fin)
A = 1, N2

is computed as

N2 =
2∑

i=1

|ζ j|2
V 2

+ λ2 V 2
∫

k 
=p1,p2

dk Rkk. (2.34)

Then one can write down the reduced density matrix in perturba-
tive expansion,

ρ
(fin)
A =

(
u2

1 + λ f + λ2 g − λ2u2
1

∫
k 
=p1,p2

dk Rkk

)
1

V
|p̃1〉〈p̃1|

+
(

u2
2 − λ f − λ2 g − λ2u2

2

∫
k 
=p1,p2

dk Rkk

)
1

V
|p̃2〉〈p̃2|

+ λ2
∫

k,k′ 
=p1,p2

dkdk′Rkk′ |k〉〈k′| +O(λ3), (2.35)

Rkk′ = 1

V 2

∫
l 
=q1,q2

dlTklT ∗
k′l +O(λ), (2.36)

with

V 2 f = 2u1u2(u1 ImTp2q2 − u2 ImTp1q1), (2.37)

V 4 g = 4u1u2(u1 ImTp1q1 + u2 ImTp2q2)

× (u1 ImTp2q2 − u2 ImTp1q1)

+ u2
2|Tp1q1 |2 − u2

1|Tp2q2 |2

− 2u1u2(u1 + u2)

u1 − u2
Re(Tp1q2Tp2q1). (2.38)

Note that f and g are anti-symmetric with respect to the in-
dices 1 and 2. Since (2.35) implies a reduced density matrix after 
a similarity transformation, we can calculate S(fin)

E , the entangle-
ment entropy of the final state. Here we introduce rk (k 
= p1, p2)

which denotes the eigenvalues of Rkk′ . Subtracting the initial en-
tanglement entropy (2.22) from S(fin)

E , we obtain the variation of 
entanglement entropy as

�S E = −λ2 logλ2
∫

k 
=p1,p2

dk rk − λ f log
u2

1

u2
2

+ λ2
( ∫

k 
=p1,p2

dk rk(1 − S(ini)
E − log rk)

− f 2

2u2
1u2

2

− g log
u2

1

u2
2

)
+O(λ3). (2.39)

The leading term is of order λ2 log λ2 and is similar to the case 
of the unentangled initial state (2.20). While the sub-leading term 
in the case of the unentangled initial state is of order λ2, the 
sub-leading term in the case of the entangled initial state ap-
pears at order λ. This order λ contribution comes from the mutual 
transition between the states, |p1, q1〉 and |p2, q2〉. When the par-
ticles A and B at the initial state are maximally entangled, i.e., 
u1 = u2 = 1/

√
2, the term of order λ vanishes.

In the same way, one can consider an n coherent state as 
an initial state, namely, |ini〉 ∼ ∑n

j=1 u j |p j, q j〉, 
∑n

j=1 u2 = 1. 
j
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Since the final state includes S piq j V −2|piq j〉, we firstly diagonal-

ize the matrix Q = (S piq j ) (i, j = 1, . . . , n) so that WQW −1 =
diag(ζ1, . . . , ζn), and replace |pi, qi〉 with |p̂i, ̂qi〉 like (2.27). Then, 
by a procedure similar to (2.31), we can obtain a simplified re-
duced density matrix like (2.33). Therefore the leading contri-
bution to the variation of entanglement entropy is λ2 log λ2 ×∫

k 
=p1,...,pn
dk 

∫
l 
=q1,...,qn

dl V −2TklT ∗
kl , in which Tkl = ∑n

j=1 u jTkl;p jq j .

3. Examples

3.1. Field theory with φ4-like interaction

We consider two real scalar fields, φA and φB , of which action 
with a φ4-like interaction is

S = −
∫

dd+1x

(
1

2
∂μφA∂μφA + 1

2
∂μφB∂μφB

+ 1

2
m2(φ2

A + φ2
B) + λ

4
φ2

Aφ2
B

)
. (3.1)

We focus on a scattering process of two incoming particles and 
two outgoing particles such as A +B → A +B. Since we can assume 
that the incoming and outgoing particles are free on-shell particles 
in the far past and future, one can describe a Fock space of such 
(1 + 1)-particle states as

|
p, 
q〉 = a†

p|0〉A ⊗ b†


q|0〉B . (3.2)

a†

p and b†


q are the creation operators of particles A and B and are 
defined by the following mode expansion for free scalar fields:

φA(x) =
∫

dd 
p
(2π)d

1

2E 
p
(a
pe−ip·x + a†


peip·x),

φB(x) =
∫

dd
q
(2π)d

1

2E
q
(b
qe−iq·x + b†


qeiq·x), (3.3)

where p0 = E 
p = √
p2 + m2. The factor dd 
p/((2π)d2E 
p) is a 
Lorentz invariant integration measure. The creation and annihi-
lation operators obey the commutation relations:

[a
p,a†

k] = 2E 
p(2π)dδ(d)(
p − 
k),

[b
q,b†

l ] = 2E
q(2π)dδ(d)(
q −
l). (3.4)

Now let us study the case that the initial state is |ini〉 = |
p1, 
q1〉. 
Since the identity operator on the (1 + 1)-particle Hilbert space is

(1)(1+1)-particle =
∫

dd 
p
(2π)d

1

2E 
p
dd
q

(2π)d

1

2E
q
|
p, 
q〉〈
p, 
q|, (3.5)

the final state (2.4) is described as

|fin〉 = S|ini〉
=

∫
dd
k

(2π)d

1

2E
k

dd
l
(2π)d

1

2E
l
|
k,
l〉〈
k,
l|S|
p1, 
q1〉

= 1

2E 
p1
2E
q1

L2d
|
p1, 
q1〉〈
p1, 
q1|S|
p1, 
q1〉

+
∫


k 
=
p1
l 
=
q1

dd
k
(2π)d

1

2E
k

dd
l
(2π)d

1

2E
l
|
k,
l〉〈
k,
l|iT|
p1, 
q1〉, (3.6)

where L originates from the spacial volume of phase space, Ld =
(2π)dδ(d)(0) = ∫

dd
x ei
x·
0. The final state (3.6) does not contain the 
states proportional to |
k(
= 
p1), 
q1〉 and |
p1, 
l(
= 
q1)〉, which appear 
in the second line of (2.10), because such states vanish due to the 
factor of momentum conservation in the S-matrix element, namely, 
〈
k, 
l|S|
p1, 
q1〉 ∼ δ(d+1)(k + l − p1 − q1).

As we have studied in Section 2, the variation of entanglement 
entropy in a scattering process is determined by the transition 
matrix T. From the action (3.1), we perturbatively calculate the S-
matrix element,

〈
k,
l|S|
p1, 
q1〉 = 2E 
p1
2E
q1

(2π)dδ(d)(
k − 
p1)(2π)dδ(d)(
l − 
q1)

− iλ(2π)d+1δ(d+1)(k + l − p1 − q1)

+O(λ2). (3.7)

Substituting this S-matrix element into (3.6), we obtain the fi-
nal state. Then the reduced density matrix automatically becomes 
block-diagonal,

ρ
(fin)
A =

(
1 − λ2

∫

k 
=
p1

dd
k
(2π)d

1

2E
k
M
k
k

)
1

2E 
p1
Ld

|
p1〉〈
p1|

+ λ2
∫


k 
=
p1

dd
k
(2π)d

1

2E
k
M
k
k

1

2E
k Ld
|
k〉〈
k| +O(λ4), (3.8)

M
k
k = 1

2E 
p1
2E
q1

2E 
p1+
q1−
k Ld

× {
2πδ(E
k + E 
p1+
q1−
k − E 
p1

− E
q1
)
}2

. (3.9)

Notice that we have normalized this density matrix so that 
trA ρ

(fin)
A = 1. Then the variation of entanglement entropy (2.20)

is computed as

�S E = −λ2 logλ2
∫


k 
=
p1

dd
k
(2π)d

1

2E
k
M
k
k

+ λ2
∫


k 
=
p1

dd
k
(2π)d

1

2E
k
M
k
k

(
1 − log

M
k
k
2E
k Ld

)

+O(λ4). (3.10)

We shall calculate it further by employing a center of mass frame, 
that is, 
p1 = −
q1 =: 
pcm and 

√
pcm
2 + m2 =: Ecm . Of course the 

momenta of outgoing particles obey 
k = −
l due to the momentum 
conservation. Then the d-dimensional integration can be replaced 
with a spherical integration as dd
k = dkd
d−1kd−1, because the in-
tegration kernel in (3.10) depends only on the norm of 
k. Therefore 
we finally obtain

�S E = −λ2 logλ2 π1− d
2

2d+3�( d
2 )Ld−1

|
pcm|d−2

E3
cm

+ λ2 π1− d
2

2d+3�( d
2 )Ld−1

|
pcm|d−2

E3
cm

(
1 + log(16E4

cm L2d−2)
)

+O(λ4). (3.11)

When the number of the spacial dimension d is equal to three, 
the leading term of the variation of entanglement entropy is pro-
portional to |
pcm|/E3

cm . This is consistent with the cross section, 
which is (dσ/d
)cm = λ2

64π2 |
pcm|/E3
cm , because both the variation 

of entanglement entropy and the cross section originate from a 
square of the absolute value of the scattering amplitude. Notice 
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that the remaining factor L in the entanglement entropy is an arti-
fact caused by choosing the single-mode initial state whose norm 
has delta-functional divergence. The volume dependence of entan-
glement entropy in field theories was discussed also in Refs. [13,
14], where the momentum-space entanglement entropy is propor-
tional to a spacial volume. The difference between the volume 
dependence of Ref. [13,14] and ours is mostly caused by the ab-
sence of integration with respect to the initial state momenta in 
our calculation.

3.2. Time-dependent interaction in quantum mechanics

In this subsection we turn to quantum mechanics with a time-
dependent interaction, λH int(t). We set the initial state so that 
|ini〉 = |p1, q1〉 at t = 0. Then the time evolution of this initial state 
is described as

|
(t)〉 = |p1,q1〉 + λ
∑

k 
=p1

Ckq1;p1q1(t)e−iEkt |k,q1〉

+ λ
∑
l 
=q2

C p1l;p1q1(t)e−iElt |p1, l〉

+ λ
∑

k 
=p1,l 
=q1

Ckl;p1q1(t)e−iEklt |k, l〉, (3.12)

up to normalization. E p , Eq and E pq are energy eigenvalues which 
are defined in terms of the non-interacting part of the Hamiltonian 
(see (2.1)),

H A |p〉A = E p|p〉A, H B |q〉B = Eq|q〉B ,

H0|p,q〉 = E pq|p,q〉. (3.13)

The interacting Hamiltonian λH int(t) yields Ckl;pq(t). By the use of 
the well-known time-dependent perturbation theory, we can cal-
culate

Ckl;p1q1(t) = −i

t∫
0

dt′eiωkl;p1q1 t′ Tkl;p1q1(t
′),

Tkl;p1q1(t) := 〈k, l|H int(t)|p1,q1〉, (3.14)

where ωkl;p1q1 := Ekl − E pq . Since the time-dependent density ma-
trix of |
(t)〉 is given by ρ(t) = |
(t)〉〈
(t)|, we can calculate 
the reduced density matrix ρA(t) = N−1 trB ρ(t) together with 
the normalization by trA ρA = 1. After the same procedure as in
Ref. [13] or Section 2.1, we obtain the entanglement entropy,

S E(t) = −λ2 logλ2
∑

k 
=p1,l 
=q1

t∫
0

dt′
t∫

0

dt′′ eiωkl;p1q1 (t′−t′′)

× Tkl;p1q1(t
′)T ∗

kl;p1q1
(t′′) +O(λ2). (3.15)

Notice that one can regard λTkl;p1q1(t = ∞) as a kind of transition 
matrix.

4. Conclusion and discussion

We have studied the variation of entanglement entropy from an 
initial state to a final state in a scattering process. We concentrated 
on the scattering of 2 → 2 particles and perturbatively calculated 
the entanglement entropy of final states for the two kinds of sim-
ple initial states: the unentangled state (2.9) and the entangled 
state (2.21). In both cases the leading terms of the variation of en-
tanglement entropy, (2.20) and (2.39), are of order λ2 log λ2 and 
are proportional to the trace of a square of the absolute value of 
T-matrix elements, which are, in other words, the scattering ampli-
tudes. The next leading term in the case of the unentangled initial 
state is of order λ2. On the other hand the next leading term in the 
case of the entangled initial state appears at order λ, because there 
is a mutual transition between the states |p1, q1〉 and |p2, q2〉.

We have considered the model of two real scalar fields with 
the φ4-like interaction as an example in a field theory. The vari-
ation of entanglement entropy has been computed perturbatively. 
If we employ the center of mass frame, the leading term (at or-
der λ2 logλ2) in the variation of entanglement entropy depends on 
the momenta of initial particles as |
pcm|d−2/E3

cm . Notice that this 
factor becomes |
pcm|/E3

cm , when the space dimension is equal to 
three, i.e., the coupling λ is dimensionless. The same factor also 
appears in the cross section, because it originally comes from the 
scattering amplitude. Therefore, as we expected, the variation of 
entanglement entropy is proportional to the cross section.

We have also mentioned the time-dependent interaction as an 
example in quantum mechanics. The time-evolution of entangle-
ment entropy from the simple initial state |p1, q1〉 can be written 
in terms of the transition matrix at the leading order λ2 log λ2.

With the AdS/CFT correspondence, one can identify the scatter-
ing amplitude in a field theory of strong coupling with exp(−A), 
where A is an area of minimal surface in a bulk gravity the-
ory, while the holographic entanglement entropy [2,3] is given by 
A′/(4G N ), where A′ is an area of another minimal surface. That is 
to say, both of the scattering amplitude and entanglement entropy 
in a strongly coupled field theory are associated with minimal sur-
faces from the point of view of the AdS/CFT correspondence. In 
this paper we have shown the relation between the scattering and 
the variation of entanglement entropy by the perturbative calcu-
lations in a weak coupling. It is then in order to ask whether we 
can clarify such a relation from a field theory in a strong coupling. 
For this purpose we need to test it in an exactly calculable model. 
Moreover, the holographic understanding of such a relation, or a 
relation between those minimal surfaces, is another problem for 
the future.
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