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We search for the decay B0
s → γγ and measure the branching fraction for B0

s → ϕγ using 121.4 fb−1 of
data collected at the ϒð5SÞ resonance with the Belle detector at the KEKB asymmetric-energy eþe−

collider. The B0
s → ϕγ branching fraction is measured to be ð3.6�0.5ðstatÞ�0.3ðsystÞ�0.6ðfsÞÞ×10−5,

where fs is the fraction of Bð�Þ
s B̄ð�Þ

s in bb̄ events. Our result is in good agreement with the theoretical
predictions as well as with a recent measurement from LHCb. We observe no statistically significant signal
for the decay B0

s → γγ and set a 90% confidence-level upper limit on its branching fraction at 3.1 × 10−6.
This constitutes a significant improvement over the previous result.

DOI: 10.1103/PhysRevD.91.011101 PACS numbers: 13.20.He, 14.40.Nd

In the Standard Model (SM), the exclusive decays
B0
s → γγ and B0

s → ϕγ are explained by the radiative
transitions b → sγγ and b → sγ, respectively. The leading-
order Feynman diagrams for these processes are shown in
Fig. 1. Within the SM framework, the branching fraction
(BF) for B0

s → ϕγ is expected to be about 4 × 10−5 with
30% uncertainty [1,2]. First observation of this decay was
made by the Belle Collaboration using 23.6 fb−1 of data
collected at the ϒð5SÞ resonance and its BF was measured
to be ð5.7þ2.2

−1.9Þ × 10−5 [3]. The latest tabulated world-
average value is ð3.6� 0.4Þ × 10−5 [4]. These experimen-
tal results are in good agreement with the theoretical
expectations. Furthermore, the good agreement between
theory and experimental results on exclusive decays medi-
ated by b → sγ transitions [1,2,5,6] as well as on inclusive

B → Xsγ rates [6–8] rules out large contributions to
B0
s → ϕγ from physics beyond the SM. However, potential

contributions from new physics could remain hidden within
the large uncertainties in the SM predictions [9,10].
The decay B0

s → γγ has not been observed yet.
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FIG. 1. Leading-order Feynman diagrams for the decays
(a) B0

s → ϕγ and (b) B0
s → γγ.
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Currently, the upper limit on its BF is 8.7 × 10−6 at 90%
confidence level (C.L.) [3]. This is almost an order of
magnitude larger than the range covered by published
theoretical calculations [11–13]. The B0

s → γγ BF is also
constrained by the B → Xsγ results in the R-parity con-
serving SUSY scenario [9]. However, in the R-parity
violating (RPV) case, the possible contribution from
λ-irreducible diagrams [14] (which have a negligible
impact on the b → sγ amplitude at one loop) may enhance
its BF by more than an order of magnitude [9].
The results presented in this paper are basedon121.4 fb−1

of data collected at the ϒð5SÞ resonance with the Belle
detector [15,16] at the KEKB [17] asymmetric-energy eþe−

collider at KEK in Japan. The Belle detector consists of a
four-layer silicon vertex detector (SVD), a central drift
chamber (CDC), aerogel Cherenkov counters (ACC),
time-of-flight counters (TOF) and an electromagnetic calo-
rimeter (ECL). These detector components are located inside
a solenoid with a magnetic field of 1.5 Twhose flux-return
yoke is instrumented to detect K0

L mesons and muons.
The bb̄ production cross section at the ϒð5SÞ center

of mass (c.m.) energy is measured to be σϒð5SÞ
bb̄

¼
ð0.340� 0.016Þ nb [18], while the fraction of Bð�Þ

s B̄ð�Þ
s

in bb̄ events is fs ¼ ð17.2� 3.0Þ% [18]. The Bð�Þ
s B̄ð�Þ

s pairs
include B�

sB̄�
s , B�

sB̄s and BsB̄s with measured percentages
fB�

s B̄�
s
¼ ð87.0� 1.7Þ% and fB�

s B̄s
¼ ð7.3� 1.4Þ% [18].

The B�0
s mesons decay to ground-state B0

s mesons through
the emission of a photon. Charge conjugate modes are
implied throughout this paper.
Signal Monte Carlo (MC) events for the B0

s → γγ and
B0
s → ϕγ decays are generated using EVTGEN [19]; the

response of the detector is simulated using GEANT3 [20],
with beam-related backgrounds from data added to the
simulated samples. Charged tracks are required to originate
from the interaction point (IP) by satisfying the criteria
dr < 0.5 cm and jdzj < 3 cm, where jdzj and dr are the
distances of closest approach to the IP along the z axis
(collinear with the positron beam) and in the transverse r-ϕ
plane, respectively. Kaons are identified with an efficiency
of about 85% by requiring LK=ðLK þ LπÞ > 0.6, where
LK and Lπ are the likelihoods of the track being due to a
kaon and pion, respectively, obtained using information
from ACC, CDC and TOF. Tracks failing this requirement
are assumed to be pions. To be reconstructed as a ϕ meson
candidate, a pair of oppositely charged kaons must have an
invariant mass within �12 MeV=c2 (�2.5σ) of the
nominal ϕ mass. Similarly, the K�0 candidates in the
B0 → K�ð892Þ0γ control sample are reconstructed with
oppositely charged kaon and pion candidates by requiring
jMKπ −mK�0 j < 75 MeV=c2, where MKπ and mK�0 are the
invariant mass of the kaon-pion pair and the nominal K�0
mass, respectively. Photons are reconstructed by identify-
ing energy deposits in the ECL not matched to any charged

track and are required to have a minimum energy of
100 MeV. To reject merged π0 mesons and other neutral
hadrons, the ratio of the energy deposited by a photon
candidate in the ð3 × 3Þ and ð5 × 5Þ ECL crystal array
centered on the crystal with the highest energy deposition is
required to exceed 0.95. In the Bs → γγ analysis, to reduce
the effect of beam-related backgrounds, we use photons
only from the barrel region (33° < θ < 128°; θ being the
lab-frame polar angle). Daughter photons from π0 and η
decays contribute to backgrounds for both B0

s → ϕγ and
B0
s → γγ. These are suppressed by applying a likelihood

requirement based on the energies and polar angles of the
photons and the diphoton invariant mass, calculated by
combining the candidate photon with each other photon in
the event. In addition, the timing characteristics of the
energy clusters used for photon reconstruction are required
to be consistent with the beam collision time that is
determined at the trigger level for the candidate event.
To be considered as a B0

s → γγ (B0
s → ϕγ) candidate, a pair

of photons (a ϕ meson and a photon) needs to satisfy the
requirements on the beam-energy constrained mass Mbc

and energy difference ΔE. These are defined as Mbc ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEc:m:

beamÞ2 − ðpc:m:
Bs

Þ2
q

and ΔE ¼ Ec:m:
Bs

− Ec:m:
beam, where

Ec:m:
beam is the beam energy, and pc:m:

B0
s

and Ec:m:
B0
s

are the

momentum and energy, respectively, of the B0
s meson

candidate, with all variables evaluated at the c.m. frame.
Signal candidates are required to satisfy Mbc >
5.3 GeV=c2 for each mode, −0.4 GeV < ΔE < 0.1 GeV
for the B0

s → ϕγ mode and −0.7 GeV < ΔE < 0.2 GeV
for the B0

s → γγ mode. No events with multiple B0
s

candidates are found in the signal MC sample, while the
rate of multiple B0

s candidates in data is far below 1% for
each analysis. Multiple candidates are removed by select-
ing the one with the more energetic photons.
The dominant source of background for both decaymodes

is the production of light quark-antiquark pairs
(q ¼ u; d; s; c) in the eþe− annihilation, identified herein-
after as continuum. Since the quarks carry significant
momenta, continuum events are jetlike and are therefore

topologically different from isotropic Bð�Þ
s B̄ð�Þ

s events, where
Bs mesons carry much smaller momenta. To suppress this
background, event shape variables such as themodified Fox-
Wolfram moments [21] and the absolute value of the cosine
of the angle between the thrust axis of the decay products of
theBs candidate and the rest of the event are used as inputs to
a neural network (NN) [22]. TheNNoutput (CNB) is designed
to peak at 1 for signal-like events and at −1 for background-
like events. The NN output is also included in the unbinned
maximum likelihood fit to extract the B0

s → ϕγ signal yield.
As CNB peaks sharply at 1 and−1, it is very difficult tomodel
it with a simple analytic function. Therefore, to improve the
modeling, after rejecting the events with CNB < CNBmin

,
a modified NN output is calculated as
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C0NB ¼ log

�
CNB − CNBmin

CNBmax
− CNB

�
; ð1Þ

where CNBmin
¼ −0.6 and CNBmax

∼ 1 are the lower and upper
limits of CNB for the events used in the fit. For B0

s → γγ, an
optimized criterion ofCNB > 0.77 is applied and this variable
is excluded from the fit since considerable correlations are
observed between CNB with each of the variables Mbc

and ΔE.
We perform a four-dimensional (two-dimensional)

unbinned extended maximum likelihood fit comprising
Mbc, ΔE, cos θhel and C0NB (Mbc and ΔE) to extract the
B0
s → ϕγ (B0

s → γγ) signal yields. The ϕ helicity angle
(θhel) is the angle between the B0

s momentum and that of
one of the ϕ daughters in the ϕ rest frame. The total fit
probability distribution function (PDF) consists of two
components: signal and qq̄ background. The signal
component is further composed of signal coming from
B�
sB̄�

s , B�
sB̄s and BsB̄s decays, the relative fractions being

fixed to the values measured in Ref. [18]. Backgrounds
arising from Bs and non-Bs decays are combined with the
qq̄ continuum as they have a small contribution and do
not peak in the signal region. MC samples are used to
parametrize the signal and background PDFs. The PDF
for each component is represented by the product of one-
dimensional functions since the correlations among the
variables are negligible. The Mbc, ΔE, cos θhel and C0NB
shapes of the B0

s → ϕγ signal are modeled with the sum of
a Crystal Ball (CB) [23] and Gaussian function with a
common mean, a CB function, a sin2 θhel distribution and
the sum of two Gaussian functions, respectively. The
background PDFs are described by an ARGUS function
[24] for Mbc with its end point fixed to 5.434 GeV=c2, a
first-order Chebychev polynomial for ΔE, a parabola for
cos θhel and a Gaussian function for C0NB. For the B

0
s → γγ

mode, the signal Mbc distributions are parametrized with
a combination of CB and Gaussian functions with a
common mean and the signal ΔE distributions are
modeled with CB functions. The background is described
by an ARGUS function for Mbc and a first-order
Chebychev polynomial for ΔE. For both analyses, the
signal parameters are determined from MC except for the
means and widths of the Mbc and ΔE distributions
describing the B�

sB̄�
s contribution. The widths of Mbc

and ΔE are calibrated using correction factors obtained
from the B0 → K�ð892Þ0γ control sample. As a cross-
check, the branching fraction of this mode is measured
and found to be in good agreement with the world average
[6]. TheMbc mean is similarly adjusted using information
from the Bs → Dsπ analysis [18]. The ΔE mean of the
B�
sB̄�

s component is allowed to float in the B0
s → ϕγ

analysis. For the B0
s → γγ mode, we fix the ΔE mean

to the signal MC value, as the correction to the ΔE mean,
obtained from the B0

s → ϕγ analysis, is found to be within

the statistical error. The uncertainty associated with this
procedure is included as a systematic uncertainty for this
mode. All background parameters apart from the ARGUS
end point are allowed to float. In total, we have nine free
parameters for the B0

s → ϕγ fit which are the signal and
background yields, ΔE mean of the B�

sB̄�
s component and

the background shape parameters. Similarly, for the
B0
s → γγ fit we have four free parameters which are the

signal and background yields and the background shape
parameters.
In all three signal regions, we observe 91þ14

−13 B0
s → ϕγ

signal events with a significance of 10.7 σ, that includes the
systematic uncertainties. The signal significance is evalu-
ated as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 lnðL0=LmaxÞ

p
, where L0 and Lmax are the

likelihood values when the signal yield is constrained to 0
and when it is optimized, respectively. Systematic uncer-
tainties are included by convolving the likelihood curve
with a Gaussian function of width equal to the additive
systematics.
The branching fraction for B0

s → ϕγ is determined with
the relation

BðB0
s → ϕγÞ ¼ NðB0

s → ϕγÞ
2fsσ

ϒð5SÞ
bb̄

LintϵBðϕ → KþK−Þ
; ð2Þ

where NðB0
s → ϕγÞ is the signal yield of B0

s → ϕγ, fs is

the fraction of Bð�Þ
s Bð�Þ

s events in the bb̄ sample, σϒð5SÞ
bb̄

is
the bb̄ production cross section, Lint is the integrated
luminosity at the ϒð5SÞ energy and ϵ is the signal
selection efficiency. We measure the B0

s → ϕγ BF to be
ð3.6� 0.5� 0.3� 0.6Þ × 10−5, where the first uncertainty
is statistical, the second is systematic and the third is due to
the uncertainty in fs. No statistically significant signal is
observed for the decay B0

s → γγ and we measure the single-
event sensitivity to be 0.5 × 10−6. We use a Bayesian
approach and integrate the likelihood curve from 0% to
90% of the total integral under the curve to obtain a 90%
C.L. upper limit of 3.1 × 10−6 on the B0

s → γγ branching
fraction. The results are summarized in Table I, while the fit
results projected onto the signal regions are shown in
Figs. 2 and 3.
The systematic uncertainties summarized in Table II

are associated with the photon reconstruction efficiency,

TABLE I. Results of the B0
s → ϕγ and B0

s → γγ analyses.
The uncertainty in the efficiency calculation is due to the limited
MC statistics.

B0
s → ϕγ B0

s → γγ

ϵð%Þ 36.1� 0.1 14.0� 0.1
N 91þ14

−13 −3.9þ3.7
−2.6

Bð10−6Þ 36� 5ðstat:Þ � 3ðsyst:Þ � 6ðfsÞ < 3.1 (90% C.L.)
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kaon identification efficiency, tracking efficiency, the
requirement on CNB that is estimated by comparing
the efficiencies in data and MC simulations with the
B0 → K�ð892Þ0γ control sample, limited MC statistics,

integrated luminosity, σϒð5SÞ
bb̄

, fs, PDF parametrization
and fit bias. The uncertainty due to PDF parametrization
is estimated by the variation in the signal yield when
varying each fixed parameter by �1σ. To investigate
the extent of a bias in the fit, pseudoexperiments are
generated using the same PDFs as in the final fit but with
the signal and background yields fixed to the expected
values. Events generated from the pseudoexperiments
are then fitted to obtain the yield and residual distributions.
The observed biases of −0.28� 0.08 and −0.10� 0.07

for B0
s → ϕγ and B0

s → γγ are corrected and their uncer-
tainties are assigned as systematic uncertainties. The
uncertainties due to kaon identification and tracking
efficiency are 1.3% and 0.3%, measured using control
samples ofD�þ→D0πþslow→K−πþπþslow andD�þ→D0πþ;
D0 →KSπ

þπ−; KS→ πþπ− decays, respectively. The
uncertainty in the ϕ → KþK− BF represents another source
of systematic uncertainty in the B0

s → ϕγ analysis, which is
taken from [4].
To conclude, we have used the entire Belle ϒð5SÞ

data set to measure BðB0
s → ϕγÞ ¼ ð3.6� 0.5ðstatÞ �

0.3ðsystÞ � 0.6ðfsÞÞ × 10−5. This improved measurement
supersedes our earlier result [3] and is consistent with
theoretical predictions [1,2] and a recent LHCb result [25].
We search for the decay B0

s → γγ, where we observe no
statistically significant signal, and set the 90% C.L. upper
limit on its BF at 3.1 × 10−6. This result is an improvement
by a factor of about 3 over the previous published result,
consistent with the expected sensitivity for our data sample.
This result rules out large contributions to the B0

s → γγ
branching fraction from RPV SUSY. It also indicates that
the decay B0

s → γγ could be observed at the upcoming
Belle II experiment with a dedicated run at the ϒð5SÞ
resonance.
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FIG. 2 (color online). Data fits for the B0
s → ϕγ analysis.

The projections are shown only for events inside the B�
s B̄�

s signal
region except for the plotted variable. The B�

sB̄�
s signal region is

defined as Mbc > 5.4 GeV=c2, −0.2 < ΔE < 0.02 GeV,
j cos θhelj < 0.8 and 0.0 < C0NB < 10.0. The points with error
bars represent the data, the solid black curve represents the total
fit function and the red dashed (blue dotted) curve represents the
signal (continuum background) contribution.

TABLE II. Summary of systematic uncertainties.

Additive systematic uncertainties (events)

Source B0
s → ϕγ B0

s → γγ

PDF parametrization þ1.6
−1.7 �0.4

Fit bias �0.1 �0.1

Total (quadratic sum) þ1.6
−1.7 �0.4

Multiplicative systematic uncertainties (%)

Source B0
s → ϕγ B0

s → γγ

Photon reconstruction efficiency 2.2 2 × 2.2
Kaon identification efficiency 2.6 –
Tracking efficiency 0.7 –
CNB requirement 4.8 8.7
MC statistics 0.2 0.4
Bðϕ → KþK−Þ 1.0 –
Lint 1.3

σϒð5SÞ
bb̄

4.7

fs 17.4

Total (quadratic sum) 19.1 20.6
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