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Abstract
We compare quantum and classical machines designed for learning an N-bit
Boolean function in order to address how a quantum system improves the
machine learning behavior. The machines of the two types consist of the same
number of operations and control parameters, but only the quantum machines
utilize the quantum coherence naturally induced by unitary operators. We show
that quantum superposition enables quantum learning that is faster than classical
learning by expanding the approximate solution regions, i.e., the acceptable
regions. This is also demonstrated by means of numerical simulations with a
standard feedback model, namely random search, and a practical model, namely
differential evolution.

Keywords: quantum information, quantum learning, machine learning

1. Introduction

Over the past few decades, quantum physics has brought remarkable innovations into fields of
various disciplines. For example, there are exponentially faster quantum algorithms, compared
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to their classical counterparts [1–3]. The physical limit of measurement precision has been
improved in quantum metrology [4, 5], and a large number of protocols offering higher security
have been proposed in quantum cryptography [6, 7]. These achievements are enabled by
appropriate usage of quantum effects such as quantum superposition and quantum
entanglement.

Another important scientific area is machine learning, which is a subfield of artificial
intelligence and one of the most advanced automatic control techniques. While learning is
usually regarded as a characteristic of humans or living things, machine learning enables a
machine to learn a task [8]. Machine learning has been attracting great attention, with its novel
ability to learn. On one hand, machine learning has been studied to provide an understanding of
the learning of a real biological system, in a theoretical manner. On the other hand, machine
learning is also expected to provide reliable control techniques for use in designing complex
systems in a practical manner [8].

Recently, the hybridizing of the two scientific fields described above, quantum technology
and machine learning, has received great interest [9–12]. One question naturally arises: can
machine learning be improved by using favorable quantum effects? Several attempts to answer
this question have been made in the past few years—for example, using quantum perceptrons
[13], neural networks [14–16], and quantum-inspired evolutionary algorithms [17, 18]. Most
recently, remarkable studies have been carried out [19–22]. In [19], a learning speedup for the
quantum machine was observed with a lower memory requirement for a specific example,
namely the kth-root NOT operation. In [20], a strategy for designing a quantum algorithm was
introduced, establishing a link between the learning speedup and the speedup of the quantum
algorithm found. In [21, 22], the authors showed quantum speedup for the task of classifying a
large number of data. However, it is still unclear what quantum effects work in machine
learning and how they work, particularly in the absence of a fair comparison between classical
and quantum machines.

In this work, we consider a binary classification problem as a learning task. Such a
classification can be realized for an N-bit Boolean function that maps a set of N-bit binary
strings in {0, 1}N into {0, 1} [23]. The main objective in this paper is to compare a quantum
machine with a classical machine. These two machines are equivalent. The only differentiation
is that the quantum machine can deal with quantum effects, whereas the classical machine
cannot. The machines are analyzed in terms of the acceptable region, defined as a localized
solution region of parameter space. In the analysis, it is shown that the quantum machine can
learn faster due to the acceptable region being expanded by quantum superposition. Such a
quantum learning speedup is understood in terms of an expansion of the acceptable region. In
order to make the analysis more explicit, we analyze further by using random search, which is a
standard model for use in learning performance analysis [24]. In such a primitive model, we
validate the quantum speedup, showing that the overall number of iterations required to
complete the learning is proportional to αO(e )D , with α ≃ 3.065 for the classical machine and
α ≃ 0.238 for the quantum machine. Here, D is the size of the search space. Differential
evolution is employed as a learning model, taking into account more realistic circumstances. By
means of numerical simulations, we show that the quantum speedup is still observed even in
such a case.
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2. Classical and quantum machines

Machine learning can be decomposed into two parts: the machine and the feedback. The
machine performs various tasks depending on its internal parameters, and the feedback adjusts
the parameters of the machine in order for the machine to perform a required task called the
target. Learning is a process involving finding suitable parameters for the machine, whereby the
machine is expected to generate desired results working towards a target4. This concept of
machine learning has been widely adopted in the context of machine learning at the
fundamental level [8].

In this work, we assign to a machine a binary classification problem as a task, where the
machine will learn a target N-bit Boolean function, defined as

∈ → ∈xf y: {0, 1} {0, 1}, (1)N

where =x x x x...N 2 1 is represented as an N-bit string of ∈x {0, 1}j ( = …j N1, 2, , ). This
function can be written by using the positive polarity Reed–Muller expansion [25]:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∏= ⊕ ⊕ ⊕ ⊕ ⋯ ⊕ ⋯ = ⊕−

=

−

∈

xf a a x a x a x x a x x a x( ) , (2)N
k

k

j

j0 1 1 2 2 3 1 2 2 1 1
0

2 1

C

N

N

k

where ⊕ denotes modulo-2 addition, ⊕ means a direct sum of the moduli, and the Reed–Muller
coefficients ak are either 0 or 1. Here, Ck is an index set whose elements are given in such a
way. The number j is then taken to be an element of Ck only if kj is equal to 1 when k is written
as an N-bit string, k k k...N 2 1. Thus, each set of a{ }k corresponds to each of 22N

Boolean
functions.

The Boolean function can be implemented by a reversible circuit as shown in figure 1,
where an additional bit channel, called the work channel, and controlled operations are

Figure 1. The N-bit Boolean function is implemented by a reversible circuit. The
machine consists of N-bit input channels and a single-bit work channel, which contains
2N operations: one single-bit operation G0, and −2 1N operations Gk conditioned by the
input bits x. Here, the constant input c is set to be 0, which gives rise to an output bit y.

4 We consider the case of supervised learning, where the desired results of the task are given to the machine.
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employed [26, 27]. A single-bit operation G0 is placed on the work channel and −(2 1)N

controlled-Gk operations are caused to act on the work channel when all the control bits, xj
( ∈j Ck), are 1. The input signal c on the work channel is fixed at 0. The operation Gk is given
as either the identity (i.e., doing nothing), if ak = 0, or NOT (i.e., flipping an input bit to its
complement bit), if ak = 1. As an example, a one-bit Boolean function (i.e., with N = 1) has

=2 421
sets of Reed–Muller coefficients (a0, a1), which determine all possible Boolean

functions. Table 1 gives four possible one-bit Boolean functions with Reed–Muller coefficients
and the corresponding operations.

With a reversible circuit model, we then define classical and quantum machines. The
classical machine consists of classical channels and operations, and the Boolean function of the
classical machine is described as

→ ⊕x xc c y( , ) ( , ) (3)
f

with classical bits x, y, and c. We suppose the Reed–Muller coefficients ak to be
probabilistically determined by the internal parameters pk, which implies that Gk performs
the identity and NOT operations with probabilities pk and − p1 k, respectively. These
probabilistic operations are primarily intended to provide a fair comparison with the quantum
machine, which naturally employs a probabilistic operation. Now, we construct the quantum
machine by setting only the work channel to be quantum. The input channels are left as
classical, as the input information is classical in our work. Thus, the Boolean function of the
quantum machine is described as

ψ→x xc( , ) ( , ), (4)
f

where the signal on the work channel is encoded into a qubit state. The classical probabilistic
operations Gk are also necessarily replaced by unitary operators:

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟=

−

− −

ϕ

ϕ−
G

p p

p p
ˆ

e 1

e 1
, (5)k

k k

k k

i

i

k

k

where pk is the probability of Ĝk performing the identity operation, i.e., 〉 → 〉|0 |0 , 〉 → 〉π|1 e |1i ,
and − p1 k is that of Ĝk performing the NOT operation, i.e., 〉 → 〉ϕ−|0 e |1i k , 〉 → 〉ϕ|1 e |0i k . Note
that the relative phases ϕk are free parameters suitably chosen before the learning. The feedback
adjusts only the pk parameters, controllable both in the classical and the quantum experimental
setups [28, 29].

Table 1. Four possible one-bit Boolean functions are given with Reed–Muller coeffi-
cients (a0 and a1), and operations (G0 and G1). These are common to the classical and
quantum cases.

Boolean function a0 a1 G0 G1

↦f x: 01 0 0 Identity Identity

↦f x: 12 1 0 NOT Identity

↦f x x:3 0 1 Identity NOT

↦ ⊕f x x: 14 1 1 NOT NOT

4
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These classical and quantum machines are equivalent to each other. They have the same
circuit structures and exactly the same number of control parameters, pk. Moreover, the single
classical operation Gk and the quantum operator Ĝk cannot be discriminated between by
measuring the distribution of outcomes for the same input x and parameters pk.

3. The acceptable region

A target Boolean function is represented by a point, = … −p p pQ ( , , , )f 0 1 2 1N , in the 2N

-dimensional search space spanned by the probabilities, pk. For example, four possible learning
targets, fj ( =j 1, 2, 3, 4), for the one-bit Boolean function, correspond to four points in the
search space: =Q (1, 1)f1 , =Q (0, 1)f2 , =Q (1, 0)f3 , and =Q (0, 0)f4 . Similarly, the machine
behavior is also characterized as a point = p pQ ( , )m 0 1 , i.e., the respective points lead to
different probabilistic tasks that the machine performs. Learning is simply regarded as a process
of moving Qm to a given target point in the whole search space. It is, however, usually
impractical (actually, impossible in real circumstances) to locate Qm exactly at the target point.
Instead, it is feasible to find approximate solutions near to the exact target, i.e. the learning is
expected to lead the point Qm into a region near to the target point [8]. We call such a region an
acceptable region for the approximate target functions. As the learning time and convergence
depend primarily on the size of the acceptable region, it is usually expected that a larger
acceptable region will make the learning faster [30]. We examine, in this sense, the acceptable
regions of classical and quantum machines.

The acceptable region is defined as a set of points which guarantee the errors, ϵ = − 1 ,
to be less than or equal to a tolerable value, ϵt. Here,  is the figure of merit of the machine
performance, called the task fidelity, and it quantifies how well the machine performs a target
function, defined by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∏ ∑… = τ− x xp p p P y P y( , , , ) ( ) ( ) , (6)

x y
0 1 2 1N

N
1

2

where xP y( | ) is a conditional probability of obtaining an output y given an input x, and the
target probabilities τ xP y( | ) are those for the target. For example, we have target probabilities for
f1 in table 1 written as

= = = =τ τ τ τP P P P(0 0) 1, (1 0) 0, (0 1) 1, and (1 1) 0. (7)

The term ∑ τx xP y P y( | ) ( | )y in equation (6) corresponds to the closeness of the two
probability distributions xP y( | ) and τ xP y( | ) for the given x [31]. The task fidelity,  , increases
as the outputs get close to the required outputs;  becomes unity only when the machine gives
the target for all x, and otherwise is less than 1. The acceptable region can be seen as a set of
probabilities, pk, such that ϵ− ⩽ … − p p1 ( , , )t 1 2 1N , and thus higher  guarantees a wider
acceptable region for a given tolerance, ϵt.

Let us begin with, as the simplest case, the target function f1
5, a one-bit Boolean function,

whose task fidelity,  p p( , )0 1 , is reduced to

5 This constant function, f1, is a trivial function; however, it is a considerable task for the machines to learn f1.
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= p p P P( , ) (0 0) (0 1) , (8)0 1
4

which is common to the classical and the quantum machines. For the classical machine,
equation (8) is evaluated as

= + ( )p p p p p q q( , ) , (9)c 0 1 0 0 1 0 1
4

adopting the conditional probabilities xP y( | )c given by

= + = = +P p p p q p P p p q q(0 0) , (0 1) , (10)c 0 1 0 1 0 c 0 1 0 1

where = −q p1j j (j = 0,1). For the quantum machine, the conditional probabilities xP y( | )q

differ slightly from xP y( | )c due to the superposition of Ĝ0 and Ĝ1. The conditional probabilities
xP y( | )q are given as

Δ

= =

= = +

P G P

P G G P p

(0 0) 0 ˆ 0 (0 0),

(0 1) 0 ˆ ˆ 0 (0 1) cos , (11)

q 0
2

c

q 1 0
2

c int

where =p p p q q2int 0 1 0 1, and Δ ϕ ϕ= −1 0 is the difference of the phases of the two unitaries
Ĝ0 and Ĝ1. Thus, the task fidelity q of the quantum machine is evaluated as

Δ= + p p p p( , ) cos , (12)q 0 1 c
4

0 int
4

where the additional term Δcos is apparently the result of quantum superposition. From the
result of equation (12), we can see that

⎪

⎧
⎨
⎩

Δ
Δ

> >
< <

 
 

if cos 0,

if cos 0,
(13)

q c

q c

provided that < <p0 0j (j = 0,1). The phase Δ plays an important role in helping the quantum
machine via constructive interference, leading to > q c. The task fidelities for the other three
targets are also listed in table 2. Note here that, for all cases of the target function fj, q can
always be larger than c on choosing appropriate free parameters ϕ1 and ϕ2 before the learning.
Therefore, the quantum machine has wider acceptable regions than the classical machine for a

Table 2. The task fidelities of the quantum and classical machines are given in terms of
the probabilities (p0 and p1) for each target function of the one-bit Boolean function.
The phase Δ is defined in the main text, and it plays an important role in quantum
machine learning.

Function  p p( , )c 0 1  p p( , )q 0 1

f1 +p p p q q( )0 0 1 0 14 Δ+ p p cosc
4

0 int
4

f2 +q q p p q( )0 0 1 0 14 Δ− q p cosc
4

0 int
4

f3 +p q p p q( )0 0 1 0 14 Δ− p p cosc
4

0 int
4

f4 +q p p q q( )0 0 1 0 14 Δ+ q p cosc
4

0 int
4

6

New J. Phys. 16 (2014) 103014 S Yoo et al



given tolerance. In figure 2, the task fidelity and the acceptable region for each machine are
shown for the target f1 when Δ = 0 is chosen to maximize the difference between the two
machines. We also found that the acceptable region of the quantum machine is about 5.6 times
the size of that of the classical machine.

The optimal phase condition for improving the task fidelity, as in equation (13), can
be generalized to an arbitrary N-bit Boolean function ( >N 1). We provide one of the
conditions as

⎧⎨⎩ϕ
π

=
=
=

s

s

0 if 0

if 1
. (14)k

k

k

where sk is the kth component of a solution point … −s s sQ ( , , , )f 0 1 2 1N in the 2N-dimensional
search space (see appendix A). This condition yields ⩾ q c, so the acceptable region of the
quantum machine can be wider than that of the classical machine for an arbitrary N-bit Boolean
function.

Figure 2. Left column: the task fidelities for classical and quantum machines. Right
column: green lines in the magnified views indicate the acceptable regions for a given
tolerable error ϵ = 0.05t around the exact target point, =p p( , ) (1, 1)0 1 . Here, we set
Δ = 0 to maximize the task fidelity of the quantum machine. It is found that the
acceptable region of the quantum machine is about 5.6 times the size of that of the
classical machine.
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4. Learning speedup via an expanded acceptable region

This section is devoted to the learning time in machine learning. For a numerical simulation, we
employ random search as a feedback; this has often been considered for studying learning
performance, rather than for any practical reasons [24]. Random search runs as follows. First,
all 2N control parameters pk are randomly chosen, and then, the task fidelity is measured with
the chosen pk parameters. These two steps are thought of as a single iteration of the procedure.
The iterations are repeated until the condition ϵ⩾ − 1 t is satisfied for a given ϵt. After a
sufficient number of simulations have been performed, we then calculate the mean iteration
number defined as = ∑n nP n( )c , where P(n) is the probability of completing learning at the nth
iteration. This mean iteration number, nc, can be used to quantify the learning time, and the
results of numerical simulations for nc are shown in table 3, where quantum learning is
demonstrated to be faster than classical learning. This is a direct result of the wider acceptable
region of the quantum machine, as nc is inversely proportional to the size of the acceptable
region in random search; γ=n 1c is given by substituting in γ γ= − −P n( ) (1 ) n( 1), where γ is
equal to the ratio of the acceptable region to the whole space in random search. We demonstrate
this by comparing the results for nc with the acceptable regions γ found from Monte Carlo
simulation, given in table 3, and thereby we note that the acceptable region is the main feature
directly influencing the learning time in random search.

Also in figure 3, the data for nc in table 3 are well fitted to a function α β= +n Dln c ,
implying that the size of the acceptable region is exponentially decreased as the dimension

=D 2N of the parameter space increases, i.e. = αn O(e )c
D [32]. The fitting parameters are given

as

⎧⎨⎩
α β
α β

≃ ± ≃ − ±
≃ ± ≃ ±

3.065 0.072, 3.188 1.196 in the classical case,
0.238 0.008, 2.267 0.127 in the quantum case.

(15)

It is remarkable that the exponent α in the quantum case is much smaller than that in the
classical case.

It follows from what has been shown that the acceptable region is the main feature directly
influencing the learning time in random search. We have proved that we can always prepare a
quantum machine which has an acceptable region larger than that of the classical one, in the

Table 3. The learning time nc is compared with the acceptable regions γ, and it is
demonstrated that γ= −nc

1. This implies that a larger acceptable region leads to a lesser
learning time. Simulation failed for N = 4 and 5 in the classical case due to the finite
computational resources and very long run time.

Classical Quantum

N γ−1 nc γ−1 nc

1 ×1.0 102 ×1.03 102 ×1.8 101 ×1.74 101

2 ×1.4 104 ×1.39 104 ×2.6 101 ×2.68 101

3 ×4.4 108 ×4.67 108 ×5.5 101 ×5.36 101

4 ×9.8 1018 — ×3.5 102 ×3.48 102

5 ×7.1 1041 — ×2.5 104 ×2.48 104
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previous section. Therefore, we finally conclude that the learning time can be shorter in the
quantum case than in the classical case. The results of numerical simulation also support the
assertion that the quantum machine learns much faster, particularly in a large search space. We
clarify again that such a quantum speedup is enabled by the quantum superposition, and
appropriately arranged phases.

5. Applying differential evolution

We consider a more practical learning model, taking into account real circumstances. A general
analysis of the learning efficiency is very complicated, as so many factors are associated with
the learning behavior. Furthermore, the most efficient learning algorithms tend to use heuristic
rules and are problem-specific [33, 34]. Nevertheless, it is usually believed that the acceptable
region is a key factor for the efficiency of learning in a heuristic manner [32]. We conjecture, in
this sense, that the quantum machine offers the quantum speedup even in a practical learning
method.

We apply differential evolution (DE), which is known as one of the most efficient learning
methods for global optimization [30]. We start with M sets of control parameter vectors

= −p p p p( , ,..., )i i0 1 2 1N , for =i M1, 2 ,..., , whose components are the control parameters of the
machine. In DE, these vectors, pi, are supposed to evolve by ‘mating’ their components pk with
each other. Equation (6) is used as a criterion for how well machines with pi fit to the target.
This process is iterated until the task fidelity reaches a certain level of accuracy ϵ−1 t (see [30]
or [20] for the detailed method of effecting differential evolution).

We perform the numerical simulations by increasing N from 1 to 7. The results are
averaged over 1000 realizations for M = 50 and ϵ = 0.05t . The target function is a constant
function: =xf ( ) 0 for all x. Free parameters in differential evolution (e.g., the crossover rate

Figure 3. The learning time, nc, with the dimension =D 2N of the parameter space for
1000 realizations. In this work, we consider a constant target function that yields 0 for
all inputs x, the optimal phase condition of equation (14) is chosen for the quantum
machine, and the tolerable error ϵt is set as 0.05. The data are well fitted to

α β= +n Dln c in the classical (red line) and quantum (blue line) cases, with the fitting
parameters α and β as in equation (15).
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and differential weight) are chosen to achieve the best learning efficiency for a classical
machine6. Nevertheless, we expect the quantum machine to still exhibit the quantum speedup,
assisted by the quantum superposition, with the optimal phases in equation (14). We give the
mean task fidelity averaged over M in figure 4(a). For both classical and quantum cases, the
mean task fidelities are increased close to 1, but the quantum machine is much faster for all
cases. We investigate the learning time nc as we increase the dimension =D 2N of the
parameter space, as depicted in figure 4(b). The data are well fitted to a presumable function

α≃ βn Dc , with α ≃ 3.82, β ≃ 0.97 for the classical machine, and α ≃ 1.61, β ≃ 0.80 for the
quantum machine7. We note that the quantum machine still exhibits the speedup with the
smaller α and β. Therefore, we expect such quantum speedup to be achievable even in real
circumstances.

6. Summary and discussion

We investigated the learning performances of two machines by considering the task of finding
an N-bit Boolean function which can be used in a binary classification problem. The two
machines were designed equivalently to make the comparison of these two machines as
convincing as possible. The critical difference between the two machines was that the

Figure 4. (a) The mean task fidelity is given with respect to the iteration n. The
simulations are done increasing N from 1 to 7. It is readily observed that the increments
of the task fidelities are faster in the quantum situation for all cases. (b) The learning
time, nc, as the dimension D of the parameter space increases is shown. The data are
well fitted to a presumable function α≃ βn Dc , with α ≃ 3.82, β ≃ 0.97 in the classical
case (red line), and α ≃ 1.61, β ≃ 0.80 in the quantum case (blue line). Note that the
quantum machine still shows better convergence with the smaller α and β.

6 One may worry about the crossover point (for ⩾N 5) in figure 4(a), associated with the validity of the quantum
learning speedup for ϵ → 0t . However, the appearance of the crossover is due to the DE optimization with the free
parameters. Note here that the free parameters are optimized for the classical machine. The crossover can be
removed by choosing the appropriate free parameters for each machine.
7 Such a polynomial result shows much improvement from the differential evolution one—but this is quite distinct
from the case of random search, which exhibits exponential dependence.
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operations in the quantum machine are described by unitary operators, to deal with the quantum
superposition. The learning processes of the two machines were characterized in terms of the
acceptable region: the localized region of the parameter space including approximate solutions.
We have found that the quantum machine has a wider acceptable region, induced by quantum
superposition. We demonstrated a simulation with a standard feedback method, namely random
search, to show that the sizes of the acceptable regions were inversely proportional to the
learning time. Here, it was also shown that a wider acceptable region makes the learning faster;
that is, the learning time is proportional to αO(e )D , with α ≃ 3.065 in the classical learning case
and α ≃ 0.238 for the quantum machine. We then applied a practical learning method, namely
differential evolution, to our main task, and observed the learning speedup of the quantum
machine.

Here, we wish to recall that the maximized learning speedup of the quantum machine is
achieved by choosing suitable phases as in equation (14). From a practical perspective, one may
consider that an additional task, such as finding the relative phases, is required to ensure the
remarkable performance of the quantum learning machine for other N-bit Boolean function
targets. Alternatively, such an issue could be resolved by synchronizing the relative phases with
the control parameters in the quantum machine, still yielding the learning speedup (see
appendix B for details).

We expect our work to motivate researchers to study the role of various quantum effects in
machine learning, and to open up new possibilities for improving the machine learning
performance. It is still open whether the quantum machine can be improved more by using other
quantum effects, such as quantum entanglement.
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Appendix A. Finding the optimal phase condition in equation (14)

Let us recall the general form of the task fidelity, as in equation (6). We suppose the target to be
a deterministic function. Then, equation (6) is rewritten as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∏… =−

+

 x xp p p P f( , , , ) ( ( ) ) . (A.1)
x

0 1 2 1N

N
1

2 1

In deriving the above reduced form of equation (A.1), we used that =τ xP y( | ) 1 when y is equal
to the desired value xf ( ) for a given target f, and otherwise =τ xP y( | ) 0. equation (A.1) shows
that the task fidelity is enlarged if x xP f( ( )| ) is maximized for all ≠x 0.

To start, consider an ideal learning machine (either classical or quantum) that always
generates the desired outcome results with perfect task fidelity, = 1. From our analysis in
section 3, we can represent this machine as a point = −s s sS ( , ,..., )0 1 2 1N in the 2N-dimensional
search space. In this sense, we consider this ideal machine the ‘solution machine’. We then
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consider a ‘near-solution machine’ which is located at a point = −p p pQ ( , ,..., )0 1 2 1N in the

search space. More specifically, δ= ∑ − ==
− ( )d s p(Q, S) k k k0

2 1 2N

, where d (Q, S) is the
Euclidean distance. Here we assume further that the search space is isotropic around S, so the
machines on the surface of the hypersphere δ=d (Q, S) have the same task fidelity. This
assumption is physically reasonable for very small tolerance error. Thus, without loss of
generality, we consider the near-solution machine corresponding to the point Q on the sphere

δ=d (Q, S) , satisfying − =s p c| |k k for all k. Here, δ=c 2N .
In these circumstances, x xP f( ( )| ) for a classical near-solution machine is necessarily

smaller than 1, depending on δ. On the other hand, if we choose the optimal phases ϕk, then
x xP f( ( )| ) can be 1 without any dependence on δ in the quantum machine. To show this, let us

first write the conditional probability x xP f( ( )| ) in equation (A.1) as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∏=

∈

x x xP f f G( ( ) ) ( ) ˆ 0 , (A.2)
k A

k

2

x

where Ax is the index set whose elements are indices of the actually applied operators
conditioned on the input =x x x x{ , ,..., }N1 2 . For example, if =x 1 (i.e.{1, 0, 0 ..., 0} in the
binary representation), then we have =A {0, 1}x because G0 is always applied independently
of the input, and the input signal =x 11 activates G1 (see figure 1). Thus, ∏ =∈ G G Gˆ ˆ ˆ

k A k 1 01
.

On the basis of the above description, we can generalize the calculations as

⎧

⎨
⎪
⎪

⎩
⎪
⎪

∏ = =

∏ = =

∏ = =
⋮

∈

∈

∈

x

x

x

G G G

G G G

G G G G G

ˆ ˆ ˆ for 1,

ˆ ˆ ˆ for 2,

ˆ ˆ ˆ ˆ ˆ for 3,
(A.3)

k A k

k A k

k A k

1 0

2 0

3 2 1 0

1

2

3

Here, equation (A.2) becomes 1 when c = 0 or equivalently =d (Q, S) 0, because it is nothing
but the solution machine. The basic idea is to find a condition for which all terms of c vanish
even though c is nonzero, i.e. the near-solution machine. Therefore, x xP f( ( )| ) for the near-
solution machine is mathematically equal to that of the solution machine. To carry out the task,
we consider the product of two arbitrary unitaries G Gˆ ˆ

k l ( ≠k l), as

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟− −

ϕ

ϕ

ϕ

ϕ− −

p q

q p

p q

q p

e

e

e

e
. (A.4)

k k

k k

l l

l l

i

i

i

i

k

k

l

l

If we consider the near-solution machine, we can let = −p s c| |k l k l( ) ( ) and
= −q p1k l k l( ) ( ) . We then calculate G Gˆ ˆ

k l, for the given s s,k l in S, as

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Λ Λ

Λ Λ
=

+

−
= =

Δ Δ ϕ

ϕ Δ

−
− −

−
−

−
−

( )
( )

G G
c g c

g c c
s sˆ ˆ

e 1 e ( )e

( )e e 1
if 0, 0,k l k l

i i i

i i

l

k
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⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

Λ Λ

Λ Λ

Λ Λ

Λ Λ

Λ Λ

Λ Λ

=
−

− +
= =

=
− −

−
= =

=
− −

−
= =

ϕ

ϕ Δ Δ

ϕ Δ

ϕ Δ

ϕ

ϕ Δ

+ +

− −
+

−
+

+
−

+

−
+

−
+

− −
−

− −

( )
( )

( )

( )

G G
g c c

c g c
s s

G G
g c c

c g c
s s

G G
c g c

g c c
s s

ˆ ˆ
( ) e 1

e 1 e ( )e
if 1, 0,

ˆ ˆ
( ) e 1 e

e 1 ( )e
if 0, 1,

ˆ ˆ 1 ( )e

( )e 1 e
if 1, 1, (A.5)

k l k l

k l k l

k l k l

i

i i i

i i

i i

i

i i

l

l

k

k

k

k

where Λ = ± Δ
± 1 ei , Δ ϕ ϕ= −k l, and = −g c c c( ) 2 . In calculating equation (A.5), we

assumed a deterministic target, i.e. sk l( ) is to be either 0 or 1, as is usual in most tasks (but not
necessarily the case). Here, the important thing is that we can cause the term associated with c to
vanish, by letting

⎧⎨
⎩Λ

ϕ ϕ
ϕ ϕ π

=
= =

= + ≠±
s s

s s
0, or equivalently,

if ,

if .
(A.6)

k l l k

k l l k

The above condition in equation (A.6) can be applied for all ≠k l. Thus, we provide here a
generalized condition:

⎧⎨⎩ϕ
π

=
=
=

s

s

0 if 0,

if 1.
(A.7)k

k

k

This is the optimal phase condition, as in (14). We can check that this condition gives the
maximum task fidelity with =x xP f( ( )| ) 1 (for all ≠x 0).

Appendix B. A practical version of a quantum machine

The speedup introduced in this paper is enabled when a quantum machine uses suitable phases.
Accordingly, the suitable phases are prerequisites for fast learning. In a practical case, the
learning time has to include complexity to obtain suitable phases, and this is not very easy to
achieve. We introduce a practical quantum machine that does not require the effort of finding
optimal phases. To this end, we modify the unitary Ĝk in equation (5) by setting all the phases
ϕk as πpk, i.e., Ĝk is written as

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟=

−

− −

π

π−
G

p p

p p
ˆ

e 1

e 1
, (B.1)k

k k

k k

i p

i p

k

k

such that the phases πpk are getting closer to the optimized phases πsk as the machine
approaches the solution point in the parameter space during the learning, since the optimized
phase condition is given by equation (14). Thus, this guarantees wider acceptable regions than
for the classical machine for any learning target.

Figure B1 (a) shows that the practical quantum machine has wider acceptable regions than
the classical machine for all one-bit Boolean targets. The areas inside the solid and dashed lines
represent the acceptable regions for the practical quantum machine and the classical machine,
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respectively. This supports the assertion that the practical quantum machine always learns faster
than the classical machine, while the performance of the original quantum machine depends on
the target function.

We then obtained the learning time of the practical quantum machine, which is shown in
figure B1(b). These data are also well fitted to α β= +n Dln c , with the fitting parameters
α ≃ ±0.985 0.101 and β ≃ − ±0.200 1.662. Thus, ∼n O(e )c

D0.985 for the practical quantum
machine, whereas ≃n O(e )c

D3.065 for the classical machine (see equation (15)). This result
shows that a considerable learning speedup is still achieved with this practical quantum
machine, even though it takes up a little more time as compared to an original machine available
with the optimal relative phases ( ∼n O(e )c

D0.238 ).
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