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Abstract
We propose a method for quantum algorithm design assisted by machine
learning. The method uses a quantum–classical hybrid simulator, where a
‘quantum student’ is being taught by a ‘classical teacher’. In other words, in our
method, the learning system is supposed to evolve into a quantum algorithm for
a given problem, assisted by a classical main-feedback system. Our method is
applicable for designing quantum oracle-based algorithms. We chose, as a case
study, an oracle decision problem, called a Deutsch–Jozsa problem. We showed
by using Monte Carlo simulations that our simulator can faithfully learn a
quantum algorithm for solving the problem for a given oracle. Remarkably, the
learning time is proportional to the square root of the total number of para-
meters, rather than showing the exponential dependence found in the classical
machine learning-based method.
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1. Introduction

Quantum information science has seen explosive growth in recent years, as a more powerful
generalization of classical information theory [1]. In particular, quantum computation has
received momentum from quantum algorithms that outperform their classical counterparts
[2–5]. Thus, the development of quantum algorithms is one of the most important areas of
computer science. However, unfortunately, recent research on quantum algorithm design is
rather stagnant, compared to other areas in quantum information, as scarcely any new quantum
algorithms have been discovered in the past few years [6]. We believe that this is due to the fact
that we—the designers—are used to classical logic. Thus we think that quantum algorithm
design should turn towards new methodology, different from that of the current approach.

Machine learning is a well-developed branch of artificial intelligence and automatic
control. Although ‘learning’ is often thought of as a uniquely human trait, a machine being
given feedback (taught) can improve its performance (learn) in a given task [7, 8]. In the past
few decades, there has been a growing interest not only in theoretical studies of but also in a
variety of applications of machine learning. Recently, many quantum implementations of
machine learning have been introduced to achieve better performance for quantum information
processing [9–13]. These works motivate us to look at machine learning as an alternative
approach for quantum algorithm design.

Keeping our primary goal in mind, we ask whether a quantum algorithm can be found by
the machine that also implements it. On the basis of this idea, we consider a machine which is
able to learn quantum algorithms in a real experiment. Such a machine may discover solutions
which are difficult for humans to find because of our classical way of thinking. Since we can
always simulate a quantum machine on a classical computer (though not always efficiently), we
can use such simulations to design quantum algorithms without the need for a programmable
quantum computer. This classical machine can thus be regarded as a simulator that learns a
quantum algorithm—a so-called learning simulator. The novelty of such a learning simulator
lies in its capabilities of ‘learning’ and ‘teaching’. With regard to these abilities, we consider
two internal systems: one is a learning system (the ‘student’ say), and the other is a main-
feedback system (the ‘teacher’ say). While the standard approach is to assume that both student
and teacher are quantum machines, here we use a quantum–classical hybrid simulator such that
the student is a quantum machine and the teacher a classical machine. Such a hybridization is
easier and more economical to realize if any algorithms can be learned.

In this paper, we employ a learning simulator for quantum algorithm design. The main
question of this work is: ‘Can our learning simulator help in designing a quantum algorithm?’
The answer to this question is affirmative, as it is shown, in Monte Carlo simulations, that our
learning simulator can faithfully learn appropriate elements of a quantum algorithm for solving
an oracle decision problem, called the Deutsch–Jozsa problem. The algorithms found are
equivalent, but not exactly equal, to the original Deutsch–Jozsa algorithm. We also investigate
the learning time, as it becomes important in application not only due to the large-scale
problems often arising in machine learning but also because, in its learning, our simulator will
exhibit the quantum speedup (if any) of an algorithm to be found, as described later. We
observe that the learning time is proportional to the square root of the total number of
parameters, in contrast to showing the exponential tendency found in classical machine
learning. We expect our learning simulator to reflect the quantum speedup of the algorithm
found in its learning, possibly in synergy with the finding that the size of the parameter space
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can be significantly smaller for quantum algorithms than for their classical counterparts [14].
We note that the method presented is aimed at a real experiment, in contrast to the techniques of
[15, 16].

2. The basic architecture of the learning simulator

Before discussing the details of the learning simulator, it is important to have an understanding
of what machine learning is. A typical task of machine learning is to find a function =f x t( ) x

for the input x and the target tx based on the observations in supervised learning, or to find some
hidden structure in unsupervised learning [7, 8]. The main difference between supervised and
unsupervised learning is that in the latter case the target tx is unknown. Throughout this paper,
we consider supervised learning where the target tx is known.

We now briefly sketch our method (see also figure 1). To begin, a supervisor defines the
problem to be solved, and arranges the necessary prerequisites (e.g., the input–target pairs (x,
tx), and a function Q produced by a non-trivial device, the so-called oracle) for learning. The
preliminary information is passed to the learning simulator at once. The simulator encodes the
communicated information on its own elements. We note here that one could consider two main
tasks in designing a quantum algorithm. The first is to construct a useful form of quantum
oracle, and the second is to find another incorporating quantum operation(s) to maximize the
quantum advantages, such as superposition engaging parallelism [17] or entanglement [18]. We

Figure 1. Schematic picture of our method. A supervisor defines the problem to be
solved and arranges the necessary prerequisites for learning the quantum algorithm. All
of this information is communicated to the learning simulator at once. The simulator
encodes the information on its own elements. The simulator consists of quantum
elements, i.e., preparation P, operation U, and measurement M, assisted by the classical
main feedback F. The classical channels MF and FU enable one-way communication
from M to F and from F to U.
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focus here on the latter5. Note, however, that it is necessary to define a specific oracle operation
(see appendix A). This task is also performed, by the supervisor, at this preliminary stage.

We then describe the basic elements of the learning simulator in figure 1. The simulator
consists of two internal parts. One is the learning system which is supposed to eventually
perform a quantum algorithm, and the other is the feedback system responsible for teaching the
former. The learning system consists of the standard quantum information-processing devices:
preparation P for preparing a pure quantum state, operation U for performing a unitary
operation, and measurement M. Here, the chosen quantum oracle is involved in U. On the other
hand, the feedback system is classical, as this is easier and less expensive to realize in practice.
Furthermore, by employing classical feedback, we can use a well-known (classical) learning
algorithm whose performance has already been proved to be reliable. Recently, a scheme for
machine learning involving quantum feedback has been reported [21], but the usefulness of the
quantumness has not been clearly elucidated, even though the reported results are meaningful in
some applications. Moreover, it is unclear at present whether any classical feedback is
applicable to quantum algorithm design. Consequently, it is preferred to use classical feedback
in this work. In this sense, our simulator is a quantum–classical hybrid. The feedback system is
equipped with a main-feedback device F which involves the classical memory  and the
learning algorithm .  records the control parameters of U and the measurement results of M.
 corresponds to a series of rules for updating U.

We illustrate how our simulator performs the learning. Let us start with the set of K
input–target pairs communicated from the supervisor:

= …{ }( ) ( ) ( )T x f x x f x x f x, ( ) , , ( ) , , , ( ) , (1)K K1 1 2 2

where f is a function that transforms the inputs xi into their targets6. The main task of the

simulator is to find f. Firstly, an initial state Ψin is prepared in P and transformed to Ψout by U.

Then M performs measurement on Ψout with a chosen measurement basis. The measurement

result is delivered to F through MF. Note here that the information about the initial state Ψin

and the measurement basis encoded in P and M is also determined by the supervisor before the
learning. Finally, F updates U on the basis of . Basically, the learning is just the repetition of
these three steps. When the learning is completed, we obtain a P–U–M device to implement f by
simply removing F. The supervisor, then, investigates whether the P–U–M device found
provides any speedup reducing the overall oracle references, or saves any computational
resources for implementing the algorithm [22]. In particular, the supervisor would standardize
the identified operations U as an algorithm. Here, we clarify that the input information in T and
the measurement results are classical. Nevertheless, the simulator is supposed to exploit
quantum effects in learning, because the operations before measurement are all quantum. This
assumption is supported by recent theoretical studies that show the improvement of learning
efficiency achieved by using quantum superposition [14, 23].

5 Actually, in algorithm design [19] or logic-mechanism programming [20], the important point is usually how we
utilize a given oracle (or a corresponding operation for judging the positive or negative state) with other
incorporated logics in order to achieve a speedup of the designed algorithm, rather than how we construct or
optimize the oracle itself.
6 Here, xi = …i K( 1, 2, , ) can be encoded either on the state Ψin in P or on the control parameters of U. In most

cases, encoding on U is appropriate and this is the choice made for our work, as shown later.
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3. Construction of the learning simulator

The general design of the learning simulator depicted in figure 1 works fine for problems such
as number factorization. However, in problems requiring a large number of oracle references,
the input is the oracle itself and, by definition, it is a (unitary) transformation rather than a string
of bits. To allow for the input in the form of a unitary matrix we need to refine our simulator a
little (but let us stress that this does not mean that our method is not general). The refined
version depicted in figure 2 allows the simulator to learn an algorithm of iterative type. The
difference in learning simulator stems directly from the formulation of the problems.

The most important aspect of the refined learning simulator is the decomposition of U. In
order to deal with both classical and quantum information, we divide U into three sub-devices,
such that

ˆ = ˆ ˆ ˆ( ) ( ) ( )U U U Up p p , (2)tot 3 3 2 2 1 1

where Ûtot is the total unitary operator, and Ûj =j( 1, 2, 3) denotes the unitary operator of the jth

sub-device. Here, Û1 and Û3 are n-qubit controllable unitary operators, whereas Û2 is the oracle
for encoding the input xi. By ‘controllable’ we mean here, and throughout the paper, that they
can be changed by the feedback.

The unitary operators are generally parameterized as

ˆ = −( )U p p G( ) exp i , (3)T

where = … −( )p p pp , , ,
d1 2 1

T
2 is a real vector in −( )d 12 -dimensional Bloch space for =d 2n,

and = ˆ ˆ … ˆ −( )g g gG , ,
d1 2 1

T
2 is a vector whose components are SU(d) group generators [24, 25].

The components π π∈ −p [ , ]
j

of p can be directly matched to control parameters in some

experimental schemes, e.g., beam-splitter and phase-shifter alignments in linear optical systems

Figure 2. Architecture of our simulator for learning a quantum algorithm, where the
unitary operation U consists of three sub-operations (see the text).

5

New J. Phys. 16 (2014) 073017 J Bang et al



[26] and radio-frequency (rf) pulse sequences in nuclear magnetic resonance (NMR) systems
[27]. In that sense, we call p a control-parameter vector. Here, p

2
is determined by

↦Q x xp( ) ( )i i2
, as described above. In such a setting, we expect our simulator to learn an

optimal set of { }p p,
1 3

, such that Û1 and Û3 will solve a given problem.

Our simulator is actually well-suited to learning even iterative algorithms, such as Groverʼs
[5]. We envisage using our simulator as follows: in the first stage, apply Û1 to an input state,

then Û2 which is a non-trivial operation, say the oracle, and finally Û3, to generate an output

state. The feedback system updates Û1 and Û3. Then, after a certain number of iterations which
do not lead to any improvements, our simulator goes to the second stage, where the output state

is fed back to be the input state to apply Û1–Û2–Û3 again. Therefore, in the second stage, the
oracle is referenced twice. If it fails again, it will try to loop three times at the third stage. By
some number of stages, there will be enough oracle references to solve the problem. In such a
way, our simulator can learn even a quantum algorithm of iterative type7, without adopting any
additional sub-devices and altering the structure in a real experiment. Thus, the scalability for

the size of the search space is only concerned with the number of control parameters in Û1 and

Û3, given by = −( )D d2 12 , where =d 2n.

Here, we highlight another subsidiary question: how long does it take for our simulator to
learn an (almost) deterministic quantum algorithm? Investigating this issue will become
increasingly important, especially in the application of our simulator to very large-scale
(i.e., ≫D 1) problems. One may raise the objection that our simulator runs extremely slowly
for large size problems. On the other hand, however, it is also likely that, in its learning, our
simulator enjoys the quantum speedup, if any, of the algorithm to be found. To see this,
consider two cases: a classical algorithm and a quantum algorithm which our simulator tries to
find, assuming that they are of different complexities in terms of the number of oracle queries.
For instance, the quantum one may query a polynomial number of oracles, whereas the number
of queries for the classical one increases exponentially with respect to the problem size.
Regardless of the methods of realization, a learning simulator cannot reduce the number of
stages to less than the number of oracle queries in a given algorithm to be found. This is
reflected in the learning time. In other words, our simulator may show the learning speedup,
exploring far fewer stages in the learning of the quantum algorithm, as long as the algorithm to
be found exhibits quantum speedup. These controversial arguments require us to investigate the
learning time as well as the effectiveness of our simulator.

4. Application to the Deutsch–Jozsa problem

As a case study, consider an n-bit oracle decision problem, called the Deutsch–Jozsa (DJ)
problem. The problem is deciding whether some binary function →x : {0, 1} {0, 1}i

n is
constant (xi generates the same value 0 or 1 for every input) or balanced (xi generates 0 for
exactly half of the inputs, and 1 for the rest of the inputs) [2, 3]. On a classical Turing machine,

7 The procedure is not the most general one. For full generality one would also need to add some quantum
memory but, to our knowledge, no existing quantum algorithm actually uses this yet.
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+−2 1n 1 queries are required to solve this problem. If we use a probabilistic random classical
algorithm, we can determine the function xi with a small error, less than −2 q, by making q
queries [28, 29].

On the other hand, the DJ quantum algorithm solves the problem with only a single query

[29, 30]. The DJ quantum algorithm runs as follows: first, apply ˆ ⊗
H

n
on the input state

Ψ = ⋯00 0in , then Ûx to evaluate the input function, and finally ˆ ⊗
H

n
again to produce an

output state Ψout . Here, Ĥ is the Hadamard gate which transforms the qubit states 0 and 1

into equal superposition states ˆ = +( )H 0 0 1 / 2 and ˆ = −( )H 1 0 1 / 2

respectively. Ûx is the function-evaluation gate that calculates a given function xi. It is defined by
its action,

ˆ ⋯ = ⋯π ⋯U k k k e k k k , (4)( )
x n

x k k k
n1 2

i
1 2

i n1 2

where ⋯ ∈k k k {0, 1}n
n

1 2 is the binary sequence of the computational basis. Then, the output
state is given as

⎪

⎧⎨
⎩Ψ =

± ⋯ ∈
± ⋯ ∈

x
x C

z z z x B
( )

00 0 , if

, if
(5)i

i

n i
out

1 2

where C and B are the sets of constant and balanced functions, respectively, and the binary

components ∈z {0, 1}j = …j n( 1, 2, , ) depend on the ( )d

d / 2
balanced functions (excepting

that =z 0j for all j). In the last step, von Neumann measurement is performed on the output

state. The corresponding measurement operator is given by ˆ = ⋯ ⋯M 00 0 00 0 . The other
projectors constituting the observable are irrelevant because we are interested only in the
probabilities associated with the first case,

Ψ Ψ= ˆ = ∈P x M x x C( ) ( ) 1, if , (6)C i i iout out

and the second case,

Ψ Ψ= ˆ = ∈P x M x x B( ) ( ) 0, if . (7)B i i iout out

Therefore it is promised that the function xi is either constant or balanced by only a single oracle
query.

We are now ready to apply our method to the DJ problem. To begin, the supervisor
prepares the set of input–target pairs,

= = ∈ = ∈{ }( )T x f x f x x C f x x B, ( ) ( ) ‘c’ if and ( ) ‘b’ if (8)i i i i i i

The learning simulator is to find the ‘functional’ f now, by adjusting Û1 and Û3. The input

functions xi are encoded in xp ( )i2
of Û2. Here, we chose the same form of the oracle as in

equation (4), i.e., type (ii). Then P prepares an arbitrary initial state Ψin and M performs the
measurement on each qubit. Here we introduce a function to apply a measurement result to one
of the targets (in our case, ‘c’ or ‘b’). We call this the interpretation function. Note that the
interpretation function is also to be learned, because, in general, any a priori knowledge of the
quantum algorithm to be found is completely unknown. For the sake of convenience, we
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consider a Boolean function that transforms the measurement result ⋯z z zn1 2 to 0 (equivalently,
‘c’) only if =z 0j for all = …j n1, 2, , , and otherwise 1 (equivalently, ‘b’). One may

generalize the interpretation function to a function →{0, 1} {0, 1}n m if one is interested in any
other problems that contain many targets less than 2m [31].

5. The learning algorithm for differential evolution

One of the most important parts of our method is the choice of a learning algorithm . The
efficiency and accuracy of machine learning are heavily influenced in general by the algorithm
chosen. We employ so-called ‘differential evolution’, as it is known as one of the most efficient
optimization methods [32]. We implement the differential evolution as follows. To begin, we

prepare Npop sets of the control-parameter vectors:{ }p p,
i i1, 3,

( = …i N1, 2, , pop). Thus we have

N2 pop parameter vectors in total. They are chosen initially at random and recorded on  in F.

[L.1] Then, N2 pop mutant vectors νnuk i, are generated for Ûk (k = 1,3), according to

ν = + −( )Wp p p ,k i k a k b k c, , , ,

where p
k a,
, p

k b,
, and p

k c,
are randomly chosen for ∈ …{ }a b c N, , 1, 2, , pop . These three vectors

are chosen to be different from each other; for that, ⩾N 3pop is necessary. The free parameter W,

called a differential weight, is a real and constant number.
[L.2] After that, all N2 pop parameter vectors

= … −( )p p pp , , ,
k i k k k d i, ,1 ,2 , 1

T

2

are reformulated as trial vectors

τ τ τ τ= … −( ), , ,k i k k k d i, ,1 ,2 , 1

T
2

by means of the following rule: for each j,

⎪

⎪⎧⎨
⎩

τ

τ ν

← >
←

p R Cif ,

otherwise,
(9)

k j k j j r

k j k j

, ,

, ,

where ∈R [0, 1]j is a randomly generated number and the crossover rate Cr is another free

parameter between 0 and 1.

[L.3] Finally, τ τ{ },i i1, 3, are taken for the next iteration if τˆ ( )U i1 1, and τˆ ( )U i3 3, yield a fitness

value larger than that from ˆ ( )U p
i1 1,
and ˆ ( )U p

i3 3,
; if not,{ }p p,

i i1, 3,
are retained. Here the fitness

ξi is defined by

ξ =
+ −( )P P1

2
, (10)i

C i B i, ,

where PC i, and PB i, are measurement probabilities for the ith set, given by equations (6) and (7).
While evaluating the Npop fitness values, F records on  the best ξbest and its corresponding

parameter vector set { }p p,
1,best 3,best

.
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The above steps [L.1]–[L.3] are repeated until ξbest reaches close to 1. In an ideal case, the

simulator finds { }p p,
1,best 3,best

yielding ξ = 1best with =P 1C and =P 0B . The parameters found

lead to an algorithm equivalent to the original DJ one.

6. Numerical analysis

The simulations are done for the n-bit DJ problem, with n increasing from 1 to 5. In the
simulations, we take =N 10pop for all n8. The results are given in figure 3(a), where we present

Figure 3. (a) Averaged best fitness ξbest versus iteration r. Each data value is averaged
over 1000 simulations. It is observed that ξbest approaches unity upon iterating. (b)
Learning probability P(r) for the halting condition ξ ⩾ 0.99best , when sampling 1000
trials. P(r) is well-fitted by an integrated Gaussian (black solid line),

∫ ρ= ′ ′
−∞

G r r r( ) d ( )
r

. (c) Probability density ρ r( ) resulting from P(r) for each n. (d)

Graph of rc versus D , where D is the total number of the control parameters, and rc is
the average number of iterations needed to complete the learning. The data are well-
fitted linearly by = +r A D Bc with ≃A 43 and ≃ −B 57.

8 For a large size classical learning system, a huge number Npop of candidate solutions are usually needed. For

example, it is appropriate to chose ≃N D5pop – D10 (see [32]).
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the averaged best fitness ξbest, sampling 1000 trials. It is clearly observed that ξbest approaches 1
as the iteration proceeds. There is just one stage required for all n. This implies that our
simulator can faithfully learn a single-query quantum algorithm for the DJ problem, showing
ξ ≃ 1. It is also notable that the algorithms found are equivalent to, but not exactly equal to, the

original DJ algorithm: the Û1 and Û3 found are always different, but constitute an algorithm
solving the DJ problem (see appendix B).

Then we present a learning probability P(r), defined by the probability that the learning is
completed before or at the rth iteration [33]. Here we assume a halting condition ξ ⩾ 0.99best for
finding a nearly deterministic algorithm. In figure 3(b), we present P(r) for all n, each of which
is averaged over 1000 simulations. We find that P(r) is well-fitted with an integrated Gaussian

∫ ρ= ′ ′
−∞

G r r r( ) d ( ), (11)
r

where the probability density ρ r( ) is a Gaussian function
π Δ

−
Δ

−

e
r

1

2

( )r rc

r

2

2 2 . Here, rc is the average

iteration number and Δr is the standard deviation over the simulations, which characterize how
many iterations are sufficient for a statistical accuracy of ξ ⩾ 0.99best . Note that we have finite
values of rc and Δr for all n. The probability density ρ r( ) is drawn in figure 3(c), resulting from
P(r).

We also investigate the learning time. As we already pointed out, the learning time
becomes an intriguing issue which may be related not only to the applicability of our algorithm
to large-scale problems but also to the learning speedup. Regarding rc as a learning time, we

present a graph of rc versus D in figure 3(d). Remarkably, the data are well-fitted linearly with

= +r A D Bc with ≃A 43 and ≃ −B 57. This means that the learning time is proportional to
the square root of the size of the parameter space9. This contrasts with the typical exponential
tendency for classical machine learning (see, for example, [34, 35] and the references therein).

7. Summary and remarks

We have presented a method for quantum algorithm design based on machine learning. The
simulator that we have used is a quantum–classical hybrid, where the quantum student is being
taught by a classical teacher. We discussed such hybridization being beneficial in terms of the
usefulness and the implementation cost. Our simulator was applicable in designing an oracle-
based quantum algorithm. We demonstrated, as a case study, that our simulator can faithfully
learn a single-query quantum algorithm that solves the DJ problem, even though it does not
have to. The algorithms found are equivalent, but not exactly equal, to the original DJ algorithm
with fitness ≃1.

We also investigated the learning time, as this would become increasingly important in
application, not only due to the large-scale problems often arising in machine learning but also
because, in its learning, our simulator potentially exhibits the quantum speedup, if any, of an

9 It is worth noting that there is an alternative method, called semidefinite programming, which may be used for
the purpose of finding a quantum algorithm. In [19], the authors have considered the problem of finding optimal
unitaries given a fixed number of queries. Their algorithm was able to solve the problem in polynomial time
(i.e. polynomial in the dimension d).
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algorithm to be found. In the investigation, we observed that the learning time is proportional to
the square root of the size of the parameter space, instead of showing the exponential
dependence of classical machine learning. This result is very suggestive. We expect our
simulator to reflect the quantum speedup of the algorithm found in its learning, possibly in
synergy with the finding from [14] that for quantum algorithms, the size of the parameter space
can be significantly smaller than that for their classical counterparts: not only does their learning
time scale more favorably with the size of the space, but also this size is smaller to begin with.

We hope that the proposed method will help in designing quantum algorithms, and provide
an insight into learning speedup, establishing a link between the learning time and the quantum
speedup of the algorithms found. However, it is an open question whether one would observe
more improved behaviors in quantum algorithm design on employing a quantum feedback
rather than the classical feedback.

Acknowledgments

JB would like to thank M Żukowski, H J Briegel, and B C Sanders for discussions and
comments. We acknowledge the financial support of National Research Foundation of Korea
(NRF) grants funded by the Korea government (MEST; No. 2010-0018295 and No. 2010-
0015059). JR and MP were supported by the Foundation for Polish Science TEAM project
cofinanced by the EU European Regional Development Fund. JR was also supported by
NCBiR-CHIST-ERA Project QUASAR. MP was also supported by the UK EP-SRC and ERC
grant QOLAPS.

Appendix A. Quantum oracle operation

As described in the main text, one could consider two different issues in designing a certain
type of quantum algorithm. The first is determining a specific form of quantum oracle operation,
and the second is finding another incorporating operations to maximize the quantum
advantages. Although we focused on the latter in the current work, it is also necessary to
inquire into the question of what kind of quantum oracle is best fitted for our learning simulator
in figure 2, practically.

Dealing with the quantum oracle is a twofold task: defining the appropriate query function
Q and encoding its output q for the oracle operation. The query function Q maps available
inputs xi of the problem to certain accessible values q

xi
, ↦Q x q: i xi

( = …i K1, 2, , ). Here we

clarify that Q is evaluated classically, and independently of the construction of the oracle
operation. The finite input set x{ }i ( = …i K1, 2, , ) and the query function Q are determined
prior to learning, as mentioned in section 2.

Let us now consider a general process for oracle operation, such that

→ ⊕πφj x j g xe , (A.1)i x i
i

xi

i

where j is a computational basis, and xi is a quantum state of an input xi. Here, φ
xi
and g

xi
are

controllable parameters depending on xi. We then determine a specific form of oracle operation

by choosing either φ = ∧ =( )( ) g q0
x x xi i i

or φ = ∧ =( ) ( )q g 0
x x xi i i

. These two types of oracle
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are equivalent, in the sense that they are independent of the query function Q, and can be
converted into each other without any alteration of the complexity of the algorithm found [36].
In this work, we considered the latter type of oracle operation, as it is more economical in the
sense that the query function is encoded into the phase without any additional system.

Appendix B. The variants of the original one-bit Deutsch–Jozsa algorithm

In this appendix, we discuss the original Deutsch–Jozsa algorithm and its variants for the simple
case n = 1 [37]. In such a case, the learning part of our simulator consists of two single-qubit

unitary operations Ûk (k = 1,3) and one oracle operation Ûx, as in equation (4). Here it is

convenient to rewrite any single-qubit unitary operation Ûk as

σ σΘ Θˆ = − = ˆ −( ) ( )U ip p n( ) exp i cos 11 sin , (B.1)k k k k k
T T

where = ( )p p pp , ,
k k x k y k z, , ,

T

is a three-dimensional real vector, and σ σ σ σ= ˆ ˆ ˆ( ), ,x y z

T
is nothing

but the vector of Pauli operators. Here, Θk is given as the Euclidean vector norm of p
k
, i.e.,

Θ = ∥ ∥ = ( )p p pk k k k
T

1
2 , and = ∥ ∥nk

p

p
k

k

is a normalized vector. All pure states are characterized

as points on the surface of a unit sphere, called the ‘Bloch sphere’, and Ûk rotates a pure state
(i.e., a point on the Bloch sphere) by the angle Θ2 k around the axis nk. Such a geometric
description is convenient for describing the unitary processes.

We now turn to the one-bit DJ algorithm Û1–Ûx–Û3 which consists of three operation steps.

Firstly, the unitary Û1 rotates the initial state 0 to a state on the equator of the Bloch sphere,

i.e., + ϕ( )0 e 11

2

i , where ϕ is an arbitrary phase factor. The oracle Ûx then flips the state to

the antipodal side if xi is balanced, and leaves it unchanged if xi is constant. The last unitary Û3

transforms the incoming state to the corresponding output,

⎧⎨⎩Ψ =
±
±

x( )
0 , if x is constant,

1 , if x is balanced.
(B.2)i

i

i
out

Noting that the Hadamard operation Ĥ is π-rotation about the axis = ( )n 1/ 2 , 0, 1/ 2 T, it is
easily checked that the phase ϕ is given as zero in the original DJ algorithm. On the basis of

such a description, we can infer that there are numerous sets Θ{ }( )n,k k (k = 1,3) leading the

initial state 0 to the desired output Ψ x( )iout as in equation (B.2). Thus, many variants of the

original DJ algorithm exist. As an example, we give Û1 and Û3 found in our simulator as follows:

⎜ ⎟

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

ˆ ≃ + −
− − −

ˆ ≃ − − − +
+ − +

U i i
i i

U i i
i i

0.348 0.612 0.631 0.325
0.631 0.325 0.348 0.612

,

0.360 0.609 0.031 0.706
0.031 0.706 0.360 0.609

, (B.3)

1

3
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with

⎪

⎪⎧⎨
⎩

Θ π
Θ π

≃ ≃ − −
≃ ≃ −

n

n

0.552 , ( 0.243, 0.847, 0.472) ,

0.476 , (0.043, 0.531, 0.846) .
(B.4)1 1

T

3 3
T

The algorithm constructed with the above Û1 and Û2 runs as

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

ψ

ψ

⟶
−

⟶
−

⟶ ≃ ∈

⟶
−

⟶ ⟶ ≃ ∈

π π

π π

ˆ ˆ ˆ

ˆ ˆ ˆ

x C

x B

0
0.704

0.710e
0.704

0.710e
0 , if ,

0
0.704

0.710e
0.704

0.710e
1 , if . (B.5)

U U U

i

U U U

i

0.18 0.18 out

0.18 0.18 out

x

x

1 3

1 3

This algorithm is not exactly equal to, but equivalent to, the original one-bit DJ algorithm.
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