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1 Introduction

The quark-gluon plasma (QGP) created at the Relativistic Heavy Ion Colliers (RHIC) [1, 2]

and at the Large Hadron Collider (LHC) shows its strongly coupled fluid behavior [3, 4],

and thus its physical explanation calls for non-perturbative computational methods. A

powerful tool for studying the strongly coupled plasma is the gauge/string duality, in

which the best understood example is the AdS/CFT correspondence. This correspondence
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asserts the equivalence between type IIB superstring theory in AdS5×S5 and N = 4 Super

Yang-Mills (SYM) gauge theory on the 4-dimensional boundary of AdS5 [5–7]. By using

the AdS/CFT duality, one can study many physical quantities of the dual QCD in the

strongly coupled regime (see [8, 9] for reviews).

Another significant observation of the RHIC and the LHC experiments is that the

plasma created is anisotropic and non-equilibrium during the period of time τout after the

collision. That is to say, it is locally anisotropic at the time τout < τ < τiso, a configuration

to be described by the hydrodynamics with the anisotropic energy-momentum tensor [10–

19]. However, the anisotropic plasma yields its instabilities: the instabilities found in the

weakly coupled regime are responsible for the isotropization [20–31]. Such instabilities in

the strong coupling regime have been investigated under the framework of the AdS/CFT

correspondence [32–34], where the anisotropic dual geometry with a naked singularity was

involved.

More recently, a remarkable progress has been achieved in the study of anisotropic

gauge/string duality by Mateos and Trancanelli, who constructed a static and regular

anisotropic black brane solution of the type IIB supergravity which can dually describe

a spatially anisotropic N = 4 SYM plasma [35, 36]. Moreover, they also revealed that,

in some regions, the homogeneous phase of strong coupling plasma displays instabilities

reminiscent of weakly coupled plasmas.

Inspired by this seminal work, many studies have been focused on the effects of the

anisotropy on more physical observables of the anisotropic plasma, such as the drag force ex-

perienced by an infinitely massive quark propagating at constant velocity in this anisotropic

background [37], the jet quenching parameter of this anisotropic plasma [38–40] and the

anisotropy effect on heavy-quark energy loss [41]. Remarkably, the shear viscosity longitu-

dinal to the direction of anisotropy is found violating the holographic viscosity bound [42]

which presented the first example of such violation non-involving higher-derivative theories

of gravity. More relevant studies can also be found in [43–55].

In this paper, we are going to study the instabilities of the anisotropic plasma with

a finite chemical potential through introducing the U(1) charge to the black brane in the

gravity dual. One motivation for our work comes from the fact that the QGP may carry

a non-zero chemical potential. A simply way to introduce a U(1) chemical potential is to

consider a charged black brane in the gravity dual [56–61]. Thus, as an extension, we will

construct a duality between the anisotropic charged black brane and the anisotropic SYM

plasma by following [35].1

In the context of the AdS/CFT correspondence, one can introduce the U(1) gauge

symmetry by various Kaluza-Klein compactifications of D = 10 supergravity theory on

S5 [70–72]. Turning on the angular momenta along S5, one can obtain the rotating D3-

brane solutions, and the angular momenta can be identified with U(1)3 charges after S5

reduction, where the isometry group of S5 corresponds to R-symmetry of the dual SYM

theory. A special case is that all charges are equal, in which the solution is simply the

1Another way to holographic study of QCD at finite chemical potential (baryon density) has been

developed by considering Nf D7-brane in the background of Nc black D3-brane [62–69].
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U(1)0 U(1)1

Isotropic solution Schwarschild-AdS RN-AdS
ρ→0

ks

Anisotropic solution Schwarschild-AdS

a→0

OO

RN-AdS

a→0

OO

ρ→0
ks

Figure 1. Diagram shows the relations between anisotropic and isotropic black brane solutions.

The diagram to the left up to U(1)0 corresponds to Schwarzschild-AdS solution.

Reissner-Nordstrom-Anti de Sitter (RN-AdS) black hole [73]. Following these procedures,

we will introduce the U(1) gauge field to the anisotropic system and then obtain the

anisotropic charged AdS black brane solution. So to some extent, this work can be treated

as an extension of [73] to the anisotropic case. In figure 1 we explicitly display the relations

between the anisotropic and isotropic solutions with or without U(1) gauge field.

It is well known that the U(1) symmetry plays an important role in many condensed

matter systems, which is dual to the charged black branes in AdS space. So another

motivation of this paper is the future application of the anisotropic duality with a U(1)

chemical potential to condensed matter systems such as liquid crystals and anisotropic

Fermi surfaces. We will provide a RN-AdS version of the anisotropic black brane solution

as the first step to study the anisotropic condensed matter systems.

The organization of the contents is as follows. In section 2, we present a “prolate” black

brane solution in the presence of the U(1) field from the type IIB supergravity and discuss

the entropy density with different charges. We show later that the zero temperature limit

of the black brane cannot be reached unless the anisotropic parameter takes imaginary

values. Meanwhile, the entropy density does not decrease in the low temperature limit

just as the RN-AdS solution. In section 3, we study the stress tensor and thermodynamics

of this prolate systems through the holographic renormalization of the Einstein-Maxwell-

Dilaton-Axion theory. In section 4, we discuss the thermodynamic stabilities of the prolate

black brane solution and its phase structure by comparing with those of isotropic RN-AdS

black brane and uncharged anisotropic black brane, respectively. Conclusions and possible

directions for future investigations are presented in section 5.

In the appendices, we present the detailed computations. In appendix A, we derive the

equations of motion and discuss the numerical solution of the metric with the anisotropic

parameter a2 > 0. In appendix B, we give in detail the holographic renormalization of the

bulk theory. In appendix C, we present the high temperature black brane solution and

various quantities in the small charge density and weak anisotropy limits up to the O(a4)

order analytically. In appendix D, we compute analytically the weak anisotropic solution

by perturbating around the isotropic RN-AdS solution. Finally, we show the numerical and

analytic solutions with a2 < 0 which corresponds to the “oblate” solutions in appendix E.
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2 Anisotropic charged black brane solution

In this section, we investigate the five-dimensional Einstein-Maxwell-Dilaton-Axion trun-

cation of gauge AdS supergravity with compactification of ten-dimensional type IIB super-

gravity on S5. We aim to obtain its general anisotropic solutions, which can be contributed

to exploring the duals of QCD-like gauge theories.

2.1 Action and solution

As anticipated in the introduction, we are interested in the solution with the form of

M×S5, where the manifoldM is the solution of five dimensional supergravity with negative

cosmological constant Λ = −6/L2. Note that the AdS radius L measures the size of S5

which is set as L = 1 in the following discussions. To construct the solutions one need, one

can reduce the ten-dimensional supergravity action on five-dimensional spherical internal

space S5 by utilizing the non-linear Kaluza-Klein reduction ansätze developed in [70, 71].

So, let us start with bosonic sector of the type IIB supergravity action S = 1
2κ2

10

∫

L in the

Einstein frame,

L = R̂ ∗ 1− 1

2
dφ̂ ∧ ∗dφ̂− 1

2
e2φ̂F̂1 ∧ ∗F̂1 −

1

4
F̂5 ∧ ∗F̂5 , (2.1)

where we have truncated out two (NS-NS and R-R) 2-form potentials. φ̂ and F̂1 = dχ̂ are

the dilaton and the axion field-strength in ten-dimensions respectively. The 5-form field

F̂5 should satisfy the self-duality condition imposed at the level of equation of motion.

The equations of motion following from the Lagrangian above are read as [74]

R̂MN − 1

2
∂M φ̂∂N φ̂− e2φ̂

2
∂M χ̂∂N χ̂− 1

4× 4!
F̂MPQRSF̂N

PQRS
= 0 ,

d ∗ dφ̂− e2φ̂F̂1 ∧ ∗F̂1 = 0 ,

d(e2φ̂ ∗ F̂1) = 0 ,

d(∗F̂5) = 0 , (2.2)

with self-duality condition

∗ F̂5 = F̂5 . (2.3)

Hereafter, we use the uppercase Latin alphabet and lowercase Greek alphabet for ten and

five dimensional bulk indices respectively (i.e. M,N, . . . = 0, . . . , 9, µ, ν = 0, . . . , 4). The

boundary indices are represented by lowercase Latin alphabet as usual (i.e. i, j = 0, . . . , 3).

Since we only want to reduce the theory into minimal supergravity, the reduction

ansatz is given by

ds210 = ds25 +

[

dξ2 + s2
(

dτ − 1√
3
A1

)2

+
1

4
c2
(

σ21 + σ22 +

(

σ3 −
2√
3
A1

)2)]

,

F̂5 = H5 + ∗H5 ,

H5 = 4ǫ5 +
1√
3
∗5F2 ∧

(

1

8
c2σ1 ∧ σ2

+
1

2

(

σ3 −
2√
3
A1

)2

∧ dξ + sc

(

dτ − 1√
3
A1

)

∧ dξ
)

, (2.4)
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where ∗5 is the five-dimensional Hodge operator, ǫ5 is the volume form on the reduced

five-dimensional space, the 2-form F2 = dA1 and σi are the SL(2, R) left-invariant 1-forms.

Besides, we introduce the ansatz for SL(2, R)-coset scalar (φ̂, χ̂)

φ̂(x, y) = φ(x) , χ̂(x, y) = χ(x) , (2.5)

where x denotes the coordinates of the lower-dimensional space-time while y is the “com-

pactifying” dimensional coordinate.

Substituting these ansatz into the equations of motion (2.2) for the type IIB theory, we

can obtain the five-dimensional equations of motion that can be derived from the following

Lagrangian

L =
√−g

(

R+ 12− 1

2
(∂φ)2 − 1

2
e2φ(∂χ)2 − 1

4
F 2
2

)

+
1

12
√
3
ǫµνρσλFµνFρσAλ . (2.6)

For simplicity, we consider the static electrically charged solution, which means that

A = Atdt , (2.7)

and the Chern-Simons term ǫµνρσλFµνFρσAλ vanishes. So the five-dimensional effective

action we need here is given by

S =
1

2κ2

∫

(R+ 12) ∗5 1−
1

2
dφ ∧ ∗5dφ− 1

2
e2φF1 ∧ ∗5F1 −

1

2
F2 ∧ ∗5F2 , (2.8)

where 2κ2 = 16πG5 is the five-dimensional gravitational coupling and κ2 = 4π2/N2
c is

followed from L = 1. Then the equations of motion for the dilaton, the U(1) gauge field

and the gravitational field are given by

∇µ∇µφ− e2φ(∂χ)2 = 0 , (2.9)

∇µF
µν = 0 , (2.10)

Rµν −
1

2
∂µφ∂νφ− e2φ

2
∂µχ∂νχ− 1

2
FµλF

λ
ν +

gµν
12

FλρF
λρ + 4gµν = 0 . (2.11)

Following the anisotropic ansatz in [35], we assume that the metric takes the form

ds2 =
e−

1
2
φ

u2

(

−FB dt2 + dx2 + dy2 +Hdz2 + du2

F

)

, (2.12)

together with

φ = φ(u) , At = At(u) , (2.13)

where the axion field is set to be linear in the asymmetric direction as χ = az. The metric

coefficients F , B and H only depend on the holographic radial coordinate u. Apparently,

the spatial anisotropy is due to the presence of nontrivial H. The horizon of the black

brane is defined by u = uH at which F(u) = 0. The asymptotical AdS boundary of the

spacetime locates at u = 0.
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As shown in the appendix A, under the ansatz of (2.12), the Maxwell equations can

be solved directly as

F = Q
√
Be 3

4
φudt ∧ du , (2.14)

where Q is a constant related to the U(1) charge density. The corresponding chemical

potential µ is then given by

µ =

∫ uH

0
Q
√
Be 3

4
φudu . (2.15)

Using the equations of motion, we can express the metric in terms of the dilaton

H = e−φ, (2.16)

F =
e−

1
2
φ

12(φ′ + uφ′′)

(

3a2e
7
2
φ(4u+ u2φ′) + 48φ′ − 2e

5
2
φQ2u6φ′

)

, (2.17)

B′

B =
1

24 + 10uφ′
(24φ′ − 9uφ′2 + 20uφ′′) , (2.18)

where the prime ′ denotes derivative with respect to u. The dilaton itself should satisfy a

third-order equation

0 =
−48φ′2(32+7uφ′)+768φ′′+4e

5φ
2 Q2u5(−24φ′+u2φ′3−8uφ′′)

48φ′−2e
5φ
2 Q2u6φ′+3a2e

7φ
2 u(4+uφ′)

+
1

u(12+5uφ′)(φ′+uφ′′)

×
[

13u3φ′4 + u2φ′3(96 + 13u2φ′′) + 8u
(

− 60φ′′ + 11u2φ′′2 − 12uφ(3)
)

+ 2uφ′2
(

36 + 53u2φ′′ − 5u3φ(3)
)

+ φ′
(

30u4φ′′2 − 64u3φ(3) − 288 + 32u2φ′′
)]

.

(2.19)

The asymptotical AdS5 boundary conditions require the following constraints: φ(0) = 0,

F(0) = B(0) = 1, and then H(0) = 1. Once we solve these differential equations, we

can obtain the anisotropic charged black brane solution. We show the numerical and

perturbative solutions in the appendix A.2, C and D.

One thing we should point out is that there are two classes of solutions: “prolate”

solution and “oblate” solution, which correspond to H(uH) > 1 and H(uH) < 1, respec-

tively. As can be seen from appendix A.2 and E, the “prolate” solution is obtained in the

case a2 > 0, and the “oblate” solution can be obtained when a2 < 0. In what follows

in the main text, we mainly work on the “prolate” case with a2 > 0 as in [36], since the

real-valued constant a has a clear physical explanation in the D3/D7 model [75]. For those

who are interested in the “oblate” solution may refer to appendix E.2

2.2 Temperature and entropy

Once we obtained the metric, the temperature and the entropy of horizon can be evaluated

directly. We will see that, compared with chargeless anisotropic solution, the anisotropic

charged black brane has some special thermal properties.

2Surprisingly, we find that the prolate and oblate solutions have very different thermodynamic properties,

which were reported in [76].
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Figure 2. (Color online.) The temperature as a function of the inverse horizon radii, where

a = 1.46 and Q = 0.01. On the right, we plot the entropy density as a function of temperature

β ∝ T , where we fixed φ̃H = −3/2.

After the Euclidean continuation of the metric (2.12) in near horizon uH limit, the

imaginary time must have periodicity −4π/F ′(uH)
√BH to avoid the conical singularity,

which can determine the temperature of black brane horizon as

T = −F ′(uH)
√BH

4π

=
√

BH

[

e−
φH
2

16πuH

(

16 + a2e7
φH
2 u2H

)

− e2φHQ2u5H
24π

]

. (2.20)

The entropy density can be simply obtained from the Bekenstein-Hawking entropy formula

s =
AH

4GV3
=
N2

c e
− 5

4
φH

2πu3H
, (2.21)

where V3 is the volume of the black brane horizon in the spatial directions.

From the temperature and the entropy given above, we can obtain a remarkable ther-

mal property for this anisotropic charged black brane. It seems that anisotropic black

brane would become extremal when the charge Q satisfies the relation

Qext =

√

3

2u6H

√

16e−
5
2
φH + eφHa

14
7 u2H . (2.22)

However, the extremal case cannot be realized.3 To see this explicitly, we plot the tempera-

ture as a function of the inverse horizon radius uH for fixed a and Q in figure 2 (left), which

shows that the temperature has a minimal positive value. In principle, the temperature

becomes zero when β ≡ −F ′(uH) → 0. Nevertheless, the numerical analysis also tells us

that for initial value φ̃H ≡ φH+4 log a/7 = −3/2, there will be no solution to the equations

of motion in the range β ≤ 1
220 and the numerical computation breaks down there.4

3Obviously, the extremal RN-AdS is a special case (isotropic) here. But for anisotropic solution, the

extremal black brane does exist in oblate solutions, see appendix E.
4A similar discussion for the Einstein-Maxwell-dilaton-axion SL(2, R) model can be found in [77].
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Figure 3. (Color online.) Log-log plot of the entropy density as a function of a/T for various

charge Q = 1 (left), Q = 2 (middle), Q = 4 (right) where s0 denotes the entropy density of RN-AdS

black holes. The dashed blue lines are straight lines with slope 0.35 (left), 0.54 (middle) and 1.56

(right).
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Figure 4. (Color online.) Log-log plot of the entropy density as a function of a/T for initial

conditions φ̃H : φ̃H = 1/10 (left), φ̃H = −1/2 (middle), φ̃H = −2 (right) where s0 denotes the

entropy density of the RN-AdS black brane. The slope from left to right is 2.93, 2.79 and 2.90.

It is also of interest to checking the third law of thermodynamics which states that

the area of the black brane horizon approaches zero as the temperature decreases to zero.

From equation (2.21), we can see that for fixed uH, the entropy density s→ 0 as φH → ∞.

However, the numerical analysis shows that φH < 0 for arbitrary β, implying that the

entropy density is larger than that of the RN-AdS black brane and zero entropy density

cannot be reached as the temperature drops (see figure 2 (right)). We will discuss this

behavior in detail in section 4.

In order to compare the behavior of entropy density with that of [35], we plot the

entropy density as a function of a/T for various charges Q̄ ≡ a−5/7Q and various initial

conditions φ̃H . Figure 3 shows the entropy density as a function of a/T for different charge

Q̄. In the small anisotropy or high temperature limit a ≪ T , the points are aligned along

the horizontal axis, reproducing the case of RN-AdS black brane. This means that in

the weak anisotropy limit, the entropy density scales as the RN-AdS black brane and the

horizon lies in the asymptotic AdS region which agrees well with [35]. However, in the

large anisotropy regime or low temperature limit a ≫ T , the points are aligned along a

straight line with slopes 0.35, 0.54 and 1.56 corresponding to Q̄ = 1, Q̄ = 2 and Q̄ = 4,

respectively. Meanwhile, we can vary φ̃H and plot the entropy density as a function of a/T

as shown in figure 4. In [35], Mateos and Trancanelli argued that in the zero temperature

limit, the entropy density scales as a IR Lifshitz-like behavior with s ∝ a1/3 and thus the

horizon lies in the Lifshitz-like region. So the anisotropic black brane solution in large or

– 8 –
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small anisotropy limit can be regarded as a RG flow between the AdS geometry in the UV

and a Lifshitz-like region in the IR.

Nevertheless, we stress here that for charged black holes, the low temperature can be

reached with weak anisotropy but large chemical potential a ∼ T ≪ µ. It is well known

that for RN-AdS black holes, the systems become zero temperature with finite entropy

density (i.e. horizon radius). Therefore, for our case, the black brane could be hot and cool

in the AdS regime with finite chemical potential. Of course, in the small charge density

limit, there may exist a RG flow to a Lifshtiz-like geometry in the IR (see appendix C).

3 Stress tensor and thermodynamics

In this section, we investigate the thermodynamic properties of the dual field on the bound-

ary. We present the thermodynamic quantities such as energy density, pressure of our de-

formed N = 4 SYM theory via the computation of vacuum expectation value of the holo-

graphic stress tensor. The differences between isotropic thermodynamics and anisotropic

thermodynamics are also discussed.

3.1 Holographic stress tensor

According to the holographic dictionary, the correlation functions are defined as the vari-

ation of the bulk on-shell supergravity action with respect to the boundary filed. For

instance, the stress tensor is defined as one-point function corresponding to the boundary

metric. Due to the integration region near the boundary of AdS which is at spatial infinity,

the on-shell action will suffer the IR divergences while the dual gauge field theory will

suffer from UV divergences as u→ 0. Recalling the quantum field theory, one can perform

the renormalization to deal with the UV divergence of correlation functions. Similarly, to

obtain a well-defined on-shell action and finite correlation functions, we should subtract the

infinities by a procedure of holographic renormalization. We follow the traditional method

developed in [78, 79] rather than Hamiltonian formalism in [80, 81]. Here we just collect

the main results, the computation details can be found in appendix B.

Followed [78], near the conformal boundary, the metric can be expanded in Fefferman-

Graham form as

ds2 = gµνdx
µdxν =

1

r2
(

dr2 + hij(r)dx
idxj

)

,

hij(r) = h(0)ij + r2h(2)ij + r4h(4)ij + 2r4h̃(4)ij log r + · · · . (3.1)

Note that h(0)ij is the boundary metric, so we can simply set h(0)ij = ηij .

We can expand the dilation field, the gauge field and the axion field as the following:

φ(r) = φ(0) + r2φ(2) + r4(φ(4) + 2ψ(4) log r) + · · · , (3.2)

Aµ(r) = A(0)µ + r2A(2)µ + r4(A(4)µ + 2Ã(4)µ log r) + · · · , (3.3)

χ(r, z) = χ(0) + r2χ(2) + r4
(

χ(4) + 2χ̃(4) log r
)

+ · · · . (3.4)

Since we work in the radial gauge in the absence of the magnetic field. Note that At(0)

and At(2) can be reinterpreted as the U(1) chemical potential and the charge density in the

– 9 –
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dual field theory respectively. The dilaton on the boundary is set to be φ(0) = 0 by the

requirement of asymptotically AdS. The axion is simply χ(r, z) = χ(0) = az.

By solving the equations of motion recursively, we can obtain the coefficients

h(2)ij = diag

(

a2

24
,−a

2

24
,−a

2

24
,
5a2

24

)

,

φ(2) = −a
2

4
, (3.5)

and

h̃(4)ij = diag

(

a4

48
,−a

4

48
,−a

4

48
,
a4

16

)

,

ψ(4) = −a
4

12
,

Ã(4)t = 0 . (3.6)

The first expression of (3.6) follows that h̃(4) is traceless,
5 while the last equation implies

that no logarithmic divergences are generated by Maxwell field here. Other coefficients can

not be determined completely by the asymptotic analysis, however we can obtain constraint

conditions for them

Trh(4) = −11a4

576
, (3.7)

and

A(4)t = −
A(2)ta

2

24
. (3.8)

The explicit form can be read off from the full solution in appendix C and D. In order to

find the expressions for h(4)ij as in [35], we recast h(4)ij as

h(4)tt = −23B4

28
− 3F4

4
+

2749a4

16128
,

h(4)xx = h(4)yy = −5B4

28
− F4

4
+

71a4

1792
,

h(4)zz = −13B4

28
− F4

4
+

1163a4

16128
, (3.9)

where F4 and B4 are the near-boundary expansion coefficients of the O(u4) terms of the

functions F and B, respectively. Both of them are a- and q-dependent, as we can see

explicitly in appendix C.

Since the Maxwell field gives no additional logarithmic divergence, the counter term

turns out to be the same as that of axion-dilaton-gravity system, that is to say,

Sct = − 1

κ2

∫

d4x
√
γ

(

3− e2φ

8
∂iχ∂

iχ

)

+ log r

∫

d4x
√
γA− 1

4
(csch− 1)

∫

d4x
√
γA , (3.10)

5Traceless means Tr h̃(4) ≡ h
ij

(0)h̃(4)ij = 0.
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where A(γij , φ, χ,Ai) is the conformal anomaly, γij = hij/r
2 is the induced metric on the

boundary and γ = − det |γij |. Then the expectation value of the stress tensor is found

to be

〈Tij〉 = diag(E,Pxy, Pxy, Pz) , (3.11)

with

E =
N2

c

2π2

(

− 3

4
F4 −

23

28
B4 +

2777

16128
a4 +

csch
96

a4
)

,

Pxy =
N2

c

2π2

(

− 1

4
F4 −

5

28
B4 +

611

16128
a4 − csch

96
a4
)

,

Pz =
N2

c

2π2

(

− 1

4
F4 −

13

28
B4 +

2227

16128
a4 +

csch
32

a4
)

, (3.12)

where csch denotes a scheme dependent parameter. The conformal anomaly is given by

A = 〈Tij〉 = N2
c a

4

48π2 . Note that the value of conformal anomaly is independent of the

Maxwell field as we expected.

It was emphasized that the conformal anomaly plays an important role in the black

brane thermodynamics [35]. What is new in this paper is that we include the U(1) chemical

potential. The stress tensor under a rescaling of a, T and µ transforms as

〈Tij(ka, kT, kµ)〉 = k4〈Tij(a, T, µ)〉+ k4 log kAcij , (3.13)

where cij = diag(1,−1,−1, 3). This in turn indicates the stress tensor must take the form

〈Tij(a, T, µ)〉 = a4tij

(

a

T
,
a

µ

)

+ log

(

a

Λ

)

N2
c a

4

48π2
cij , (3.14)

where Λ is an arbitrary reference scale, a remnant of the renormalization process like

the substraction point in QCD. Different choices of Λ correspond to different choices of

renormalization scheme. Therefore, in our case, the physics depends on three dimensionless

ratios a/T , a/µ and a/Λ.

The analytical expressions for the energy and the pressures (C.16) and (C.26) in the

small anisotropy limit are obtained in appendix C and D. Figure 5 shows the specific case

numerically. In figure 5 (left) we plot the normalized energy and pressure for T = 0.3 and

q = 0.1 with

E0 =
6N2

c π
2(1 + q2)T 4

(2− q2)4
, P 0 =

2N2
c π

2(1 + q2)T 4

(2− q2)4
, (3.15)

the energy and the pressure of the isotropic RN-AdS value, respectively. It is clear from

figure 5 (left) that in the limit a→ 0, the energy and the pressure approach their isotropic

values as expected. Figure 5 (right) shows that the energy or pressure could take negative

value at low temperature and large Λ. We also note that in the absence of the charge

density, we can recover the anisotropic energy and pressures obtained in [35].
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Figure 5. (Color online.) (Left) The energy density and pressures normalized by their isotropic

values as functions of a with T = 0.3 and q = 0.1. (Right) The energy density and pressures as

functions of T with Nc = 1, Λ = 10 and q = 1/8.

3.2 Thermodynamics

As observed by the authors of [35], the neutral anisotropic black brane solution is inter-

preted to describe a uniform D7-brane charge density per unit length in the z-direction.

The anisotropic parameter a measures the number of D7-brane per unit length in this

direction,

a = gsnD7 =
λ

4π

nD7

Nc
. (3.16)

However, from the point of view of effective five-dimensional bulk theory, D7-branes behave

as a 2-brane charge density oriented in the xy-directions and are homogeneously distributed

along the z-direction. So one can introduce a chemical potential Φ conjugate to a. On the

other hand, as shown in the dimensional reduction, one can introduce a chemical potential

associated with the U(1) global conserved charge to the framework. We thus have two

“chemical potentials” corresponding to different charges in our anisotropic system, which

have richer thermal properties than chargeless anisotropic black brane or RN-AdS black

brane.

Let us first evaluate the free energy in the following procedure. Note that, in the

saddle-point approximation, the partition function is given by

Z = e−Sren[g∗], (3.17)

where g∗ is the Euclidean continuation of metric (7) and Sren[g∗] is the renormalized on-shell

action. Then the thermodynamic potential can be obtained by computing the Euclidean

action on the analytically continued solution as

Ω =
−T logZ

V3
=
TSren[g∗]

V3
, (3.18)

where the V3 is the spatial volume of associated field theory. We can see later that the

free energy density above is a grand canonical thermodynamic potential with respect to

the U(1) gauge field but canonical thermal potential with respect to axion, which means

that we are working at fixed U(1) potential.
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If we want to calculate the thermodynamic potential in canonical ensembles with re-

spect to the U(1) gauge field, we should add the boundary term to the on-shell action [82].

The corresponding free energy density F satisfies the relation

F = E − Ts , (3.19)

and it obeys

dF = −sdT +Φda+ µdρ . (3.20)

The U(1) chemical potential can be obtained from the above equation

µ =

(

∂F

∂ρ

)

T,a

. (3.21)

It is straightforward to prove that the first law of thermodynamics is satisfied

dE = Tds+Φda+ µdρ , (3.22)

where ρ = Q
2κ2 =

√
3q

κ2u3
H
is charge density [83], and µ is the chemical potential conjugated to

ρ. All the black brane thermodynamic quantities are given in appendix C and D.

Through the Legendre transformation, the grand canonical thermodynamic potential

is related to the energy density as

Ω = E − Ts− ρµ , (3.23)

which satisfies

dΩ = −sdT +Φda− ρdµ . (3.24)

We can obtain the chemical potential conjugated to charge density a

Φ =

(

∂Ω

∂a

)

T,µ

. (3.25)

Equation (3.24) is defined with fixed charge a, so it can be regarded as “free energy”

in canonical ensemble with respect to the anisotropy. However, it is the grand-canonical

ensemble with respect to the U(1) field, because the charge ρ is free but the potential µ is

fixed. Again, a consistent check can be found in appendix C and D.

The thermodynamic potential in the grand canonical ensemble with respect to a is

given by

G = E − Ts− ρµ− aΦ , (3.26)

and it obeys

dG = −sdT − ρdµ− adΦ . (3.27)

It is straightforward to verify that

Ω = −Pxy , (3.28)

G = −Pz . (3.29)
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So the following relation is satisfied

Pz − Pxy = Φa , (3.30)

which is consistent with anisotropic fluid thermodynamics [84]. Apparently, in the absence

of the anisotropy, the relation Ω = G = −P is recovered for isotropic cases.

We should note that all the thermodynamic identities above are scheme-independent,

so they are invariant under the rescaling of Λ. Nevertheless, the scheme-dependent grand

thermodynamic potential transforms as

Ω(a, T, µ) = a4f

(

a

T
,
a

µ

)

+ a4 log

(

a

Λ

)

N2
c

48π2
. (3.31)

The entropy density s evaluated at the horizon is scheme-independent

∂s

∂Λ
= 0 . (3.32)

We stress that the U(1) chemical potential µ is also scheme-independent. A consistent

check can be made by using (2.15) and the concrete expression (4.4). The rescaling

xi = kx′i , v = kv′, (3.33)

would not shift µ and there is no logarithmic term in the expression for µ. The

scheme-independence of µ is also implied by its thermodynamic definition (3.21) together

with (3.31). In contrast, the potential Φ is scheme-dependent, which can be indicated both

by the thermodynamic definition (3.25) and its 3-form gauge potential definition. Before

we investigate the thermodynamic phase structure of this charged and anisotropic system,

we shall write down the necessary and sufficient condition for local thermodynamic stability

cρ,a ≡ T

(

∂s

∂T

)

ρ,a

> 0 , (3.34)

Φ′ ≡
(

∂Φ

∂a

)

ρ,T

> 0 , (3.35)

µ′ ≡
(

∂µ

∂ρ

)

a,T

> 0 . (3.36)

The heat capacity cρ,a at constant charges ρ and a should be positive and regular. The

second and third conditions (3.35) and (3.36) state that the system is stable against in-

finitesimal “charge” fluctuations.

4 Phase structure

The black hole solution found in asymptotically AdS space shows its rich phase structure.

For neutral black holes with spherical topology in asymptotically AdS spacetime, there is

a phase transition at a given temperature from a description in terms of lower temperature

AdS to a black hole setup [85]. This so called Hawking-Page transition is due to a com-

peting effect between the scale set by the volume of the spacetime and the scale set by the
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temperature. When a U(1) gauge field is included, the solution describes an asymptotically

RN-AdS black hole with a horizon topology Sd−1, which gives rise to an interesting phase

structure both in the canonical and grand-canonical ensembles [73].

We stress that the scale determined by the volume of the Sd−1 plays a key role in

the phase diagrams. It turns out that the phase diagram of RN-AdS with Sd−1 horizon is

analogous to the phase structure of van der Waals’ liquid-gas system [73, 86–89]. However,

for the horizons with topology R
d−1 which can be obtained by considering an infinite

volume limit from the Sd−1 topology by using the transformation r → ηr and t → η−1t

with η → ∞, the black brane phase structures are usually considered to be trivial and the

thermodynamics is dominated by the black holes for all temperatures. For example, the

charged Lifshitz-like black brane solution was obtained numerically from the action [90, 91]

S′ =
1

2κ2

∫

dd+2x
√−g

(

R+
d(d+ 1)

L2
− 2(∂φ)2 − e2αφF 2

)

. (4.1)

The authors obtained the “UV completion” by embedding black branes into asymptotic

AdS space. In their papers, the Hawking temperature T and chemical potential µ are

two scales. It was proved that in the Lifshitz-like regime T ≪ µ and the AdS-like regime

T ≫ µ, there were no thermal instabilities during the transition between the two regimes.

As to our case, we deal with the anisotropic charged black brane whose horizon has

R
3 topology. We will find that, unlike the isotropic RN-AdS black brane with trivial phase

structure, our anisotropic black brane solution has a new parameter of anisotropy which

enriches the phase structure. On the other side, compared with the neutral anisotropic

black brane solution, what is new in our solution is the presence of the U(1) chemical

potential. We will see later that the U(1) chemical potential and charge density yielding

no conformal anomaly will significantly modify the phase diagram set up in [35]. So in

the following, it is interesting to study the phase structure by comparing with the RN-

AdS black brane and the chargeless anisotropic black brane, respectively. We will uncover

that there are two kinds of thermodynamic instabilities for this black brane system: one

instability is scheme-independent and signals a Hawking-Page phase transition at a smaller

horizon radius rc; the other instability is scheme-dependent and is similar to that found

in [35], which implies that the brane has the tendency to “filamentation”.

We mainly explore the phase structure of anisotropic plasma with a finite chemical

potential at finite temperature in the small anisotropy limit. In the weak anisotropy limit,

the black brane solution is obtained analytically by perturbing around the isotropic RN-

AdS solution. The details can be found in appendix C and D. Note that the black brane

temperature can be very low, although it cannot reach zero in our case unless a takes

imaginary values.6 So the analytical solution given in appendix D can cover both the low

and high temperature regimes.7

6For the case with imaginary anisotropic parameter a, see appendix E.
7The high temperature black brane solution and various quantities in the small charge density and weak

anisotropy limits up to the O(a4) order are collected in appendix C.
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Figure 6. (Color online.) On the left is a graph of the inverse temperature vs. horizon radii for

q = 1 and Nc = 1. The lines from top to bottom corresponds to a = 0 (green), a = 0.2 (blue),

a = 0.5 (red) and a = 0.6 (black), respectively. The center graph depicts the specific heat as a

function of the inverse horizon radii uH, where we set Nc = 1, a = 0.2, and q2 = 1. On the right is

the specific heat cρ as a function of a, where we set Nc = 1, uH = 2, and q2 = 1.8. There is a sharp

peak at a = 0.2, signaling an instability.

4.1 Phase structure compared with isotropic RN-AdS black brane: scheme-

independent instability

It is well-known that the isotropic RN-AdS black brane with planar horizon is thermo-

dynamic stable and the grand thermodynamic potential is negative for all temperatures.

However, when the anisotropy is presented, as shown in figure 2, we find that there are

qualitatively two distinct branches of solution for a given temperature because uH has

two positive roots: a branch with larger radii and one with smaller. As a demonstration,

we plot the inverse temperature of the black brane as a function of the horizon radius

rH = 1/uH with diverse a in figure 6 (left). It is easy to see that, except the top line which

corresponds to the isotropic RN-AdS black brane, there exist two branches of black brane

solutions associated with each temperature. The non-vanishing a case is quite similar to

the familiar case of the uncharged Schwarzschild-AdS black bole with S3 horizon topol-

ogy and spherical RN-AdS black hole at fixed charge. This implies that the black brane

with R
d−1 topology we presented may have the non-trivial phase structure. Furthermore,

we can see that the local slope of the 1/T curve is positive for the smaller radii branch,

meaning that the temperature decreases as rH increases. Therefore, the smaller branch

with smaller radii is unstable, having negative specific heat (see figure 6 (middle and right)

as an example). The smaller branch solution is unphysical and should not be applied to

studying the dual CFT.

We conclude that the anisotropic charged black brane solution is unstable and there is

a Hawking-Page phase transition at the horizon radii rc. The instability uncovered here is

due to the competing effect between the horizon radii and the anisotropy a.8 The instability

can also be inferred from figure 2 where ∂s/∂T < 0 and the third law of thermodynamics is

violated at this branch. We should emphasize the instability uncovered here is independent

of the reference scale Λ (i.e. the renormalization scheme), because both the temperature

and the entropy density can be determined from the horizon values.

8Note that both them have the dimensions of mass.
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4.2 Phase structure compared with neutral anisotropic black brane: scheme-

dependent instability

Now we are going to inspect what is different in the phase structure after adding the U(1)

chemical potential to the anisotropic black brane solution given in [35]. We would like to

assume that the following discussions are carried out in the larger horizon radii branch

(i.e. cρ,a > 0 and µ′ > 0), so that we can focus on the scheme-dependent thermodynamic

variables. Note that the energy density, pressure and the potential Φ are all scheme-

dependent.

As it was emphasized in [35] that the presence of a conformal anomaly and the reference

scale Λ play a crucial role in the thermodynamics and the phase diagram. It was already

noted that the coefficients of the O(a4) terms, in particular the precise value of csch and

cint, have no influence on the phase structure [35]. In this sense, we will add the log(a/Λ)

term into the stress tensor, although in appendix D, we only obtained the solution up to

the O(a2) order. The reason is that, in the regions of Λ ≪ a and Λ ≫ a, the term log(a/Λ)

will play an important role in the sign of the energy density, the “chemical” potential Φ and

pressures. The discussions and the results below closely follow [35] and the main difference

is the presence of the U(1) chemical potential, which will modify the phase structure.

We summarize the energy density and pressures and add the log(a/Λ) term as follows

E =
3(1+q2)N2

c

8π2u4H
+
N2

c

(

− 2
√

1+4q2 + 5(q2−2) log
(

3−
√

1+4q2

3+
√

1+4q2

))

64π2
√

1+4q2u2H
a2 +

N2
c a

4

48π2
log

(

a

Λ

)

,

Pxy =
(1+q2)N2

c

8π2u4H
+
N2

c

(

2
√

1+4q2 + 5(q2−2) log
(

3−
√

1+4q2

3+
√

1+4q2

))

192π2
√

1+4q2u2H
a2 − N2

c a
4

48π2
log

(

a

Λ

)

,

Pz =
(1+q2)N2

c

8π2u4H
+

5N2
c

(

− 2
√

1+4q2 + (q2−2) log
(

3−
√

1+4q2

3+
√

1+4q2

))

192π2
√

1+4q2u2H
a2 + 3

N2
c a

4

48π2
log

(

a

Λ

)

.

(4.2)

The “chemical” potential with respect to the “charge” a is given by

Φ = − N2
c a

16π2u2H
+ 4

N2
c a

3

48π2
log

(

a

Λ

)

. (4.3)

However, the chemical potential related to the U(1) field is independent of the reference

scale Λ:

µ =
q

8
√
3uH









24 +
5u2H log

(

3−
√

1+4q2

3+
√

1+4q2

)

√

1 + 4q2
a2









. (4.4)

This is also implied by (3.21). The absence of the log(a/Λ) term in the chemical potential

will significantly change the phase structure of the system as we will see below. It is

also clear that the chemical potential for this prolate black brane solution is less than the

chemical potential of RN-AdS black brane for a2 > 0.
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In [35], the low-temperature regime corresponds to the Lifshitz-like geometry. In par-

ticular, the zero temperature T = 0 requires −gtt = gxx = gyy and FB = 1. For our case,

there may also exist a renormalization group flow between the AdS geometry in the ultra-

violet and a Lifshitz-like geometry in the infrared. However, our black brane temperature

can be low enough even in the weak anisotropy limit in the ultraviolet. We will not rely

on the Lifshitz-like analysis here.

We are now considering the system consisting of different components (substances)

and comprising two phases (i.e. isotropic phase and anisotropic phase). Since the system

contains different charges a and ρ, we shall take account of the mixture effects of the two

substances. The coexistence of the two phases at equilibriums can be clarified by five

conditions

Ω− Ω0 = 0 , Φ = 0 , Pz − P 0 = 0 ,

(

∂Φ

∂a

)

T,ρ

= 0 , µ− µ0 = 0 . (4.5)

Before we focus on the effects of the U(1) chemical potential to this anisotropic black brane

phase diagram, let us first follow [35] and discuss the physical meaning of the first four

conditions in (4.5). These four equations yield four solutions ai, meaning that Ω,Φ, Pz,Φ
′

change sign at these values in the order in which they are listed above. These values satisfy

aF > aΦ > aPz > aΦ′ . (4.6)

The exact values of ai depend on Nc, uH and q, but their ordering is independent of these

constants. At low temperatures and low densities, a < aΦ′ , the system is unstable against

infinitesimal charge fluctuations. At densities aΦ′ < a < aPz , the system stays in the

metastable regime and it becomes stable against infinitesimal charge fluctuations, but is

still unstable against finite charge fluctuations. If a < aPz , the pressure of the isotropic

phase is higher than that of anisotropic phase Pz < P 0. This could lead to the fact that

bubbles of isotropic phase can form and grow inside the anisotropic phase. Therefore a

homogeneous phase of density a < aPz will fall apart into a mixed phase consisting of

high-density anisotropic ‘droplets’ or ‘filaments’ of anisotropic phase with density a = aPz

and Pz = 0 surrounded by vacuum regions with a = P 0 = 0 [35]. This phenomena is very

similar to what found in QCD at low T and finite baryon density: the pressure of a chirally

broken homogeneous phase with density lower than a critical density n0 is negative and

the role of the chirally restored phase is played by the anisotropic phase; the analogue of

n0 is aPz and the‘droplets’ correspond to the regions of non-zero D7-brane density [92–94].

The similarities between the physics displayed in the region a < aPz and that encountered

in QCD at low temperature and finite baryon density was also elaborated in [35].

Now, we consider the fact that the presence of the U(1) chemical potential and the

anisotropy significantly change the phase diagram of the whole system. The chemical

potential of the isotropic phase is higher than that of the anisotropic phase µ0 > µ. Thus

the fifth equation in (4.5) cannot be satisfied unless a = 0. This means that the anisotropic

phase is more stable than the isotropic phase. As a consequence, charges or baryons would

immigrate from the isotropic phase to the anisotropic phase, forcing a redistribution of the
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total charge and baryons. We would like to follow [35] and divide the phase diagram into

five distinct zones:

I : Ω > Ω0, Φ > 0 , Pz > P 0, µ < µ0, µ′ > 0 , Φ′ > 0 ,

II : Ω > Ω0, Φ > 0 , Pz > P 0, µ < µ0, µ′ > 0 , Φ′ > 0 ,

III : Ω < Ω0, Φ < 0 , Pz > P 0, µ < µ0, µ′ > 0 , Φ′ > 0 ,

IV : Ω < Ω0, Φ < 0 , Pz < P 0, µ < µ0, µ′ > 0 , Φ′ > 0 ,

V : Ω < Ω0, Φ < 0 , Pz < P 0, µ < µ0, µ′ > 0 , Φ′ < 0 .

Different from the phase diagram given in [35], in the zones I, II and III, the thermody-

namically preferred configuration is a metastable homogeneous phase because the U(1)

chemical potential in the anisotropic regions is not the same as that in isotropic regions.

In zone IV, the homogeneous phase is metastable because Pz < P 0 and µ < µ0. Zone V

is identified as an unstable phase since it relates to the tendency of the charge a to clump

together and also the U(1) charge ρ has the tendency to escape from the isotropic phase

to the anisotropic phase.

The U(1) chemical potential at phase equilibrium should be the same in the isotropic

and anisotropic regions in that a charged black brane can be considered as a system with

an infinite charge reservoir and the chemical potential eventually equilibrates to the same

value everywhere. In contrast, the “chemical potential” Φ need not to be the same in these

phases: Φ vanishes in the isotropic phase but non-zero in the anisotropic phase. This is an

important consistency condition for the coexistence of the two phases: Φani ≤ Φiso, since

otherwise the D7-brane charge would escape from the anisotropic to the isotropic regions.

5 Summary and outlook

In summary, in the spirit of the applications of gauge/string duality in QCD, we have

studied the five dimensional anisotropic black brane solution in Einstein-Maxwell-dilaton-

axion theory from the type IIB supergravity theory. The solution we presented obeying

AdS5 × S5 boundary conditions and possessing a regular anisotropic horizon, is a RN-

AdS version of the anisotropic black brane solution obtained in [35]. What is new in this

paper is that we introduce the U(1) gauge field, which corresponds to conserved number

operators in the dual field theory. The numerical and analytical computations show that

the extremal black brane limit can be reached only if the anisotropic parameter a becomes

zero or imaginary. The entropy density does not vanish as the temperature becomes zero.

We also studied the thermodynamics of this anisotropic system for the case a2 > 0.

Several black brane thermodynamic quantities were obtained and the first law of black

hole thermodynamics holds. The stress tensor and the holographic renormalization are

calculated in the presence of the U(1) gauge field. While the energy density, the potential Φ

and pressure transforming under the rescaling (a, T ) → (ka, kT ) contain an inhomogeneous

piece caused by the presence of a non-zero conformal anomaly A = N2
c a

4/48π2. The

chemical potential µ is scheme-independent and yields no logarithmic term under the scale

rescaling xi → kxi and v → kv. This fact indicates that the physics not only depends on

the scale T , µ and a, but also depends on an additional scale Λ.
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We analyzed the phase structure of this “prolate” system by comparing with those of

isotropic RN-AdS black brane and uncharged anisotropic black brane, respectively. Intrigu-

ingly, we uncovered scheme-independent instability by exploring the temperature-horizon

radii relation and the behavior of the entropy. At a fixed temperature, there are two dis-

tinct branches of black brane solution: a branch with larger radii and one with smaller. The

smaller branch is unstable, yielding a negative specific heat. The phase structure of this

“prolate” black brane solution is similar to Schwarzschild-AdS black hole with spherical

horizon. The instability found here signals a competing effect between the horizon radius

and the anisotropy constant.

Even when we turned to the larger radii branch and investigated the scheme-dependent

thermodynamic variables, we found that there are only metastable and unstable zones of

the phase diagram because of µ < µ0. As discussed in section 4, zones I, II, III and IV are

metastable. That is to say, the system is unstable against finite U(1) charge fluctuations.

Zone V is metastable against finite U(1) charge fluctuations, but unstable to infinitesimal

charge a fluctuations. It is worth future investigations on the similarities between the

anisotropic phase diagram obtained here and the anisotropic QGP behavior discovered in

the experiments.

In the future work, we would like to report on the effects of the anisotropy and the

U(1) chemical potential on several observables. The dual anisotropic holographic fermions

will be investigated. The jet quenching parameter, the drag force and heavy quark energy

loss [95–98] due to the anisotropic effects at finite U(1) chemical potential will also be

studied. The study on transport coefficients of the dual anisotropic hydrodynamics, in

particular the conductivity and shear viscosity are also in progress.
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A Derivation of the solution

A.1 The equations of motion

In this appendix, we give the detailed process of derivations of our solution. We start with

five-dimensional equations of motion in explicit form: the dilaton equation

1√−g∂µ
(√−g∂µφ

)

− e2φ(∂χ)2 = 0 , (A.1)
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the Maxwell equations
1√−g∂µ

(√−g∂µAν
)

= 0 , (A.2)

and the Einstein equations

Rµν −
1

2
∂µφ∂νφ− e2φ

2
∂µχ∂νχ− 1

2
FµλF

λ
ν +

gµν
12

FλρF
λρ + 4gµν = 0 . (A.3)

We suppose the metric is of the asymptotic AdS5 form

ds25 =
e−

1
2
φ

u2

(

−FB dt2 + dx2 + dy2 +Hdz2 + du2

F

)

. (A.4)

One can simplify the following calculations further by setting

H = e−φ. (A.5)

The axion field is taken as

χ(z) = a z . (A.6)

Then, the explicit expressions for the equations of motion can be obtained straightforwardly

after plunging the ansatz into (A.1)–(A.3). At first, we can express the Maxwell equation as

∂u

(

e−
7
4
φ
√
B

u5
F ut

)

= 0 , (A.7)

which results in the U(1) gauge field as

At(u) = −
∫ u

uH

Q
√
Be 3

4
φudu , (A.8)

where the Q is an integral constant, and the requirement of the vanishing gauge field at

horizon At(uH) = 0 is imposed. Then, the dilaton and Einstein equations read

0 = −e7φ/2a2 − 3eφ/2Fφ′
u

+
eφ/2FB′φ′

2B + eφ/2F ′φ′ − 5eφ/2Fφ′2
4

+ eφ/2Fφ′′, (A.9)

0 = −8e−φ/2

u2
− 2e2φu4

3
Q2 +

8F
u2

− 4FB′

uB − FB′2

2B2
− 5F ′

u
+

3B′F ′

2B
+
4Fφ′
u

− 3FB′φ′

2B − 7F ′φ′

4
+

5Fφ′2
8

+
FB′′

B + F ′′ − Fφ′′
2

, (A.10)

0 = −4

u
+
4e−φ/2

uF − e2φu5

6F Q2+
B′

2B+
F ′

F −2φ′+
uB′φ′

8B +
uF ′φ′

4F − 5uφ′2

16
+
uφ′′

4
, (A.11)

0 = −8

u
+

8e−φ/2

uF − e3φu

F a2 − e2φu5

3F Q2 +
B′

B
+
2F ′

F − 7φ′ +
3uB′φ′

4B +
3uF ′φ′

2F − 15uφ′2

8
+

3uφ′′

2
, (A.12)

0 = −16

u2
+

16e−φ/2

u2F +
4e2φu4

3F Q2 +
2B′

uB +
B′2

B2
+

10F ′

uF
−3B′F ′

BF − 2φ′

u
+

B′φ′

2B +
7F ′φ′

2F − 7φ′2

2
− 2B′′

B − 2F ′′

F + 6φ′′, (A.13)
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where the prime ′ denotes derivatives with respect to u. Note that there are four compo-

nents of Einstein equations since the x- and y- directions obey the same one. Using (A.10)

and (A.13), one can reduce (A.9), (A.11) and (A.12) to three first-order equations:

0 = −e7φ/2a2+6eφ/2FB′

5uB − 21eφ/2Fφ′
5u

+
eφ/2FB′φ′

B +eφ/2F ′φ′− 4eφ/2Fφ′2
5

, (A.14)

0 = −8

u
+

8e−φ/2

uF − e3φu

F a2 − e2φu5

3F Q2

+
14B′

5B +
2F ′

F − 44φ′

5
+

3uB′φ′

2B +
3uF ′φ′

2F − 6uφ′2

5
, (A.15)

0 = −4

u
+

4e−φ/2

uF − e2φu5

6F Q2 +
4B′

5B +
F ′

F − 23φ′

10
+
uB′φ′

4B +
uF ′φ′

4F − uφ′2

5
, (A.16)

which leads to three equations of motion for F(u),B(u), φ(u) respectively:

F =
e−

1
2
φ

12(φ′ + uφ′′)

(

3a2e
7
2
φ(4u+ u2φ′) + 48φ′ − 2e

5
2
φQ2u6φ′

)

, (A.17)

B′

B =
1

24 + 10uφ′
(24φ′ − 9uφ′2 + 20uφ′′) , (A.18)

0 =
−48φ′2(32+7uφ′)+768φ′′+4e

5φ
2 Q2u5(−24φ′+u2φ′3−8uφ′′)

48φ′−2e
5φ
2 Q2u6φ′+3a2e

7φ
2 u(4+uφ′)

+
1

u(12+5uφ′)(φ′+uφ′′)

×
[

13u3φ′4 + u2φ′3(96 + 13u2φ′′) + 8u
(

− 60φ′′ + 11u2φ′′2 − 12uφ(3)
)

+ 2uφ′2
(

36 + 53u2φ′′ − 5u3φ(3)
)

+ φ′
(

30u4φ′′2 − 64u3φ(3) − 288 + 32u2φ′′
)]

.

(A.19)

Considered a special case of isotropy (i.e. a = 0), it is easy to observe that the dilaton

equation with the boundary conditions of φ(0) = 0, φ′(uH) = 0, φ′′(uH) = 0 has a trivial

solution φ = 0. This fact will be important for the following analytic discussions.

However, in the presence of the axion filed, these equations of motion can not be

solved easily by analytic method except for some special cases which will be considered in

appendix C. Now we would like to carry out the numeric analysis first.

A.2 Numeric analysis: “prolate” solution

To solve third-order equation numerically, like procedure used in [35], it is more convenient

to shift the dilaton

φ→ φ̃ ≡ φ+
4

7
log a , (A.20)

and eliminate a from (A.19) altogether. Note that the anisotropy constant a is assumed to

be a real and positive number here. The associated boundary conditions are imposed as

follows: inserting F(uH) = 0 in (A.17) and (A.19), one can obtain

φ̃′(uH) = − 12a10/7e7φ̃H/2uH

−2e5φ̃H/2Q2u6
H
+ 3a10/7(16 + e7φ̃H/2u2

H
)
,

φ̃′′(uH) =
36a10/7e6φ̃Hu2

H

(

4e5φ̃H/2Q4u10
H
−12a10/7Q2u4

H
(8+e7φ̃H/2u2

H
)+3a20/7eφ̃H(128+e7φ̃H/2u2

H
)
)

(

− 2e5φ̃H/2Q2u6
H
+3a10/7(16+e7φ̃H/2u2

H
)
)3
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φ̃′′′(uH) =
72a10/7e7φ̃H/2

uH
(

2e
5φ̃H

2 Q2u6
H
− 3a10/7(16 + e7φ̃H/2u2

H
)
)5

×
[

32e10φ̃HQ8u24
H
−64a10/7e15φ̃H/2Q6u18

H
(17+3e7φ̃H/2u2

H
)

+4a20/7e5φ̃HQ4u12
H
(−1152 +3376e7φ̃H/2u2

H
+75e7φ̃Hu4

H
)

−12a30/7e5φ̃H/2Q2u6
H
(−27648+18880e7φ̃H/2u2

H
+2036eφ̃Hu4

H
+3e21φ̃H/2u6

H
)

+9a40/7(−98304+34816e7φ̃H/2u2
H
+52864e7φ̃Hu4

H
−336e21φ̃H/2u6

H
+3e14φ̃Hu8

H
)
]

(A.21)

After integrating (A.19) numerically we use φ̃ to obtain F and B through (A.17)–(A.18).

It is clear that the solution is determined by three parameters, φ̃H, Q and uH. This is

what we expected, since these determine the three physical parameters that the solution

must depend on the temperature, the U(1) charge density and the anisotropy.

By using the temperature formula (2.20), we obtain

T =
√

BH

(

− e2φ̃Hu5HQ
2

24πa8/7
+ a2/7

e−φ̃H/2

16πuH
(16 + e7φ̃H/2u2H)

)

, (A.22)

where we have used the expression for F ′
H :

F ′
H =

e2φ̃Hu5HQ
2

6a8/7
− a

2
7

(

4e−φ̃H/2

uH
+
e3φ̃HuH

4

)

. (A.23)

The above temperature can reduce to the RN-AdS black brane temperature in the φ → 0

and a→ 0 limit,

T =
1

2πuH
(2− q2) , (A.24)

where q =
u3
HQ

2
√
3
. For sake of simplicity of the computation, we would like to introduce a

parameter Q defined as

Q = a
−5
7 Q . (A.25)

The Hawking temperature becomes

T = a2/7
√

BH

(

− e2φ̃Hu5HQ
2

24π
+
e−φ̃H/2

16πuH
(16 + e7φ̃H/2u2H)

)

. (A.26)

In principle, the zero temperature can be reached for nonzero
√BH , if the maximal value

of Q is given by

Qext =

√

3

2u6H

√

16e−
5
2
φ̃H + eφ̃Hu2H , (A.27)

which reflects that larger φ̃H leads to smaller Qext. In absence of the dilaton, the maximal

value of the charge is Q = 2
√
6u−3

H corresponding to q = 2.

We explore the relations among T , Q and a for different initial values of φ̃H and uH .

We find that T is sensitive to Q while a depends strongly on φ̃H . The profile for B is

seriously suppressed at the horizon for larger Q and thus the temperature becomes lower
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Figure 7. (Color online.) The metric function for Q = 1.5 (left), Q = 4 (middle) and Q = 4.5

(right), with φ̃H = 0 and uH = 1.
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Figure 8. (Color online.) The metric function for Q = 0.25 (left), Q = 0.5 (middle) and Q = 0.65

(right), with φ̃H = 0.275 and uH = 1.

because the temperature is proportional to
√BH (i.e. T ∝ √BH). In order to compare

the result with the work of Mateos and Trancanelli [35], we solve the black brane solution

numerically and present the plots in figure 7 and figure 8. We mainly plot six different initial

conditions: (φ̃H = 0, uH = 1, Q = 1.5, 4, 4.5), which yield an anisotropy-to-temperature

ratio a/T = 4.96, 17.73, 59.75, and (φ̃H = 0.275, uH = 1, Q = 0.25, 0.5, 0.65), which yield

an anisotropy-to-temperature ratio a/T = 93.12, 127.23, 208.03. We emphasize that in all

the cases, the horizon value of H(u) is greater than 1. That is why this solution is called

a “prolate” solution.

B Holographic renormalization

In this appendix, we give a brief procedure for calculations of holographic renormalization

for charged axion-dilaton-gravity system. Instead of Hamiltonian approach, we carry out

the traditional method [78]. The former formalism for chargeless case can be found in [81].

As in [78], the metric near the conformal boundary can be expanded in Fefferman-

Graham form

ds2 = gµνdx
µdxν =

1

r2
(

dr2 + hij(r)dx
idxj

)

. (B.1)
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The Einstein equations in this coordinate are given by

0 = −1

2
Tr(h−1h′′) +

1

4
Tr(h−1h′h−1g′) +

1

2r
Tr(h−1h′) +

4

r2
(hrr − 1)− 1

2
φ′2 − r2

3
h−1
tt A

′2,

0 = Rij(h)−
1

2
h′′ij +

1

2
(h′h−1h′)ij +

1

2r
hij Tr(h

−1h′) +
3h′ij
2r

− 1

4
h′ij Tr(h

−1h′)

−e
2φ

2
∂iχ∂jχ− r2

2
∂rAi∂rAj +

r2

6
A′2h−1

tt hij , (B.2)

where the prime denotes differentiation with respect to r, and Rij(h) is the Ricci tensor of

hij . The dilaton equation can be recast as

− 3rφ′ +
r2

2
(log h)′φ′ + r2φ′′ − e2φ(∂χ)2 = 0 . (B.3)

The Maxwell equation is given by

(
√
h

r
h−1
tt A

′
t

)′

= 0 , (B.4)

where h denotes the absolute value of determinant of hij for simplicity.

One may expand the metric as

hij(r) = h(0)ij + r2h(2)ij + r4h(4)ij + 2r4h̃(4)ij log r + · · · , (B.5)

the dilaton field as

φ(r) = φ(0) + r2φ(2) + r4
(

φ(4) + 2ψ(4) log r
)

+ · · · , (B.6)

the gauge fields as

Aµ(r) = A(0)µ + r2A(2)µ + r4
(

A(4)µ + 2Ã(4)µ log r
)

+ · · · , (B.7)

and the axion field as

χ(r, z) = χ(0) + r2χ(2) + r4
(

χ(4) + 2χ̃(4) log r
)

+ · · · . (B.8)

Note that we can simply set h(0)ij = ηij in our case. Then E.O.M. (B.2)–(B.4) can be

solved order by order in r and the results are shown in section 3.1.

To obtain the regulated action, we restrict the bulk integral to the region ǫ > 0 and

then evaluate the on-shell action for the solution above. We obtain

Sreg[ǫ] =
1

2κ2

∫

d4x

[ ∫

ǫ
dr
√
h(−8) +

√
γ

(

1

3
FµνAµnν + 2K

)]

=
1

2κ2

∫

d4x
√

h(0)
(

ǫ−4a(0) + ǫ−2a(2) + a(4) log ǫ
)

+ Sfin , (B.9)

where the first term in integral form above is divergent as ǫ → 0. One can cancel the

divergences by adding the counterterm that is defined as divergent part of −Sreg[ǫ] in

terms of fields on cut-off surface r = ǫ. The term γij = hij/ǫ
2 is the induced metric at
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cut-off surface whose extrinsic curvature is denoted as K and γ is the absolute value of the

determinant of γij .

After some calculations, we obtain the coefficients of divergent terms

a(0) = 6 , a(2) = 0 , a(4) = −13a4

144
+ 4Trh(4)ij = −a

4

6
, (B.10)

where we have used
√

h(0) = 1. The coefficient a(4) is equal to the conformal anomaly of

the dual CFT [78], which can be understood by noting that the variation of the finite term

must have the form

δSfin = −
∫

d4x
√

h(0)Aδσ , (B.11)

with A = −a(4)/2κ2 = a4

12κ2 under the scale transformations δh(0)ij = 2δσh(0)ij , δǫ = 2δσǫ

to guarantee the scale invariance. Observe that all the divergent terms are exactly the

same with chargeless case, therefore no additional counterterms are required to cancel the

divergences in minimal subtraction. So the counterterm is given by

Sct = − 1

κ2

∫

d4x
√
γ

(

3− 1

8
e2φ∂iχ∂

iχ

)

+ log r

∫

d4x
√
γA , (B.12)

where A(γij , φ, χ,At) is the conformal anomaly in the Maxwell-axion-dilaton-gravity sys-

tem which satisfies limr→0
√
γA(γij , φ, χ,At) = a4

12κ2 . Clearly, one can add any finite

counterterms in the action, for instance 1
4(csch − 1)

∫

d4x
√
γA which corresponds to the

renormalization scheme. Finally, recall that the renormalized action is defined by

Sren = lim
ǫ→0

(Sreg + Sct) , (B.13)

then the expect value of stress tensor is given by [79]

〈Tij〉 = − 2
√

h(0)

δSren

δhij(0)

= lim
ǫ→0

Tij [γ]

ǫ2

=
1

κ2
(Kij − γijK) +

2√
γ

δSct
δγij

. (B.14)

C Weak anisotropy and small charge density analysis

In the follows, we will try to find the perturbative solution around the isotropic black

brane solution, that is to say, the anisotropic parameter a will be treated as an expansion

parameter in solving the eqs. (A.17)–(A.19). To do so, we expand all the coefficients up to

the order a4 as followed:

F(u) = F0(u) + a2F2(u) + a4F4(u) +O(a6) , (C.1)

B(u) = B0(u) + a2B̂2(u) + a4B4(u) +O(a6) , (C.2)

φ(u) = a2φ2(u) + a4φ4(u) +O(a6) . (C.3)
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Note that due to the symmetry z → −z, only even orders appear, and the absence of 0-order

expansion of dilaton is attributed to the early statement that φ is vanishing when a = 0.

Now what we have to do next is to determine the coefficient functions Fn(u), Bn(u),

φn(u). We then substitute these expansions into Einstein’s equations and solve them order

by order in a. The asymptotically Anti-de Sitter condition requires that F(u) = B(u) = 1

and φ(u) = 0 at the boundary u = 0. Additionally, by definition for horizon, F(u) vanishes

at the horizon which means that Fn(u) = 0 at the horizon u = uH. In this appendix, we

focus on solutions with in the small q limit so that they are in the high temperature regime.

C.1 0-order

We start with solving 0-order term of the coefficient equations. Since we require 0-order of

φ to be vanished, what we have to solve is F0 and B0, which satisfy the boundary conditions

F0(0) = 1 , B0(0) = 1 . (C.4)

The Einstein equations can be solved directly with a simple and familiar form

F0(u) = 1−
(

u

uH

)4

+

[(

u

uH

)6

−
(

u

uH

)4]

q2,

B0(u) = 1 , (C.5)

where the q is a dimensionless charge parameter with q =
u3
HQ

2
√
3
. So the 0-order solution is

nothing but the RN-AdS black brane as we expected.

C.2 O(a2) order

To the 2nd-order of a, we can obtain the solutions in the small q limit. So we can expand

the coefficients F2(u),B2(u), φ2(u) as follows

F2(u) = F̂0(u) + F̂2(u)q
2 +O(q4) ,

B2(u) = B̂0(u) + B̂2(u)q
2 +O(q4) ,

φ2(u) = φ̂0(u) + φ̂2(u)q
2 +O(q4) , (C.6)

with boundary conditions F2(0) = B2(0) = 0, which yield the boundary conditions for the

expanded coefficients

F̂2n(0) = 0 , F̂2n(uH) = 0 ,

B̂2n(0) = 0 ,

φ̂2n(0) = 0 , (n = 0, 1, 2, . . .) . (C.7)

Plunging these expressions into the Einstein equations, we obtain the functions to the

second order of q:

F̂0(u) =
1

24u2H

[

8u2(u2H − u2)− 10u4 log 2 + (3u4H + 7u4) log

(

1 +
u2

u2H

)]

,

B̂0(u) = −u
2
H

24

[

10u2

u2H + u2
+ log

(

1 +
u2

u2H

)]

,

φ̂0(u) = −u
2
H

4
log

(

1 +
u2

u2H

)

, (C.8)
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and

F̂2(u) =
1

24u4H(u
2 + u2H)

[

7u8 + 6u2u6H + u4u4H(25 log 2− 12)

+u6u2H(25 log 2− 1)− (u2 + u2H)(12u
6 + 7u4u2H + 6u6H) log

(

1 +
u2

u2H

)]

,

B̂2(u) =
1

24

[

− u2(11u4 + 3u2u2H + 2u4H)

(u2 + u2H)
2

+ 2u2H log

(

1 +
u2

u2H

)]

,

φ̂2(u) =
1

4

[

− 2u2 +
u4

u2 + u2H
+ 2u2H log

(

1 +
u2

u2H

)]

. (C.9)

So, using (A.8), we can read the electric potential At as

At =
q

8
√
3u3H

[

24(u2H − u2) + 5a2u2H

(

u2 log

(

1 +
u2

u2H

)

− u2H log 2

)]

(C.10)

It is straightforward to check that (3.8) holds after coordinates transformation. Then the

charge density ρ and the corresponding chemical potential µ can be extracted from the

asymptotic expansion of Maxwell filed (B.7), one obtain the results

µ =
q(24− 5a2u2H log 2)

8
√
3uH

, ρ =

√
3q

κ2u3H
. (C.11)

We can immediately obtain the temperature of the system to order a2 by evaluating these

expressions at the horizon:

T =
2− q2

2πuH
+
uH[10 log 2− 4 + 5(3 + log 2)q2]

96π
a2 +O(a4) . (C.12)

Using (C.12), we see that the entropy density can be expressed as

s =
N2

c e
− 5

4
φH

2πu3H
=
π2T 3N2

c

2
+

3π2N2
c T

3

4
q2 +

(

N2
c T

16
+

(2− 15 log 2)N2
c T

32
q2
)

a2 +O(a4) .

(C.13)

So the heat capacity with fixed charge of the black brane is

cρ,a = T

(

∂s

∂T

)

ρ,a

=
3π2N2

c T
3

2
+

9π2N2
c T

3

4
q2 +

(

2 + q2(2− 15 log 2)
)

TN2
c

32
a2 +O(a4) .

(C.14)

After obtaining the high temperature solution, we now evaluate the energy and pres-

sures from the asymptotic expansions of the fields. Note that F4 and B4 take the form

F4 = −π4T 4 − 3π4T 4q2 +

(

− 9

16
π2T 2 +

1

16
π2T 2(−13 + 30 log 2)q2

)

a2 +O(a4) .

B4 =

(

7π2T 2

16
+

7π2T 2q2

16

)

a2 +O(a4) . (C.15)
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Substituting these expressions into (3.12), we obtain the energy density and the pressures as

E =
3π2N2

c T
4

8
+

9π2N2
c T

4

8
q2 +

(

N2
c T

2

32
+

(8− 45 log 2)N2
c T

2q2

64

)

a2 +O(a4) ,

Pxy =
π2N2

c T
4

8
+

3π2N2
c T

4

8
q2 +

(

N2
c T

2

32
+

(4− 15 log 2)N2
c T

2

64
q2
)

a2 +O(a4) ,

Pz =
π2N2

c T
4

8
+

3π2N2
c T

4

8
q2 +

(

− N2
c T

2

32
− (15 log 2)N2

c T
2

64
q2
)

a2 +O(a4) . (C.16)

It is easy to see that the conformal anomaly 〈Tµ
µ 〉 vanishes.

Now we can see that the thermodynamical relations in section 3.1 are reasonable. First

of all, the Free energy density given by (3.18) when evaluating our specific solution reads

Ω =

(

−N
2
c π

2T 4

8
−3π2N2

c T
4

8
q2
)

+

(

−N
2
c T

2

32
+
(15 log 2−4)N2

c T
2q2

64

)

a2+O(a4) . (C.17)

It is easily to prove that

Ω = E − Ts− ρµ . (C.18)

Then the “chemical potential” corresponding to the axion filed is expressed as

Φ =

(

∂Ω

∂a

)

T

= −N
2
c T

2

16
a− N2

c T
2q2

16
a+O(a3) . (C.19)

Note that in the calculation above, uH should be thought as a function of a.

C.3 O(a4) order

Similar argument leads to the solutions for Einstein equations to the O(a4) order. Since

the full expressions is very cumbersome, we just list the asymptotic expansions near the

boundary

F4(u) =
1

3456

(

− 915− 40π2 + 1611 log 2 + 1440(log 2)2 + 2016 log
u

uH

)

u4

+
q2

2304

(

699 + 160π2 − 6 log 2(36 + 785 log 2)
)

u4 +O(u6) ,

B4(u) =
1

1152

(

551− 567 log 2− 672 log
u

uH

)

u4 +
7q2

768
(−49 + 76 log 2)u4 +O(u6) ,

φ4(u) =
1

192

(

32− 27 log 2− 32 log
u

uH

)

u4 +
q2

384
(−49 + 76 log 2)u4 +O(u6) . (C.20)

To compute the temperature and the entropy density, we also need the coefficients evaluated

on the horizon

F ′
4(uH) =

u3H
[

6−4π2+(42+165 log 2) log 2+
(

42+14π2−138 log 2(−1+2 log 2)
)

q2
]

288
,

B4(uH) =
u4H

[

369−8π2+354(log 2)2+912 log 2+
(

411+44π2−1488(log 2)2+1386 log 2
)

q2
]

6912
,

φ4(uH) =
u4H

[

6−4π2+174(log 2)2−12 log 2+
(

−51+22π2+3(99−244 log 2) log 2
)

q2
]

576
.

(C.21)
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So the temperature and the entropy density are given by

T =
2− q2

2πuH
+
uH

[

10 log 2− 4 + 5(3 + log 2)q2
]

96π
a2

+

(

[

40π2 + 3
(

44 + 15(4− 37 log 2) log 2
)]

u3
H

13824π

−
[

468 + 80π2 + (558− 1155 log 2) log 2
]

u3
H

9216π
q2
)

a4 +O(a6) , (C.22)

s =
N2

c

2πu3
H

+

(

10 log 2 + (15− 20 log 2)q2

64πuH
N2

c

)

a2

+
5uH

(

8π2−12+24 log 2−303(log 2)2−
(

44π2−102+459 log 2−1284(log 2)2
)

q2
)

9612π
a4+O(a6) ,

(C.23)

respectively. Again, the chemical potential corresponding to the U(1) gauge filed is found

to be

µ =
q(24− 5a2u2H log 2)

8
√
3uH

+
qu3H

(

222− 20π2 + (−348 + 945 log 2) log 2
)

1152
√
3

a4 +O(a6) .

(C.24)

The expressions for F4 and B4 are obtained as

F4 = −1 + q2

u4H
+

(

− 19 + 20 log 2− (30− 50 log 2)q2

48u2H

)

a2

+

(−915− 40π2 +
(

1611 log 2 + 1440(log 2)2 − 2016 log uH
)

3456

+
699 + 160π2 − 216 log 2− 4710(log 2)2

2304

)

a4 +O(a6) ,

B4 =
7

16u2H
a2 +

1

2304

(

1102− 1134 log 2 + 21q2(−49 + 76 log 2) + 1344 log uH
)

a4 +O(a6) ,

(C.25)

which follow that the energy and pressures are given by

E =
3 + 3q2

8π2u4H
N2

c +

(

10 log 2− 2 + (15− 25 log 2)q2

64π2u2H

)

a2

+

(

(

24csch + 20π2 − 51 + 18(7− 40 log 2) log 2− 96 log uH
)

N2
c

4608π2

+

(

428− 160π2 +
(

−1532 log 2 + 4710(log 2)2
))

N2
c

6144π2
q2
)

a4 +O(a6) ,

Pxy =
1 + q2

8π2u4H
N2

c +

(

10 log 2 + 2 + (15− 25 log 2)q2

192π2u2H

)

a2

+

(

(

−72csch + 20π2 + 129− 198 log 2− 720(log 2)2 + 288 log uH
)

N2
c

4608π2

+

(

−80π2 + 3
(

6 + log 2(−154 + 785 log 2)
))

N2
c

9216π2
q2
)

a4 +O(a6) ,
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Pz =
1 + q2

8π2u4H
N2

c +

(

10 log 2− 10 + (15− 25 log 2)q2

192π2u2H

)

a2

+

(

(

1512csch + 140π2 + 789 + 126(43− 40 log 2) log 2− 6048 log uH
)

N2
c

96768π2

+

(

−80π2 + 3
(

202 + log 2(−458 + 785 log 2)
))

N2
c

9216π2
q2
)

a4 +O(a6) . (C.26)

Thus, the conformal anomaly is 〈T i
i 〉 = N2

c a
4/48π2. This fact implies that the O(a4) term

is the reflection of the quantum effect because the conformal anomaly is finite once we take

account into the a4 term. Note that we have not included the reference scale Λ required by

the dimension analysis and the presence of the conformal anomaly, but we shall add this

log term (see the discussion in section 3).

The thermodynamic potential is given by

Ω = − 1 + q2

8π2u4H
N2

c −
(

10 log 2 + 2 + (15− 25 log 2)q2

192π2u2H
N2

c

)

a2

−
(

(

−72csch + 20π2 + 129− 198 log 2− 720(log 2)2 + 288 log uH
)

N2
c

4608π2

+

(

−80π2 + 3
(

6 + log 2(−154 + 785 log 2)
))

N2
c

9216π2
q2
)

a4 +O(a6) , (C.27)

from which we obtain the chemical potential associated with the axion

Φ = − N2
c a

16π2u2H
+

(

N2
c (−19 + 336csch + 1134 log 2− 1344 log uH)

16128π2

+
N2

c (1029− 1596 log 2)q2

16128π2

)

a3 +O(a5) . (C.28)

D Weak anisotropy and finite charge density analysis

In the previous section, we obtained the metric solution by perturbing around the

Schwarzschild black brane solution in the small a and small q limit. It is straightfor-

ward to obtain the solution by perturbing around the RN-AdS black brane solution. In

fact for finite charge, we can only obtain the analytic expression up to O(a2) order. The

functions F , B and H can be expressed as

F = 1−
(

u

uH

)4

+

[(

u

uH

)6

−
(

u

uH

)4]

q2 + a2F2(u) +O(a4) ,

B = 1 + a2B2(u) +O(a4) ,

H = e−φ(u), with φ(u) = a2φ2(u) +O(a4) , (D.1)
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where

F2(u) =
1

24
√

1 + 4q2u4H

{

3(−4q2u6 + u6H) log

(

(1 +
√

1 + 4q2)u2 + 2u2H
(1−

√

1 + 4q2)u2 + 2u2H

)

+u2u2H

[

8
√

1 + 4q2(−u2 + u2H) + u2
(

3 log
(

−2− 2q2 + 2
√

1 + 4q2
)

+5(−2 + q2) log
(

−1 + 2q2 +
√

1 + 4q2
)

− 12q2 log
(

−2− 2q2 + 2
√

1 + 4q2
)

+7(1 + q2)

(

log

(

(

−1 + 2q2 −
√

1 + 4q2
)

(

2q2u2 +
(

−1 +
√

1 + 4q2
)

u2H

)

)

− log
(

2q2u2 −
(

1 +
√

1 + 4q2
)

u2H

)

))]}

,

φ2(u) = − u2H
4
√

1 + 4q2
log

(

(1 +
√

1 + 4q2)u2 + 2u2H
(1−

√

1 + 4q2)u2 + 2u2H

)

,

B2(u) =
u2H
24

(

10u2u2H
q2u4 − u2u2H − u4H

+
1

√

1 + 4q2
log

(

(1 +
√

1 + 4q2)u2 + 2u2H
(1−

√

1 + 4q2)u2 + 2u2H

))

. (D.2)

In terms of the series expansion of O(q2), we can recover the result obtained in C.2. The

Hawking temperature and entropy density are given by

T =
2− q2

2πuH
+
uH

(

−4
√

1+4q2 + 5(2 + 5q2) log
(

3+
√

1+4q2

3−
√

1+4q2

))

96π
√

1+4q2
a2 +O(a4) , (D.3)

and

s =
N2

c

2πu3H
+

5N2
c log

(

3+
√

1+4q2

3−
√

1+4q2

)

32π
√

1+4q2uH
a2 +O(a4) . (D.4)

We notice that for a > 0 at finite temperature, the horizon radius uH and the entropy

density of the anisotropic black brane are greater than that of isotropic RN-AdS black

brane. This partly verifies our previous numerical computation that extremal black brane

solution cannot be accessed for a > 0.

The energy density and pressures are obtained as follows

E =
3(1+q2)N2

c

8π2u4H
+
N2

c

(

−2
√

1+4q2 + 5(q2 − 2) log
(

3−
√

1+4q2

3+
√

1+4q2

))

64π2
√

1+4q2u2H
a2 +O(a4) ,

Pxy =
(1+q2)N2

c

8π2u4H
+
N2

c

(

2
√

1+4q2 + 5(q2−2) log
(

3−
√

1+4q2

3+
√

1+4q2

))

192π2
√

1+4q2u2H
a2 +O(a4) ,

Pz =
(1+q2)N2

c

8π2u4H
+

5N2
c

(

−2
√

1+4q2 + (q2−2) log
(

3−
√

1+4q2

3+
√

1+4q2

))

192π2
√

1+4q2u2H
a2 +O(a4) . (D.5)

The “chemical” potential conjugate to the charge “a” is given by

Φ = − N2
c a

16π2u2H
+O(a3) . (D.6)
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Figure 9. (Color online.) (Left) Temperature as a function of the horizon radius for a = 1/5 (blue),

a = 1/2 (red) and a = 3/5 (black), where we choose Nc = 1 and q2 = 1. (Middle) We see that

the anisotropic black brane has lower grand thermodynamic potential with respect to the isotropic

RN-AdS solution. (Right) The plot shows that the pressure along the z-direction is smaller than

that of the isotropic solution. In all the three graphs, we do not consider the contribution of the

log(a/Λ) term.

The U(1) chemical potential is obtained as

µ =
q

8
√
3uH









24 +
5u2H log

(

3−
√

1+4q2

3+
√

1+4q2

)

√

1 + 4q2
a2









+O(a4) . (D.7)

Unfortunately, we are not able to obtain the analytic solution up to O(a4). Figure 9 (left)

shows us that the temperature has its minimize value as a function of the horizon radius

for given a and q. Moreover, in the absence of the reference scale Λ, the thermodynamic

potential and the pressure Pz are lower than that of the isotropic case.

Considering the presence of the conformal anomaly and the dimensional analysis, we

shall include the reference scale Λ to the energy stress tensor E, Pxy, Pz and Φ, even in

the absence of the O(a4) (see discussion in section 4).

E The “oblate” solution

In this appendix, we take a brief look at the five-dimensional anisotropic black brane

solution in the case of imaginary-valued a. As claimed in the main text, imaginary a

could lead to the zero temperature, i.e. extremal anisotropic black brane. However, in this

case, it is not proper to interpret the anisotropy a as the D7-brane number or “charge

density” (3.16) in the framework of string/gauge duality. We can only regard a as a

parameter to support the anisotropic black brane geometry, just like some gauge fields in

charged Lifshitz theory are only treated as extra matter fields to accommodate a Lifshitz

spacetime without a clear signature in the thermodynamics of the system [99].

We notice that the concrete form of equations of motion is independent of the exact

value of a. So we can find the solutions numerically or analytically in a similar way. Since

a2 < 0, the shift of the dilaton should take the form of

φ̃ = φ+
2

7
log(−a2) . (E.1)
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Figure 10. (Color online.) The metric functions for Q̃ = 0.25 (left), Q̃ = 10 (middle) and Q̃ = 20

(right), with φ̃H = 0 and uH = 1.

H

B

F

Φ
�

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

u

B

H

F

Φ
�

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

u

B

H

F

Φ
�

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

u

Figure 11. (Color online.) The metric functions for Q̃ = 0.1 (left), Q̃ = 2 (middle) and Q̃ = 4

(right), with φ̃H = 0.275 and uH = 1.

The boundary condition of the dilaton φ(0) = 0 gives

a2 = −eφ̃(0) . (E.2)

and the boundary conditions given in (A.21) should be shifted as e7φ̃H/2 → −e7φ̃H/2. We

can also introduce a charge related parameter Q̃ = (−a2)5/7Q2. Then we can plot the

numerical solutions in figure 10 and figure 11. As shown in the numerical solutions, the

anisotropic factor H(u) = e−φ(u) ≤ 1, which implies that this solution is an“oblate” black

brane whose z-direction is shorter than the x- and y- axes. Different from the “prolate”

case, the profile for B here is amplified at the horizon as Q̃ increases. The “oblate” black

brane has a significant property: the temperature can be zero as shown figure 12.

On the analytic side, if we treat axion as small anisotropic fluctuation, the analytic

solution can also be obtained which is the same with previous section. A straightforward

calculation demonstrates that the positiveness of the horizon radius uH requires that the

axion parameter a must be imaginary when the horizon radius uH takes the form

uH = 4
√
3
[

(2−q2)
√

1+4q2
]1/2

[

a2
(

4
√

1+4q2 − 5(2+5q2) log

(

3+
√

1+4q2

3−
√

1+4q2

))]−1/2

.

(E.3)

In the case that a = 0, the black brane solution recovers the extremal RN-AdS case with

zero temperature but non-vanishing entropy. If the parameter a takes imaginary value, the

thermodynamic variables of this system becomes totally different. In this case, for a given

temperature T , the horizon radii rH ≡ 1
uH

and the entropy density are less than those of

RN-AdS black brane. We also note that µ > µ0 in this case. Figure 12 (left) plots the
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Figure 12. (Left) Temperature as a function of the horizon radius rH = 1/uH for a = i/14 (blue),

a = i/10 (red) and a = i/8 (orange), where we choose Nc = 1 and q2 = 1.2. (Middle) The free

energy as a function of the horizon radius rH , where Nc = 8, Λ = 1/2 and q2 = 1/4. The center

graph shows that anisotropic black brane has higher grand thermodynamical potential compared

to the isotropic RN-AdS solution. On the right, the graph depicts that the pressure along the

z-direction is greater than that of the isotropic solution. Also, we do not consider the contribution

of the log(a/Λ) term.

temperature as a function of the horizon radius. The temperature becomes a monotonic

function of the horizon radius and zero temperature is available for imaginary a. We can

also see from figure 12 (right) that oblate black brane has higher grand thermodynamical

potential than the isotropic RN-AdS solution.

We end this appendix with some comments. For a scalar field φ with mass m in

asymptotic AdS5 space, the well-known Breitenlohner-Freedman (BF) bound [100] on the

stability condition of the background requires m2 ≥ −4. In our case, in the dilatonic

equation of motion ∇µ∇µφ − e2φ(∂χ)2 = 0, e2φ(∂χ)2 corresponds to the mass term. It

is reasonable to speculate that if the imaginary value of a takes some value, the dilaton

field becomes tachyonic. So that, the dilaton could condensate in the IR, similar to that

observed in the condensation of neutral scalar fields in holographic superconductors.
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