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We study the causal structure of the minimal surface of the four-gluon scattering, and find a world-sheet 
wormhole parametrized by Mandelstam variables, thereby demonstrate the EPR = ER relation for gluon 
scattering. We also propose that scattering amplitude is the change of the entanglement entropy by 
generalizing the holographic entanglement entropy of Ryu–Takayanagi to the case where two regions are 
divided in space–time.
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1. Introduction

Quantum entanglement is one of the most subtle and intrigu-
ing property of the nature in the entire physics history. When two 
pair-created particles fly away from each other, their states are en-
tangled even after their separation is beyond causal contact. That 
is the Einstein–Podolsky–Rosen (EPR) pair [1]. On the other hand, 
Einstein–Rosen bridge [2] connects far separated regions by short 
wormholes. Both of them shares the common nature such that 
causally disconnected objects or region are tied although no in-
formation can be transmitted through them. Recently Maldacena 
and Susskind [3] conjectured that any EPR pair might be connected 
through a wormhole of some kind. It was dubbed as ‘EPR = ER’. If 
true, it would be a fascinating connection between quantum me-
chanics and space–time geometry giving an enlightenment on this 
long standing mystery of modern physics.

Soon after this suggestion, Jensen and Karch [4] and Sonner [5]
discussed the entanglement of a pair of accelerating quark and an-
tiquark in the context of the AdS/CFT correspondence, using the 
corresponding minimal surface obtained by Ref. [6]. It allows one 
to consider only a classical world-sheet configuration where causal 
structure makes sense. It was shown that the trajectories of quark 
and antiquark are connected by a line that has to pass through 
the world-sheet wormhole zone, thereby supporting the EPR = ER 
with the space–time wormhole replaced by the world-sheet one. 
Ref. [7] suggested that the gluonic radiation between the quark 
and antiquark induces their entanglement. It is very interesting to 
see what happens to other exactly known world-sheet configura-
tion [8–11].
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In this paper we shall consider the four-gluon scattering, whose 
minimal surface was well studied by Alday and Maldacena [12]. 
We shall study its causal structure in its T-dual space–time picture 
and conclude that EPR = ER is also supported in this case.

Another related question is how to quantify the degree of 
entanglement. Notice that without interaction, unentangled state 
cannot be entangled and vice versa. For example, in a scattering 
process of two particles starting with unentangled initial state, the 
final state is entangled if and only if there is an interaction, be-
cause the time evolution operator U = exp[−it(H1 + H2 + H int)]
factorizes iff H int = 0. The entanglement entropy (EE) of the final 
state is the change of EE, �S E , created by the interaction dur-
ing the scattering process. So the change of EE must be related to 
the interaction, hence we expect that the EE change is related to 
the scattering amplitude itself. In the AdS/CFT correspondence, the 
scattering amplitude can be related to the area of the minimal sur-
face of the Wilson loop of trajectories of scattering particles [13,
14], one way is to extend the EE derived from the minimal sur-
face by Ryu and Takayanagi [15]. The relations between the EE and 
Wilson loop have been pointed out [16–18] for simple shape of 
the Wilson loop. We assume that the relation hold to more general 
cases. The gluon scattering amplitude was given from a polygonal 
Wilson loop in Ref. [12]. Using all such data, we shall write down 
how these are connected.

2. Minimal surface for gluon scattering

Alday and Maldacena have considered the AdS5 of momentum 
space, of which metric is denoted by

ds2 = R2

2

(
ημνdyμdyν + dr2), ημν = diag(−1,1,1,1), (1)
r
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Fig. 1. The minimal surfaces in momentum space (left) and in position space (right).

and have found the minimal surface solution corresponding to the 
gluon scattering [12],

r = α

ch u1 ch u2 + β sh u1 sh u2
,

y0 = r
√

1 + β2 sh u1 sh u2, y3 = 0,

y1 = r sh u1 ch u2, y2 = r ch u1 sh u2, (2)

where sh ≡ sinh and ch ≡ cosh. u1 and u2 are the world-sheet 
coordinates. The boundary of this surface is a closed sequence of 
four light-like segments due to momentum conservation of gluons. 
α and β are associated with Mandelstam variables1 as

−s (2π)2 = 8α2

(1 − β)2
, −t (2π)2 = 8α2

(1 + β)2
, (3)

(0 ≤ β ≤ 1). In this paper we assume s, t < 0, that is to say, the 
u-channel. β → 1 corresponds to the Regge limit, namely, −s → ∞
with −t fixed. Note that changing the sign of β (i.e., −1 ≤ β ≤ 0) 
is equivalent to exchanging s and t .

We calculate the world-sheet induced metric on the surface (2),

ds2
ws = R2(du2

1 + du2
2

)
, (4)

and this induced metric is flat and Euclidean.
In order to obtain the surface for gluon scattering in the posi-

tion space (xμ, z), we use the “T-dual” transformation [19] (Fig. 1),

∂m yμ = R2

z2
εmn∂nxμ, z = R2

r
, (5)

so that the metric (1) is interpreted as an anti-de Sitter space 
again, ds2 = (R2/z2)(ημνdxμdxν + dz2). The transformation leads 
the solution (2) to

z = R2

2α

[
(1 + β) ch u+ + (1 − β) ch u−

]
,

x0 = − R2

2α

√
1 + β2 sh u+ sh u−, x3 = 0,

x+ = − R2

2
√

2α

[
(1 + β)u− + (1 − β) ch u+ sh u−

]
,

x− = R2

2
√

2α

[
(1 − β)u+ + (1 + β) sh u+ ch u−

]
, (6)

where we employed the space–time coordinates x± ≡ (x1 ±x2)/
√

2
and the world-sheet coordinates u± ≡ u1 ± u2 for convenience of 
calculation [20]. Note that x± and u± are not light-cone coordi-
nates and that dx2

1 + dx2
2 is equal to dx2+ + dx2− .

1 The Mandelstam variables are defined by −s = (k1 +k2)2 = 2k1μk2
μ , −t = (k1 +

k4)2 = 2k1μk4
μ and −u = (k1 + k3)2 = 2k1μk3

μ = s + t .
Fig. 2. (a) The causal structure on the minimal surface in position space (β = 1/2). 
(b) The blue lines are the singularity. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)

3. Causal structure on world-sheet and entanglement

The induced metric on the world-sheet (6) in the position space 
is written down as

ds2
ws = R2(g++du2+ + 2g+−du+du− + g−−du2−

)
, (7)

with

g±± = 2

[(1 + β) ch u+ + (1 − β) ch u−]2

[
(1 ± β)2 sh2 u±

+ (
1 + β2) − 4−1((1 ± β) ch u± − (1 ∓ β) ch u∓

)2]
,

g+− = 2(1 − β2) sh u+ sh u−
[(1 + β) ch u+ + (1 − β) ch u−]2

. (8)

On this world-sheet there are two kinds of horizons: one is given 
by g−− = 0, i.e.,

(1 − β) ch u− + 2
√

(1 − β)2 sh2 u− + 1 + β2

= (1 + β) ch u+, (9)

and the other is given by g++ = 0, i.e.,

(1 + β) ch u+ + 2
√

(1 + β)2 sh2 u+ + 1 + β2

= (1 − β) ch u−. (10)

Note that the causal structure is induced in the world-sheet in 
position space by the “T-dual” transformation (5), although the 
world-sheet in momentum space (4) is Euclidean. We introduce 
the rescaled coordinates, Xμ ≡ (α/R2)xμ (μ = 0, +, −, 3), and 
Z ≡ (α/R2)z. Furthermore, in order to explicitly visualize the 
structure around infinity of X± , we also use the coordinates, 
X̂± ≡ (2/π) arctan X± ∈ [−1, 1]. We depict the projection of min-
imal surfaces (6) onto the (X+, X−)-plane in Fig. 2(a) and the 
( X̂+, X̂−)-plane in Fig. 3.

Firstly we consider the case 0 ≤ β < 1. Especially β = 0 im-
plies that the scattering is symmetric with respect to s and t (see 
(3)). The causal structure on world-sheet is drawn in Fig. 3(a), (b). 
The red solid lines are the horizons by g−− = 0, i.e., (9), and the 
red dashed lines are the horizons by g++ = 0, i.e., (10). In the red 
shaded regions, both of g++ and g−− are positive. In every figure, 
g++ > 0 and g−− < 0 in the upper and lower white regions, while 
g++ < 0 and g−− > 0 in the left and right white regions. There-
fore these white regions are Lorentzian, and are separated by the 
(red) Euclidean region, that is, a wormhole.

Note that g−− is negative in the upper and lower Lorentzian 
regions, while g++ is negative in the left and right Lorentzian re-
gions, and that g++ is equal to g−− on the blue dotted lines given 



274 S. Seki, S.-J. Sin / Physics Letters B 735 (2014) 272–276
Fig. 3. The causal structure on world-sheet. (a) β = 0, (b) β = 1/2, (c) β = 1. (For interpretation of the colors in this figure, the reader is referred to the web version of this 
article.)
by (1 + β) sh u+ = ±(1 − β) sh u− . It means that we can define 
world-sheet time as an appropriate coordinate depending on the 
region. Since the vertex operators can be inserted anywhere on 
the boundary of disk, this is completely natural. Consider a static 
gauge, (τ , σ) = (X0, Z). The time τ (= X0) begins at the upper-left 
and lower-right corners and ends up at the upper-right and lower-
left ones. The thin blue (red) lines are negative (positive) constant 
τ lines. On the axes, X± = 0, τ is equal to zero. The thin green 
lines are constant Z lines. Eq. (6) implies Z ≥ 1. Z has a mini-
mum, Z = 1, at the origin in Fig. 1(b) and Fig. 3(a), (b). Z becomes 
infinity on the square bounding boxes, which are the AdS bound-
ary,2 in Fig. 3(a,b). Therefore we can recognize the thin blue and 
red lines as the time evolution of open strings whose endpoints 
are located on the AdS boundary.

The horizons (9) and (10) are at least the stationary limit curves 
but might be different from a horizon of usual black hole. So let 
us check whether there is a singularity. The Kretschmann scalar 
on the world-sheet (7), Rijkl Ri jkl (i, j, k, l = ±), diverges on (1 −
β) ch u− −(1 +β) ch u+ = ±2

√
1 + β2, in other words, these curves 

are singularity. From Fig. 2(b), we can see that the singularity is 
in the interior of horizons, hence the horizons themselves are not 
singularity.

Next we focus on the case β = 1. It is so-called the Regge limit, 
namely, −s → ∞ with −t fixed. The world-sheet metric (7) is re-
duced to

R−2ds2
ws =

(
3

2
− 1

ch2 u+

)
du2+ −

(
1

2
− 1

ch2 u+

)
du2−. (11)

2 The minimal surface (6) at Z = ∞ is laid on the AdS boundary, because simul-
taneously X± also goes to infinity (see Appendix A in Ref. [12]).
Fig. 4. The gluon scattering world-sheet projected onto ( X̂+, X̂−). The boundary is 
denoted by the green box. The red region is a wormhole. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of 
this article.)

While g++ is positive definite, g−− is negative when ch u+ >
√

2, 
i.e., |u+| > log(

√
2 + 1). Therefore the world-sheet horizons appear 

at u+ = ± log(
√

2 + 1). The causal structure on world-sheet is de-
picted in Fig. 3(c), in which the red thick lines are the horizons 
given by g−− = 0. In this case different from those in 0 ≤ β < 1, 
two Lorentzian regions, where g++ > 0 and g−− < 0, exist, and 
are separated by a Euclidean wormhole (red shaded).

Since a gluon is described by an open string itself, we can see 
two kinds of entanglement: one is the entanglement of string end-
points in a gluon, and the other is the entanglement of gluons. In 
Fig. 4, AL,R and B L,R denote the endpoints of open strings describ-
ing gluons on the boundary. Since the upper-left and lower-right 
corners are at X0 = −∞ and the lower-left and upper-right corners 
are at X0 = ∞, in the static gauge we can regard g1 and g2 as the 
incoming gluons and g3 and g4 as the outgoing gluons. The glu-
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ons, g1 and g2 at X0 = t1 (<0) and g3 and g4 at X0 = t2 (>0), 
can be described as the entangled states of open string endpoints, 
namely,
∣∣g1(t1)

〉〉 = ∑
i, j

c(1)
i j

∣∣ALi(t1)
〉 ⊗ ∣∣AR j(t1)

〉
,

∣∣g2(t1)
〉〉 = ∑

i, j

c(2)
i j

∣∣B Li(t1)
〉 ⊗ ∣∣B R j(t1)

〉
,

∣∣g3(t2)
〉〉 = ∑

i, j

c(3)
i j

∣∣ALi(t2)
〉 ⊗ ∣∣B R j(t2)

〉
,

∣∣g4(t2)
〉〉 = ∑

i, j

c(4)
i j

∣∣B Li(t2)
〉 ⊗ ∣∣AR j(t2)

〉
. (12)

Each entanglement in (12) is interpreted to the fact that each open 
string crosses over the wormhole (see Fig. 4). Let us focus on 
the vicinities of the corners of (green) bounding box. The causal 
structure on the world-sheet which describes the entanglement of 
string endpoints in each gluon (e.g. AR → B L ) is similar to that of 
accelerating quark and antiquark in Ref. [4].

At X0 = 0 the open strings, g1 and g2, join and split to g3
and g4, in other words, the color exchange of gluonic interaction 
happens at the mid-point M of open strings (Fig. 4). Therefore 
X0 = 0 is the moment that the entanglement between gluons is 
gained. Even if the initial state of gluons is not entangled, the 
final state of gluons is entangled due to the interaction. From a 
geometric viewpoint, any paths connecting the open string gluons 
(e.g. AR(t2)B L(t2) and AL(t2)B R(t2)) must cross the wormhole re-
gion (see the blue ribbon in Fig. 4).

4. Entanglement entropy and scattering amplitude

How can we quantify entanglement of two interacting parti-
cles? In Refs. [16–18], the EE is associated with a Wilson loop by 
S E = (1 − cλ∂λ) log〈W 〉.3 Note that the EE itself is associated with 
a quantum state at a time while the Wilson loop 〈W 〉 depends on 
the entire time dependent process. Therefore we should consider 
the left hand side of above mentioned equation as the change of 
the EE, �S E . So the gluon scattering amplitude [12] is related to 
the change of the EE in leading order of large λ by

�S E ∼ (1 − 1
2 c)

√
λ

8π

(
log

s

t

)2

= (1 − 1
2 c)

√
λ

2π

(
log

1 + β

1 − β

)2

, (13)

where we neglected the IR divergent pieces.
We introduce another characteristic quantity concerning about 

the entanglement of gluons. Let us consider the proper lengths 
of lines, AR(0)B R(0) and AL(0)B L(0), at the contacting instance 
X0 = 0;


±(β) = R

+u±∞∫
−u±∞

du±
√

g±±|u∓=0, (14)

where we introduced the cutoff, z∞ (�1), such that (2α/R2)z∞ =
(1 ± β) ch u±∞ + 1 ∓ β . 
+ and 
− correspond to the two chan-
nels of gluon interaction. In one channel (Fig. 5(a)), the gluons 
g1 and g2 flow to g3 and g4 respectively. Then, the region Σ on 

3 The undetermined constant c depends on the shape of scattering Wilson loop 
and is not relevant to our purpose here. (cf. c = 4/3 for a circular Wilson loop 
Ref. [18].)
Fig. 5. The open string world-sheets and Feynman-like diagrams in the two channels 
of gluon interaction.

Fig. 6. (a) The scattering surface in the boundary theory. (b) The minimal surface of 
Wilson lines. (For interpretation of the colors in this figure, the reader is referred to 
the web version of this article.)

the boundary corresponding to the gluon g1 → g3 is drawn by 
the thick green line segments and the region Σ corresponding to 
the gluon g2 → g4 is drawn by the dotted green line segments. 
Since the blue line AR(0)B R(0) in the bulk connects the bound-
ary ∂Σ , 
+ is related to the entanglement of gluons in the sense 
of Ref. [15]. In the same way, we can consider the other channel, 
i.e., g1 → g4 and g2 → g3, in which 
− characterizes a part of the 
entanglement of gluons (Fig. 5(b)).

Eq. (14) is computed as 
±(β) = −√
6R log(1 ± β), where we 

subtracted the divergent piece, 
√

6R log(2αz∞/R2), for z∞ → ∞. 
Then the EE change (13) is also described as

�S E ∼ 1 − 1
2 c

4π3/2

(

+ − 
−


s

)2

, (15)

where we used R2 = √
4πλ
2

s .
We comment on the Regge limit, β = ±1. Since the finite part 

of �S E becomes minimum at β = 0 and diverges at β = ±1, the 
Regge limit is the case with maximal �S E . Actually Fig. 3(c) shows 
that, at β = 1, one of the endpoints of g1 (g2) always coincides 
with that of g4 (g3), and 
−(1) diverges.

Can we generalize above result to more general scattering par-
ticles? We believe this is the case. To show this we give a con-
struction by which �S E can be identified as the scattering am-
plitude. First we can extend the Ryu–Takayanagi formulation of 
EE by allowing the subspace A and B to be the space–time re-
gions (rather than spatial regions) whose minimal surface in AdS 
generates the change in the EE. In case of world-line of scattering 
quark–antiquark pair, it is nothing but the minimal surface calcu-
lating the Wilson lines. That is, for any two scattering particles A 
and B, there is an infinite line l(t) connecting them at each time t . 
As time evolves, l(t) generates a two-dimensional surface in the 
entire space–time of boundary field theory, which we call a scat-
tering surface (Fig. 6(a)). Then the world-lines of the two particles 
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will divide the scattering surface into two, Σ and Σ . Consider-
ing the constantly accelerating particles whose minimal surfaces is 
found in [6], we can exemplify these idea. The trajectory of two 
particles forms a circle in Euclideanized space–time. The minimal 
surface of circle is well studied, and its area is given by −√

λ/(2π)

independent of the acceleration [21].
This construction shows a way to identify the scattering am-

plitude as a change of EE. Notice that the change of EE between 
initial and final states is a function of the whole scattering pro-
cess. Therefore this change should be related to S-matrix.

The term, λ∂λ log〈W 〉, in �S E comes from the replica trick 
in the derivation of EE. On the other hand, in the language of 
scattering, that term corresponds to Bremsstrahlung of radiative 
correction. Actually in the case of accelerating quark–antiquark, 
λ∂λ log〈W 〉 is proportional to the Bremsstrahlung function [22]. 
Therefore the change of EE, �S E , is related to S-matrix, which 
gives a scattering amplitude in principle including a radiative cor-
rection.

5. Conclusion

We studied the causal structure on the open string world-
sheet of gluon scattering minimal surface in position space. On 
this world-sheet there exists the wormhole which separates the 
Lorentzian regions including the boundary. Gluons are given by the 
open strings. We have shown that any paths connecting such two 
open string gluons at any time slices pass through the wormhole. 
Therefore a wormhole can always be associated with the entan-
glement of interacting gluons. This result supports the EPR = ER 
conjecture.

Below, we discuss a few points which needs clarification:

• One may ask why entanglement should be related to the in-
teraction, because entanglement is property of the state not 
the hamiltonian. Consider scattering of two particles which 
are initially (at t = −∞) far separated and unentangled. We 
can construct the basis of in- and out-states by tensor product 
of free particle states. Let the initial state |i〉 to be a ten-
sor product state |i〉 = |i1〉 ⊗ |i2〉. They approach each other 
and interact and then go force-free region after long time 
t = +∞. Such time evolution is given by the evolution op-
erator U = exp[−iT (H1 + H2 + H int)] or S-matrix:

|ψ〉 = lim
T →∞ U |i〉 =

∑
f

| f 〉〈 f |S|i〉 =
∑

f

| f 〉S f i (16)

which is entangled in general unless interaction H int = 0 so 
that U is factorized. So the final state of two free particles are 
entangled and its EE can be identified as the ‘change’ of EE of 
the two particle system. Our question is that how to relate the 
latter to the S-matrix itself, which seems to be non-trivial task 
in field theory setting.

• If the final state involves sum over all possible quantum states, 
why one can consider only one world-sheet? In classical me-
chanics, final configuration is completely determined if initial 
one is given. Now in the AdS/CFT, due to the large N nature, 
classical discussion can be made. That is, when we consider 
a minimal surface whose boundary is the trajectories of two 
scattering particles, we implicitly assumed that such classi-
cal picture is valid in describing the gluon–gluon or heavy 
quark–antiquark scatterings. Therefore we do not sum over 
trajectories and hence not sum over the world-sheets. This is 
the reason why we can consider the causal structure of a sin-
gle world sheet of the gluon scattering instead of summing 
over such world-sheets. The same philosophy was implicitly 
assumed in the discussions of causal structure of world-sheet 
in recent literature. With these understanding, we observed 
the EE change (13), following the holographic calculations by 
[18]. This EE change becomes minimum at β = 0 and diverges 
at the Regge limit β = ±1. The relation shows that the change 
of EE is a function of dynamical process, which is natural. Here 
it was shown by holographic argument and mostly likely it is 
true only in the holographic context where semi-classical na-
ture holds. It would be interesting to see how this relation in 
the general quantum field theory can be written.

• Another point that should be discussed further in the future is 
the conjecture we used: the EE of Wilson loop can be calcu-
lated by the minimal surface associated with the Wilson loop 
expectation value. Which was proven only simplest cases. Even 
providing more examples will be interesting.
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