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Generically, the black brane solution with planar horizons is thermodynamically stable. We find a
counter-example to this statement by demonstrating that an anisotropic black brane is unstable. We
present a charged black brane solution dual to a spatially anisotropic finite temperature N = 4 super
Yang–Mills plasma at finite U (1) chemical potential. This static and regular solution is obtained both
numerically and analytically. We uncover rich thermodynamic phase structures for this system by
considering the cases when the anisotropy constant “a” takes real and imaginary values, respectively.
In the case a2 > 0, the phase structure of this anisotropic black brane is similar to that of Schwarzschild–
AdS black hole with S3 horizon topology, yielding a thermodynamical instability at smaller horizon radii.
For the condition a2 ≤ 0, the thermodynamics is dominated by the black brane phase for all temperatures.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

The AdS/CFT correspondence provides a powerful tool in study-
ing the strongly coupled problems of quantum field theory, ranging
from nuclear physics to condensed matter theory [1,2]. This corre-
spondence states the equivalence between type IIB superstring the-
ory in AdS5 × S5 and N = 4 super Yang–Mills (SYM) gauge theory
on the 4-dimensional boundary of AdS5. From gravitational theory
on the asymptotically anti-de Sitter view point, we are able to gain
profound insights for such strongly coupled field theory. It is thus
very crucial to search for the generic asymptotically AdS gravita-
tional solutions, which are dual to interesting phase in the field
theory side. The most well-known black brane solutions are the
homogeneous and isotropic Schwarzschild–AdS black brane solu-
tion and Reissner–Nordström–AdS (RN–AdS) solution. The charged
black brane solutions are particularly useful to study quark–gluon
plasma (QGP) [3], superconductivity and superfluidity, Fermi sur-
faces and non-Fermi liquids in condensed matter system [4–8].
Generally, U (1) gauge symmetries in the bulk correspond to con-
served number operators in the dual field theory. The gauge field
in the AdS space couples to a CFT current Jμ and the CFT states
thus containing a plasma of charged quanta.

It is well-known that there are many strongly coupled systems
which do not satisfy homogeneity and isotropy spontaneously. For
example, some systems may have anisotropic Fermi-surface be-

* Corresponding author.
E-mail address: gexh@shu.edu.cn (X.-H. Ge).
http://dx.doi.org/10.1016/j.physletb.2014.05.032
0370-2693/© 2014 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
cause of the atomic lattice effects and the QGP is anisotropic in
a short time after creation. Therefore, the studies on anisotropic
and inhomogeneous black brane solutions and their holographic
applications have attracted more attention [9–11].

In this paper, we will present a charged and spatially anisotro-
pic black brane solution. The neutral anisotropic black brane so-
lution was obtained by Mateos and Trancanelli in their seminal
papers [9] and its applications in QCD was discussed. One motiva-
tion comes from the fact that the QGP created in RHIC is not only
anisotropic but also charged. In the QGP produced in RHIC, the es-
caped quark is surrounded by high density quark fluid liberated
from the heavy ions. Under such conditions, the baryon density
of the QGP and the overall U (1) gauge field is relevant. Unlike
chargeless case, the introduction of the U (1) gauge field breaks the
SO(6) symmetry and thus leads to the excitations of the Kaluza–
Klein modes. Another motivation comes from the applications of
the anisotropic black brane solutions to condensed matter physics,
since the many-body system at a finite U (1) charge density corre-
sponds to the charged black holes in the AdS peace.

We will consider the case the anisotropy is introduced through
deforming the SYM theory by a θ -parameter of the form θ ∝ z,
which acts as an isotropy-breaking external source that forces the
system into an anisotropic equilibrium state [9]. The θ -parameter
is dual to the type IIB axion χ with the form χ = az. The con-
stant a has dimensions of mass and is a measure of the anisotropy.
From the five-dimensional theory viewpoint, the anisotropy can be
interpreted as a non-zero number of dissolved D7-brane wrapped
on S5, extending along the xy-direction and distributed along the
under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by
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Fig. 1. (Color online.) The metric functions for a = 1.86, Q = 6.23 (left), a = 64.06, Q = 9.76 (middle) and a = 1.2i, Q = 1/10 (right), with uH = 1.
z-direction with density nD7 [9]. So a can be regarded as “charge
density” and should not be imaginary-valued.

However, we will consider both cases with a2 > 0 and a2 < 0
which have different thermodynamic properties, although imag-
inary axion field might be unphysical in type IIB supergravity
theory. If the axion field merely plays the role of providing the ap-
propriate source to support a spatially anisotropic spacetime, then
the imaginary-valued a could be acceptable. Furthermore, we will
see later that imaginary a can be understood as a consequence
of the tachyon condensate of the dilaton field. A careful analysis
in the following will disclose that the anisotropic black brane so-
lution corresponding to a2 > 0 is actually a “prolate” version of
the solution because it has a z-axis longer than the x- and y-axes
(i.e. H(uH) > 1), while the “oblate” version of the anisotropic black
brane solution requires a2 < 0 (i.e. H(uH) < 1) and thus the z-axis
is shorter than the x- and y-axes. As what we will uncover, the
“prolate” black brane solution suffers thermodynamic instabilities,
similar to those of the Schwarzschild–AdS with a spherical horizon,
but the “oblate” solution is stable.

2. Numerical solution

The charged anisotropic black brane solution can be derived
from the effective action after S5 reduction of type IIB supergrav-
ity [12,13]. In Einstein frame, the type IIB supergravity Lagrangian
which have been truncated out NS–NS and R–R 2-form potentials
is

L = R̂ ∗ 1 − 1

2
dφ̂ ∧ ∗dφ̂ − 1

2
e2φ̂ F̂1 ∧ ∗ F̂1 − 1

4
F̂5 ∧ ∗ F̂5, (1)

where φ̂ and F̂1 = dχ̂ are the dilaton and the axion field-strength
in ten-dimensions respectively. The 5-form field F̂5 should satisfy
the self-duality condition and be imposed at the level of equations
of motion. The theory can be reduced on to minimal supergravity
and the corresponding five-dimensional axion–dilaton–Maxwell–
gravity action is given by

S = 1

2κ2

∫
d5x

√−g

(
R + 12 − 1

2
(∂φ)2 − 1

2
e2φ(∂χ)2

− 1

4
Fμν F μν

)
+ SGH, (2)

where we have set the AdS radius L = 1, κ2 = 4π2/N2
c and SGH is

the Gibbons–Hawking boundary term.
In order to obtain an anisotropic D3-brane with an asymmetry

between the xy- and z-directions, we assume the Einstein-frame
metric takes the form

ds2
5 = e− 1

2 φ

u2

(
−FBdt2 + dx2 + dy2 +Hdz2 + du2

F

)
. (3)

A = At(u)dt, and χ = az. (4)
The functions φ, F , B and H = e−φ depend only on the radial
coordinate u, which we solved numerically [13]. The electric po-

tential At can be obtained via At(u) = − ∫ u
uH

du Q
√
Be

3
4 φu from

the Maxwell equations, where Q is an integral constant related to
the charge. The horizon locates at u = uH ≡ 1/rH with F(uH ) = 0
and the boundary is at u = 0 where F = B = H = 1. The asymp-
totic AdS5 boundary condition requires the boundary condition

φ(0) = 0. The Hawking temperature is given by T = −F ′(uH)
√
BH

4π
through the Euclidean method.

Fig. 1 depicts the metric functions corresponding to different
initial conditions. The first two plots in Fig. 1 reflect that the pro-
file for B is seriously suppressed at the horizon as the charge Q
increases. The Hawking temperature depends strongly on Q and
the anisotropy a is sensitive to the initial condition φ(uH). We can
also see from Fig. 1 (right) that even the anisotropy constant a
takes imaginary value, the black brane solution is still regular. Note
that the metric functions H(uH) > 1 and B(uH) < 1 for a2 > 0, cor-
responding to the “prolate” solution, but H(uH) < 1, B(uH) > 1 for
a2 < 0, corresponding to the “oblate” solution.

Note that the temperature is determined by the inverse hori-
zon radius uH = 1/rH and the charge Q . As can be seen from
Fig. 2 (left), for a given temperature there are two branches of al-
lowed black brane solutions, a branch with larger radii and one
with smaller. This intriguing behavior is similar to the case of
Schwarzschild–AdS black holes with a spherically horizon [15]. The
smaller branch of the black brane is unstable with negative specific
heat.

It is well-known that for black brane solutions with horizon
topology R3, there is only one branch of black brane solutions
and the free energy is negative definite, so that the black brane
structure is trivial and the thermodynamics is dominated by the
black brane for all temperatures [14]. However, the anisotropic
black brane solution obtained here provides a counter example to
the above statement. We notice that even in the absence of U (1)

gauge field, two branches of black brane solution still exist, reflect-
ing that it is mainly caused by the anisotropy. This behavior was
not noticed in [9] and all the numerical computation was carried
out at the stable black brane branch.

As to the “oblate” solution with a2 < 0, the behavior of the
solution differs sharply from the real anisotropy situation, which
is qualitatively the same as the planar black brane case [14]:
In that situation, there is only one stable branch of black brane
solution and the thermodynamics is dominated by this solution
for all temperatures (see Fig. 2(c)). The entropy density decreases
as temperature goes down so that the specific heat is positive
cρ = T (∂s/∂T )ρ > 0.

Extremal limit As shown in Fig. 2(a), for the “prolate” solution
with anisotropy parameter a2 > 0, the temperature T cannot reach
zero and thus this charged anisotropic configuration has no ex-
tremal limit, which is consistent with [16]. This is further sup-
ported by Fig. 2(b), which plots the entropy density as a function
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Fig. 2. (Color online.) The Hawking temperature and the entropy density as functions of the inverse horizon radius uH, and the temperature, respectively. For (a) and (b)
graphs correspond to “prolate” black brane solution with a2 > 0, where the initial conditions is chosen as φH = −0.22, a = 1.46 and Q = 0.01. The (c) and (d) graphs plot
the “oblate” version of the black brane solution with a2 < 0, where the initial conditions are chosen as φH = 0, a = 1.2i and Q = 0.2.
of the temperature. Furthermore, Fig. 2(b) shows that the entropy
density increases as the temperature goes down, which implies an
instability of the black brane, since the heat capacity is then neg-
ative. This result further support our previous argument that the
“prolate” black brane behaves like the Schwarzschild–AdS black
hole with the spherical horizon.

In the case of a2 < 0, it is clear that there exists the extremal
black brane solution as shown in Fig. 2(c). Numerical computation
implies that even close to zero temperature, the system prefers
to be dominated by black brane with non-zero entropy. We will
provide a consistent check on the above arguments by using the
following analytic study.

3. Analytic solution in small-anisotropy limit

The analytic black brane solution in small anisotropy limit is
obtained to the leading order in a by perturbating the RN–AdS
black brane solution. We hope the analytic solution can help us
pick out more physics in a straightforward way. The functions F ,
B and H can be expressed as

F = 1 −
(

u

uH

)4

+
[(

u

uH

)6

−
(

u

uH

)4]
q2 + a2F2(u) +O

(
a4),

(5)

B = 1 + a2B2(u) +O
(
a4), (6)

H = e−φ(u), with φ(u) = a2φ2(u) +O
(
a4), (7)

where

F2(u) = 1

24
√

1 + 4q2u4
H

{
3
(−4q2u6 + u6

H

)

× log

(
(1 + √

1 + 4q2)u2 + 2u2
H

(1 − √
1 + 4q2)u2 + 2u2

)

H

+ u2u2
H

[
8
√

1 + 4q2
(−u2 + u2

H

)

+ u2(3 log
(−2 − 2q2 + 2

√
1 + 4q2

))

+ 5
(−2 + q2) log

(−1 + 2q2 +
√

1 + 4q2
)

− 12q2 log
(−2 − 2q2 + 2

√
1 + 4q2

)

+ 7
(
1 + q2)(log

((−1 + 2q2 −
√

1 + 4q2
)

× (
2q2u2 + (−1 +

√
1 + 4q2

)
u2

H

))

− log
(
2q2u2 − (

1 +
√

1 + 4q2
)
u2

H

))]}
,

φ2(u) = u2
H

4
√

1 + 4q2
log

(
(1 + √

1 + 4q2)u2 + 2u2
H

(1 − √
1 + 4q2)u2 + 2u2

H

)
,

B2(u) = u2
H

24

(
10u2u2

H

q2u4 − u2u2
H − u4

H

+ 1√
1 + 4q2

log

(
(1 + √

1 + 4q2)u2 + 2u2
H

(1 − √
1 + 4q2)u2 + 2u2

H

))
. (8)

The parameter q denotes the dimensionless charge parameter with

q = u3
H Q

2
√

3
and the physical range of q2 is 0 ≤ q2 < 2. The electrical

potential is given by

At = q

8u3
H

√
3 + 12q2

(
24

√
1 + 4q2

(
u2

H − u2)

+ 5a2u2
H

[
u2

H log

(
3 − √

1 + 4q2

3 + √
1 + 4q2

)

+ u2 log

(
(1 + √

1 + 4q2u2) + 2u2
H

(1 − √
1 + 4q2)u2 + 2u2

)])
+O

(
a4). (9)
H
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Fig. 3. (Color online.) (Left) Temperature as a function of the horizon radius for a = 1/5 (blue), a = 1/2 (red) and a = 3/5 (black), where Nc = 1 and q = 1. (Middle)
Temperature vs rH for a = i/14 (blue), a = i/10 (red) and a = i/8 (orange), where Nc = 1 and q = 1.2. (Right) Entropy density as a function of temperature for “prolate”
solution (red) and “oblate” solution (blue), respectively.
By using the Euclidean method, we can easily obtain the Hawk-
ing temperature

T = −F ′(uH)
√
BH

4π

= 2 − q2

2πuH
+

uH(−4
√

1 + 4q2 + 5(2 + 5q2) log(
3+√

1+4q2

3−√
1+4q2

))

96π
√

1 + 4q2
a2

+O
(
a4). (10)

The entropy density derived from the Bekenstein–Hawking formula
is written as

s = AH

4G V 3

= N2
c e− 5

4 φH

2πu3
H

= N2
c

2πu3
H

+
5N2

c log(
3+√

1+4q2

3−√
1+4q2

)

32π
√

1 + 4q2uH

a2 +O
(
a4), (11)

where V 3 is the volume of the black hole horizon. The chemical
potential is obtained as

μ = q

8
√

3uH

(
24 +

5u2
H log(

3−√
1+4q2

3+√
1+4q2

)√
1 + 4q2

a2
)

+O
(
a4). (12)

We notice that for “prolate” solution with a2 > 0 at finite tem-
perature, the horizon radius rH and the entropy density of the
anisotropic black brane are greater than that of isotropic RN–
AdS black brane. Thus the chemical potential is less than that of
isotropic RN–AdS black brane μ0. The temperature as a function of
the horizon radius is shown in Fig. 3 (left and middle) for the cases
of real and imaginary anisotropy parameter a respectively. The first
graph in Fig. 3 shows that there are two branches for the small-
anisotropy but a2 > 0 case. The smaller radii branch corresponds
to negative specific heat, which implies a Hawking–Page transition
from a black brane set up to a thermal AdS space. This can be seen
clearly from the entropy density-temperature plot given in Fig. 3
(third) by the top red line with one branch ∂s/∂T < 0 and another
∂s/∂T > 0.

In contrast, for the “oblate” case with a2 < 0, as shown in the
center graph of Fig. 3, there is only one stable black brane con-
figuration and thus is thermodynamically stable. The specific heat
is hence positive for all temperatures (see the blue line in Fig. 3
(third)). At a fixed temperature, the horizon radius and the en-
tropy density are less than those of isotropic RN–AdS black brane.
The analytical discussion presented here is consistent with the pre-
vious numerical result.
Zero temperature limit From Eq. (10), we learn that the black brane
temperature can approach zero only when the inverse horizon ra-
dius uH takes the form

uH = 4
√

3
[(

2 − q2)√1 + 4q2
]1/2

[
a2

(
4
√

1 + 4q2 − 5
(
2 + 5q2)

× log

(
3 + √

1 + 4q2

3 − √
1 + 4q2

))]−1/2

.

The positiveness of the horizon radius requires that the axion field
parameter a must be imaginary-valued. If the anisotropy constant
a takes a real number, Eq. (13) cannot be satisfied for any phys-
ical q and uH. This is in agreement with the previous numerical
analysis that “prolate” black brane solution yields no extremal con-
figurations. Fig. 3 (middle) plots the temperature as a function of
the horizon radius. The temperature becomes a monotonic func-
tion of the horizon radius and zero temperature is available for
imaginary-valued anisotropy.

The appearance of the imaginary valued a can be interpreted
as follows: The coupling of the dilatonic field to the axion field in-
duces an effective negative mass term for the dilatonic field. In our
case, in the dilatonic equation of motion ∇μ∇μφ − e2φ(∂χ)2 = 0,
e2φ(∂χ)2 corresponds to the mass term. As the temperature is
lowered, this mass term eventually drives the dilatonic field tachy-
onic. So that the dilatonic field could condensate in the IR, sim-
ilar to that observed in the condensation of neutral scalar field
in holographic superconductors [5]. Note that although the mass
squared term is negative, it is above the Breitenlohner–Freedman
(BF) bound.

4. Holographic stress tensor

A concrete calculation on holographic renormalization for this
charged system is presented in [13] and it is proved that the pres-
ence of the U (1) gauge field contributes no additional logarithmic
divergences. The counter terms to action (2) are the same as those
of axion–dilaton–gravity system discussed in [9]

Sct = 1

κ2

∫
d4x

√
γ

(
3 − 1

8
e2φ∂iχ∂ iχ

)

− log v

∫
d4x

√
γA, (13)

where v is the Ferrerman–Graham (FG) coordinate, γ is the in-
duced metric on a v = v0 surface. A detailed analysis reveals that
the U (1) gauge field does not change the value of the conformal

anomaly A= 〈T i
i 〉 = N2

c a4

48π2 obtained in [9]. Note that the stress ten-

sor is diagonal 〈Tij〉 = diag(E, P xy, P xy, P z) and obeys ∂ i〈Tij〉 = 0.
Due to the presence of conformal anomaly, the transformation of
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Fig. 4. The chemical potential as a function of the charge density for “prolate” and “oblate” solutions, respectively. The values Nc = 2, uH = 1 and a = 0.7,0.2i have been
used here. The left graph shows that for the “prolate” solutions, ∂μ/∂ρ < 0 at some regions of ρ , signaling an instability of the thermodynamics. On the right, the “oblate”
solution is stable as ∂μ/∂ρ > 0 is satisfied.

Fig. 5. (Left) The thermodynamic potential G as a function of temperature for fixed charge and anisotropy, where we set Nc = 8, a = 0.4 and q = 1. (Right) The pressure P z

as a function of horizon radius rH for fixed charge and anisotropy, where we set Nc = 8, a = 0.5 and q = 1.8. In both case, we neglect contribution of the reference scale Λ.
the stress tensor under a rescaling of a, T and μ contains an inho-
mogeneous term

〈
Tij(ka,kT ,kμ)

〉 = k4〈Tij(a, T ,μ)
〉 + k4 log k Ahij, (14)

where hij = diag(1,−1,−1,3). In turn, the stress tensor has the
form

〈
Tij(a, T ,μ)

〉 = a4ti j

(
a

T
,

a

μ

)
+ log

(
a

Λ

)
N2

c a4

48π2
hij, (15)

where Λ is an arbitrary reference scale, a remnant of the renor-
malization process like the substraction point in QCD. Different
choices of Λ correspond to different choices of renormalization
scheme. This means the physics depends on three dimensionless
ratio T /Λ, a/Λ and μ/Λ. The phase diagram of the thermodynam-
ics is then deeply influenced by this reference scale Λ, because the
energy density and the pressure are dependent on Λ i.e. scheme-
dependent. However, we stress that the U (1) chemical potential
μ is scheme-independence. Under a rescaling of the coordinates
of the form xi = kx′

i , v = kv ′ this would not shift μ and there is
no such logarithmic term as log v in the expression for μ. The
scheme-independence of μ is also implied by its thermodynamic
definition [13].

One can see from the original papers [9] that the reference
scale Λ plays a crucial role in the phase diagram. The introduce
of a reference scale Λ aiming to define the theory with a �= 0 is
a direct consequence of the conformal anomaly, in analogy with
the situation in QCD with one quark flavor with Mq �= 0. The aim
of this paper is that even without considering the renormalization
scale Λ, there exists an alternative type of instability.

5. Thermodynamics and phase structure

The grand canonical thermodynamical potential Ω = E − T s −
μρ = −P xy can be evaluated from the on-shell Euclidean action
and the entropy density satisfies ( ∂Ω )μ = −s [13]. The pressure
∂T
along the z-direction can be evaluated via P z = P xy + ( ∂Ω
∂a )a = −G .

Our computations demonstrate that the thermodynamics variables
corresponding to the “prolate” and “oblate” solutions are different:

prolate: a2 > 0, s > s0, Ω < Ω0, P z < P 0, μ < μ0,

oblate: a2 < 0, s < s0, Ω > Ω0, P z > P 0, μ > μ0,

where we have not included the contribution of Λ, and s0,
Ω0, P 0 and μ0 denote the entropy density, thermodynamical
potential, pressure and chemical potential of the isotropic RN-
AdS black brane. Ω and P z are Λ-dependent, but s and μ are
Λ-independent.

We emphasize that the presence of the U (1) chemical poten-
tial significantly changes the phase structure of the whole system.
Note that a charged black brane in AdS space can be considered
as a system with an infinite charge reservoir and the chemical po-
tential eventually equilibrate to the same value everywhere, then
the chemical potential at phase equilibrium should be the same
in the isotropic and anisotropic regions of QGP. For the “pro-
late” solution, the chemical potential of the isotropic phase is
higher than that of the anisotropic phase. This means that the
anisotropic phase is more stable than the isotropic phase. As a con-
sequence, charges or baryons would immigrate from the isotropic
phase to the anisotropic phase. While for the “oblate” solution, the
anisotropic chemical potential is greater than the isotropic case,
implying a metastable state of the anisotropic plasma. That is to
say, charges or baryons would escape from the anisotropic region
to the isotropic region.

The necessary and sufficient condition for local thermodynamic
stability are written as

cρ ≡ T

(
∂s

∂T

)
ρ

> 0, μ′ ≡
(

∂μ

∂ρ

)
T

> 0. (16)

The heat capacity cρ at constant charges ρ should be positive and
regular. The second condition (16) states that the system is stable
against infinitesimal charge fluctuations. For “prolate” solution, we
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have already shown that the specific heat takes a negative value at
the smaller horizon radius, while it is positive for “oblate” solution.
Further evidence can be found in the μ–ρ diagram (see Fig. 4).

First, consider the “prolate” black brane solution, the thermo-
dynamic potential G as a function of the temperature has a “cusp”
shape, which is qualitatively the same as the Schwarzschild–AdS
black holes. The thermodynamic potential is positive for some
range of T , and it is only above the critical temperature Tc that
the thermodynamics is dominated by the black brane phase. This
can be seen clearly from Fig. 5. The pressure along the z-direction
is negative at smaller horizon radii. As to the “oblate” solutions,
the thermodynamic potential is strictly negative for all the tem-
peratures and thus is thermodynamically stable.

6. Conclusion and discussion

In the present paper, we have obtained the new charged
anisotropic black brane solutions, which might be “prolate” or
“oblate”. We have mainly compared the thermal properties of
these two solutions, and uncovered a new instabilities by using the
scheme-independent parameters s, μ and T for the “prolate” so-
lutions. Generally, for the black holes in equilibrium with the heat
bath, the increase in the temperature leads to the increase in the
black hole radius and mass for stable black holes. However, from
Fig. 2(a), we can see that the local slope of the 1/T curve is pos-
itive for the smaller radii branch, meaning that the temperature
decreases as rH increases, which is quite similar to the familiar
case of the uncharged Schwarzschild–AdS black bole with S3 hori-
zon topology. Therefore, the smaller branch with smaller radii is
unstable, having negative specific heat. The smaller branch solu-
tion is unphysical and should not be applied to studying the dual
CFT.

Note that the anisotropy constant “a”, the temperature and the
horizon radius rH have the same dimension of mass. The instability
uncovered here is due to a competing effect between the scale
set by the anisotropy and the scale set by the temperature. The
instability revealed here is independent of the reference scale Λ

i.e. scheme-independent. If we include the effects of the conformal
anomaly Λ, we can reproduce the similar results discussed in [9].

On the other hand, for the “oblate” case with a2 < 0, the spe-
cific heat is positive everywhere. In this case, for a given tem-
perature T , the horizon radii rH and the entropy density are less
than those of RN–AdS black brane. We also note that μ > μ0 in
this case. Ignoring the reference scale Λ, the pressure along the
z-direction satisfies P z > P 0, inferring mechanical stability of the
black brane.

The potential Ω reduces to the free energy F when the U (1)

charge is absent. In [9], Mateos and Trancanelli have investi-
gated the “prolate” solution by exploring the scheme-dependent
free energy F . Specially, through inspecting F ′′ = (∂2 F/∂a2)T , they
clarified the phases into three zones, namely, unstable zones,
metastable zones and stable zones determined by the ratio a/Λ.
The unstable zones correspond to unstable thermal equilibriums
against infinite charge-“a” fluctuations, while the stable zones cor-
respond to metastable thermal equilibriums against finite charge-
“a” fluctuations. The unstable and metastable states they uncov-
ered will fall apart into a mixed phase similar to the high-
density anisotropic ‘droplet’ or ‘filaments’ surrounded by isotropic
regions [9]. However, the instabilities uncovered here cannot be
rescued by adding the conformal anomaly term, because they are
scheme-independent.
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