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Abstract

We have discussed a particular class of exact cosmological solutions of the 4-dimensional low energy
string gravity in the string frame. In the vacuum without matter and the 2-form fields, the exact cosmological
solutions always give monotonically shrinking universes if the dilaton field is not a constant. However, in
the presence of the 2-form fields and/or the radiation-like fluid in the string frame, the exact cosmological
solutions show a minimum size of the universe in the evolution, but with an initial cosmological curvature
singularity in the string frame.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

The low energy limit of string theory provides a definite form of dilaton gravity action [1–4]
with a specific dilaton coupling and additional 2-form fields [5]. Thus, it may be worth examining
the exact cosmological solutions of the 4-dimensional low energy string gravity in the framework
of dilaton gravity, instead of General Relativity.

There have been many studies on the cosmological evolution of the low energy string gravity
with 2-form fields [6–10]. In the early cosmological evolution, it is necessary to consider the
effect of matter as well as the 2-form fields in the low energy string gravity. Without matter, it
would be convenient to choose the Einstein frame redefining the metric as usual. However, in
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the presence of matter, the frame changes of metric make the dilaton field couple with matter
fields differently depending on their spins. Thus, the matter energy–momentum tensors would be
non-trivial functions of the dilaton field in a different frame.

Therefore, we have considered a fluid-like matter distribution in the fundamental string frame
[11], in which the gravitational constant determined by the dilaton field evolves in time. Because
the relativistic matter should be dominant over the non-relativistic matter in the early evolution
of the universe, we have examined the exact cosmological solutions with the 2-form fields and/or
the radiation-like fluid in the string frame.

2. Low energy string gravity in the string frame

The vanishing beta functions originated from the world sheet conformal symmetry in
the closed string sector of string theory give the well-known low energy string gravity ac-
tion in the critical D-dimension [12]. Assuming a Ricci-flat compactification of the internal
(D − 4)-dimensional space decoupled from our 4-dimensional spacetime [13,14], and adding
the matter Lagrangian Lm which is decoupled from the dilaton field in the string frame, we have
the following form of action in 4-dimensional spacetime from the low energy limit of string
theory [5,12,15–17],

S = −1

2

∫
d4x

√−g

[
Φ2R + 4(∂Φ)2 − 1

12
Φ2HαμνH

αμν

]
+

∫
d4x

√−gLm, (1)

where we have redefined the dilaton field φ with Φ as

Φ ≡ 1

κ0
e−φ (2)

in the string frame, and Hαμν are the field strengths of the 2-form antisymmetric fields Bμν in
NS–NS sector as H = dB.

The equations of motion for the 2-form fields Bμν , the dilaton field Φ , and the metric gμν are
obtained as

∇α

(
Φ2Hαμν

) = 1√−g
∂α

(√−gΦ2Hαμν
) = 0, (3)

4∇2Φ = ΦR − 1

12
ΦHαμνH

αμν, (4)

Φ2Gμν − 2Φ∇μ∇νΦ + 2gμνΦ∇2Φ + 2∇μΦ∇νΦ − 1

4
Φ2HμαβHαβ

ν

+ 1

24
gμνΦ

2HαβλH
αβλ = T (m)

μν , (5)

where T
(m)
μν is the matter energy–momentum tensor. Taking the trace part of Eq. (5), we have an

expression for Φ2R. Plugging it into the dilaton equation (4), we can rewrite the dilaton equation
of motion equivalently as

2
(
Φ∇2Φ + (∇Φ)2) = 1

6
Φ2HαμνH

αμν + T (m), (6)

where T (m) is the trace of the matter energy–momentum tensor.
As we can see from Eq. (6), the driving force of the dilaton field is given by the antisymmetric

2-form field strengths and the trace of matter energy–momentum tensor.
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Hαμν solution of Eq. (3) is found as

Hαμν = Φ−2εαμνλ∂λψ, (7)

where ψ is a new smooth scalar field, εαμνλ is the covariant constant antisymmetric tensor such
that εαμνλ = εαμνλ/

√−g, with ε0123 = +1. The Bianchi identity dH = 0 for the antisymmetric
field strengths Hαμν gives the equation of motion for the scalar field ψ as [8–10,17–19]

∇α
(
Φ−2∂αψ

) = 0. (8)

Defining the dual strength vector hα as Hμνβ ≡ εμνβαhα , we find that

1

12
HαμνH

αμν = −1

2
Φ−4(∇ψ)2 = −1

2
hαhα. (9)

We examine the cosmological evolution of the Eqs. (3), (4), (5) with the spatially flat
Robertson–Walker metric

ds2 = dt2 − S2(t) d�r2, (10)

and the cosmological Ansatz: Φ = Φ(t), ψ = ψ(t). Then, Eq. (8) gives

dψ

dt
= Φ2 A

S3
, i.e. Hijk = εijk0 A

S3
, and H 0ij = 0, (11)

where A is a constant which measures the strength of the 2-form fields. The solution (11) gives
a uniform non-vanishing dual strength vector such as

hi = 0, h0 = − A

S3
. (12)

Using the metric (10) and the explicit solution of Hμνλ from Eqs. (9), (12), Eqs. (5), (6)
are reduced to a set of cosmological equations. Denoting the time derivative as an over-dot, the
cosmological equations with uniform matters in the string frame are given as

3Φ2H2 + 6HΦΦ̇ + 2Φ̇2 = ρm + 1

4
Φ2 A2

S6
, (13)

2aΦ2 +H2Φ2 + 4HΦΦ̇ + 2ΦΦ̈ = −pm − 1

4
Φ2 A2

S6
, (14)

2
(
ΦΦ̈ + 3HΦΦ̇ + Φ̇2) = ρm − 3pm − Φ2 A2

S6
, (15)

where the Hubble parameter is H ≡ Ṡ/S, and the cosmic acceleration parameter is a ≡ S̈/S.
With the uniform matter density ρm and the uniform matter pressure pm, the energy–momentum
tensors are T

(m)0
0 = ρm, and T

(m)1
1 = T

(m)2
2 = T

(m)3
3 = −pm.

In Eqs. (13), (14), it seems that the 2-form fields play a role of matter with the energy density

Φ2 A2

4S6 and the pressure Φ2 A2

4S6 having the equation of state w = 1. However, the Φ2HαμνH
αμν

term in the action (1) gives an additional contribution, the conformal density −Φ2 A2

2S6 defined as
Φ∂L/∂Φ , to the right-hand side of Eq. (15).

By taking a time derivative Eq. (13) and using Eqs. (14), (15), it is found that the matter energy
conservation holds as

d
ρm + 3H(ρm + pm) = 0, (16)
dt
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which is independent of the 2-from fields Bμν and the dilaton field Φ in the string frame. With
the equation of state for matter w, Eq. (16) gives the matter density evolving as

ρm(t) = C

S3(w+1)
, (17)

where C is a positive constant which measures the strength of the matter density.

The 2-form fields having A2

S6 behavior in Eqs. (13), (14), (15) dominate the universe with a
small scale factor S(t). As the universe expands, the rapidly decreasing 2-form fields lay down
their role in the late time evolution of the universe, and matter with the density (17) or a cosmo-
logical constant will take over the dominance.

3. The exact vacuum solutions

First, let us begin with the vacuum solution of Eqs. (13), (14), (15), without the 2-form fields
and matter. Eq. (15) can be written as

S3 d

dt

(
S3 d

dt
Φ2

)
= 0. (18)

With a new time function τ(t) such that dτ ≡ dt/S3(t), this equation becomes a simple equation
having a general linear solution in τ ,

d2

dτ 2
Φ2 = 0, Φ2 = ατ + β, (19)

where α and β are two positive integration constants which should be determined by an initial
condition. If α = 0, then we have the trivial vacuum solution such that Φ2 = β is a constant, and
the scale factor S is also a constant with H = 0 = a. If α �= 0, then we have

Φ̇

Φ
= α

2S3(ατ + β)
. (20)

The new time function τ is a monotonically increasing function of time t . As the time t

elapses, τ increases rapidly for a small scale factor, but very slowly for a large scale factor S.
Thus, the gravitational constant, which is the inverse of Φ2, decreases as 1/(ατ + β) in vacuum.

From Eq. (13), we obtain dS/dτ and its integration as

dS

dτ
= η

αS

ατ + β
< 0, S = σ0(ατ + β)η, η ≡ −

√
3 ∓ 1

2
√

3
, (21)

where σ0 is a positive integration constant.
Thus, using dτ/dt = 1/S3(t), we obtain the cosmological time t as a function of τ as

t − t0 = σ 3
0

α(3η + 1)
(ατ + β)3η+1, (22)

where t0 is a constant time. Thus, we find the exact vacuum solutions without matter and the
2-form fields as

S = σ0

(
α

σ 3
0

(3η + 1)(t − t0)

)η/(3η+1)

, Φ2 =
(

α

σ 3
0

(3η + 1)(t − t0)

)1/(3η+1)

, (23)

where 3η + 1 = −(1 ∓ √
3)/2 and η/(3η + 1) = ∓1/

√
3.
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Therefore, the both vacuum solutions with α �= 0 give an ever shrinking universe to S = 0 in
the future. Especially, the solution with the lower signs meets a curvature singularity at a finite
time t = t0.

4. The exact solutions with the 2-form fields only

Let us consider the solution of Eqs. (13), (14), (15) with the 2-form fields only. Eq. (15) can
be written as

S3 d

dt

(
S3 d

dt
Φ2

)
= −A2Φ2. (24)

With a new time function τ(t) such that dτ ≡ dt/S3(t), this equation becomes the simple har-
monic equation in τ ,

d2

dτ 2
Φ2 = −A2Φ2, Φ2 = Φ2

0 sin(Aτ),
Φ̇

Φ
= A

2S3
cot(Aτ), (25)

where Φ0 is an integration constant, and A �= 0. We find that τ should be in a compact domain,
0 � τ � π/A.

From Eq. (13), we have the solution of H as follows:

H = − Φ̇

Φ
± 1√

3

√(
Φ̇

Φ

)2

+ A2

4S6
. (26)

Using the solution (25) of Φ , from Eq. (26), we find the velocity of the cosmic scale factor as
follows

dS

dτ
= −AS

2

(
cot(Aτ) ∓ 1√

3
csc(Aτ)

)
. (27)

We can integrate Eq. (27) to have the scale factor S as a function of τ

S±(τ ) = S0
tan

± 1
2
√

3 (Aτ/2)√
sin(Aτ)

, (28)

for the upper and the lower signs of Eq. (26) respectively.
The cosmological time 0 � t < ∞ for each solution is given by the integration over 0 � τ <

π/A,

t (τ ) =
τ∫

0

S3±(τ ) dτ . (29)

The infinite future of the cosmological time t corresponds to τ = π/A.
The cosmological time tE and the scale factor SE in the Einstein frame are obtained as

tE(τ ) =
τ∫

0

Φ(τ)S3±(τ ) dτ, SE(τ) = Φ(τ)S±(τ ) = |Φ0|S0 tan
± 1

2
√

3 (Aτ/2). (30)

Because the time derivative of SE about tE is given as
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dSE

dtE
= ± A

2
√

3

csc(Aτ)

S2±(τ )
, (31)

it is found that the upper/lower sign solution corresponds to an ever expanding/shrinking solution,
respectively, in the Einstein frame. The second derivative of SE about tE is the same for the both
solutions, and always negative as

d2SE

dt2
E

= − A2

6|Φ0|
csc5/2(Aτ)

S5±(τ )
. (32)

Thus, both solutions decelerate always in the Einstein frame.
The exact solutions in 4-spacetime dimension seem to be consistent with the phase-plane

analysis [9], and with the analytic Fourier mode solutions [10].

5. The exact solutions with the radiation-like fluid only in the string frame

Next, let us examine the cosmological solution of Eqs. (13), (14), (15) with the radiation-like
fluid in the string frame. Because the uniform relativistic matter has the equation of state w = 1/3
with pm = wρm, the trace of the matter energy–momentum tensors vanishes. Thus, without the
2-form fields A = 0, the dilaton equation (15) gives the same solution (19) as in the vacuum. If
α = 0, then we have the well-known decelerating expansion solution with a constant dilaton field
Φ2 = β as in General Relativity.

Thus, let us consider the α �= 0 case, Φ2 = ατ + β . Using a relativistic matter density ρm and
a pressure density pm such that ρm = 3pm = C/S4 from Eq. (17), and with the dilaton solution
(19), (20), we obtain the following equation for the scale factor S from Eq. (13),

dS

dτ
= − αS

2
√

3(ατ + β)

(√
3 ∓ √

1 + γ
)
, γ (τ ) ≡ 4CS2

α2
(ατ + β). (33)

Introducing another time function T which is also an increasing function of the time t , we can
rewrite this equation as follows:

dγ

dT
= ±√

1 + γ , dT ≡ 4C√
3α

S2 dτ = 4C√
3αS

dt. (34)

Integrating this, we have the solution for the time parameters T as

T = T0 ± 2
√

1 + γ , (35)

where T0 is an integration constant. Thus, the range for the time T is determine as

T � T0 + 2 for the upper sign solution,

T � T0 − 2 for the lower sign solution. (36)

From Eq. (35), we have a relation between the two time parameters T and τ as

dT

dτ
= α

4
√

3

(T − T0)
2 − 4

ατ + β
. (37)

Integrating this equation, the solution for the upper signs is obtained as

Φ2 = ε

(
T − T0 − 2

T − T + 2

)√
3

, S(T ) = α√ (T − T0 + 2)(
√

3+1)/2

(
√

3−1)/2
, (38)
0 4 εC (T − T0 − 2)
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Fig. 1. S versus (T − T0 − 2) with α

4
√

εC
= 1 in Eq. (38).

Fig. 2. t versus (T − T0 − 2) from Eq. (39).

where ε is a positive integration constant, and the integration constant T0 may be chosen as −2
such that T > T0 + 2 = 0. The scale factor S(T ) for the upper signs is a downward concave
function in time, having a minimum as shown in Fig. 1.

The cosmological time t is related to the time parameter T as follows

t =
T∫

T0+2

√
3α2

16
√

εC3

(T − T0 + 2)(
√

3+1)/2

(T − T0 − 2)(
√

3−1)/2
dT . (39)

Integrating this equation, it is found that the cosmological time t is a monotonically increasing
function of the time parameter T with t = 0 at T = T0 + 2 as shown in Fig. 2.

For the upper sign bounce solution (38), as the time T approaches to T0 + 2, the dilaton
field vanishes and the scale factor grows infinitely. Therefore, the gravitational constant grows
infinitely as the cosmological time approaches to the initial cosmological time t = 0.

We can examine the cosmological evolution with the help of Eq. (14) also. Using the solution
(19) of Φ and Eq. (33), we find the acceleration of the scale factor from Eq. (14) as

d2S

dt2
= − α2

6S5(ατ + β)2

(
1 + γ

2
∓ √

3 + 3γ

)
. (40)

For the lower signs in Eqs. (33), (40), the velocity and the acceleration of the scale factor are
both negative always, giving an ever shrinking universe to meet the singularity with the scale
factor S = 0 in the future.
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However taking the upper signs gives the interesting bounce solution as we have obtained in
Eq. (38). From Eqs. (33), (40), the velocity and the acceleration of the scale factor in the time t

show the following behavior,

Ṡ = 0 at γ (τ) = 2, Ṡ < 0 for γ (τ) < 2, Ṡ > 0 for γ (τ) > 2,

S̈ = 0 at γ (τ) = 4 + 2
√

6, S̈ > 0 for γ (τ) < 4 + 2
√

6,

S̈ < 0 for γ (τ) > 4 + 2
√

6. (41)

Thus, the scale factor should have a downward concave form in time as seen in Fig. 1, having
a minimum size at γ (τ) = 2. If a universe started its evolution at a finite size with γ (τ) < 2,
it would shrink with a positive acceleration to the minimum size at γ = 2, which is the turn-
ing point. Then, the universe begins an accelerating expansion again until γ < 4 + 2

√
6, and

continues a decelerating expansion afterward. If we choose Sm, τm as the value satisfying the
equation 2CS2

m(ατm + β) = α2. Then, the dilaton field Φ2 increases from the value Φ2
m at the

minimum size Sm, and approaches to a constant value
√

ε finally in the expanding universe. At
the minimum size Sm, the matter density has the maximum value ρmax as

ρmax = 16ε2C3

α4

(
√

3 − 1)2(
√

3−1)

(
√

3 + 1)2(
√

3+1)
, Sm = α

2
√

εC

(
√

3 + 1)(
√

3+1)/2

(
√

3 − 1)(
√

3−1)/2
. (42)

Unlike other examples of bouncing scenarios in string cosmology [20], the bouncing solution
found with the radiation-like fluid decoupled from the dilaton field in the string frame does not
satisfy the property of duality symmetry which is typical of string cosmology [21].

6. The exact solutions both with the 2-form fields and the radiation-like fluid in the string
frame

Finally, we consider the solutions of Eqs. (13), (14), (15) with both the radiation-like fluid and
the 2-form fields.

Eq. (15) with the 2-form fields and the radiation-like fluid gives the same solution (25) of the
case with the 2-form fields only. From Eq. (13), we have the solution of H as follows:

H = − Φ̇

Φ
± 1√

3

√(
Φ̇

Φ

)2

+ A2

4S6
+ C

S4Φ2
. (43)

Using the solution (25) of Φ , from Eq. (43) we find the velocity of the cosmic scale factor as
follows

dS

dτ
= − AS

2
√

3
csc(Aτ)

(√
3 cos(Aτ) ∓ √

1 + γA

)
, γA(τ) ≡ 4CS2

A2Φ2
0

sin(Aτ). (44)

Similarly as in Eq. (34), introducing a new time function TA, we can rewrite this equation as

dγA

dTA

= ±√
1 + γA, dTA ≡ 4C√

3Φ2
0A

S2 dτ = 4C√
3Φ2

0AS
dt. (45)

Integrating this, we have the solution for the upper signs as
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tan

(
Aτ

2

)
= ε

(
TA − T0 − 2

TA − T0 + 2

)√
3

,

S(TA) = Φ0A

4
√

2C

(
ε
(TA − T0 + 2)

√
3+1

(TA − T0 − 2)
√

3−1
+ 1

ε

(TA − T0 − 2)
√

3+1

(TA − T0 + 2)
√

3−1

)1/2

, (46)

where ε is a positive integration constant, and the integration constant T0 may be also chosen
as −2 such that TA > T0 + 2 = 0. This scale factor S(TA) for the upper signs is a downward
concave function in time, having a minimum size at cos(Aτ) = √

(1 + γA)/3, like the previous
upper sign solution for the relativistic matter only case. Thus, it is found that adding the 2-form
fields does not change the qualitative behaviour of the exact solutions (38) for the radiation-like
fluid only.

7. Conclusions and discussion

We have discussed a particular class of exact cosmological solutions of the 4-dimensional low
energy string gravity with the 2-form fields and/or the uniform relativistic matter in the string
frame (see [7] for the general exact solutions with arbitrary equation of state of the fluid sources).
In the vacuum without matter and the 2-form fields, the exact cosmological solutions always give
monotonically shrinking universes if the dilaton field is not a constant. However, in the presence
of a radiation-like fluid and/or the 2-form fields, the exact solutions exhibit a minimum size of
the universe in the string frame. Throughout the evolution, the exact solutions do not show any
singularity, except the initial cosmological curvature singularity in the string frame.

As further studies, in the early stage of cosmological evolution, it may be necessary to
consider the effects of the cosmological constant or a dilaton potential with the radiation-like
fluid. Furthermore, in the late stage of the cosmological evolution, the effects of the dominant
non-relativistic fluid should be considered also. Especially, after the transition from the radiation-
dominated to the matter-dominated regime, the qualitative behaviour of the considered solutions
is expected to change in the latest stage of the cosmological evolution, and the dilaton field might
be relevant for phenomenological applications, such as a possible interpretation of the dilaton as
the cosmic dark-energy field [22].
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