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ABSTRACT We present robust range-based localization algorithms for which range measurements are
used to estimate the location parameter. Non-line-of-sight (NLOS) propagation of signal can deteriorate the
estimation performance severely in the indoor and crowded urban areas. A study for localization has been
intensively performed in the line-of-sight (LOS) conditions, but the work for the positioning in the mixed
LOS/NLOS environments is comparatively rare. Thus, we aim at the robust localization in the LOS/NLOS
mixture environments. The Hampel and skipped filters-based weighted least squares (WLS) methods are
proposed for situations where the variance for inliers is unknown in LOS/NLOS mixture environments. For
the unsupervised clustering algorithm, Gaussian mixture expectation maximization-based WLS algorithm
is utilized. It is demonstrated that the positioning accuracy of the proposed methods is higher than that of
conventional methods through extensive simulation.

INDEX TERMS Localization, robust, Hampel filter, skipped filter, clustering, weighted least squares.

I. INTRODUCTION
Source localization is a technique in which the coordinates of
the source are estimated utilizing measurements from each
sensor including the time difference of arrival, the time of
arrival (TOA), the received signal strength, or the angle of
arrival. Localization of the point target is of considerable
interest in various fields of research such as telecommuni-
cation, radar, sonar and mobile communications. Position
estimation problems under line-of-sight (LOS) environments
have been intensively studied in previous works [1]–[6].
However, some open problems still exist and a crucial task
among location estimation problems is to determine the loca-
tion of the source in LOS/non-line-of-sight (NLOS) mixed
situations [7]–[9]. For example, it may be possible that the
LOS between the source and sensors may be obstructed in
indoor scenarios.

Generally, we can categorize research regarding location
estimation for the LOS/NLOS mixture problem into two
kinds: 1) mathematical optimizations [10]–[13], and 2) robust
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statistics [14]–[19]. We focus on the robust statistics-based
localization in this paper.

In general, the variances of inliers for each sensor are
assumed to be known in the localization context [1]–[5], [20],
but they may be unknown in adverse environments. Con-
sequently, we investigate the robust localization algorithm
where the variance of inliers is previously unknown. Mean-
while, it is well known that the Hampel filter and skipped
filter have satisfactory estimation performance when outliers
exist [21]–[24]. We utilize the Hampel and skipped filters
to remove the adverse effects of outliers in the context of
LOS/NLOS mixture localization. It should be noted that we
combine the concept of the weighting matrix of the weighted
least squares (WLS) method with the conventional Hampel
and skipped filters to enhance the estimation performance of
the Hampel and skipped filters.

Recent works to deal with robust localization in the
LOS/NLOS mixture condition are as follows. The bisection
localization method has been adopted in the LOS/NLOSmix-
ture condition and the bias is estimated using the mathemat-
ical optimization method [25]. A geometrical method which
can locate a source based on TOA measurements and floor
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plan information is proposed in NLOS indoor environments
by converting NLOS problem into LOS problem [26]. The
marginalized Monte-Carlo Gaussian smoothing based robust
localization has been proposed, where the conditional Gaus-
sian formulation for the skew-t distribution is utilized [27].
An equality constrained Taylor-series robust squares method
is developed to suppress the residual NLOS range error [28].
A maximum likelihood estimator (MLE) for robust localiza-
tion is dealt with, where all the available measurements are
used and the probabilities of occurrences of LOS and NLOS
propagations are taken into account [29]. Also, machine
learning methods have been widely investigated in diverse
fields. In [30]–[32], the expectation-maximization (EM)
methodwas adopted. Also, density-based spatial clustering of
applications with noise (DBSCAN) algorithm is employed to
cluster the multipath components (MPCs) [33] and the grid-
based k-NN localization method is devised to estimate the
target location in the crowd sourced air traffic communication
networks [34]. However, the conventional robust localization
algorithms in the LOS/NLOS conditions have not utilized
the noise variance information. We improve the performance
of the conventional localization method using the weighting
matrix (noise variance information) for the samples predicted
as the inlier. We summarize our main contributions as fol-
lows:
• We develop closed-form robust WLS localization meth-
ods that use the weighting matrix comprised of noise
variance information by extending the Hampel and
skipped filters.

• We propose machine learning based WLS localization
method, i.e., the Gaussian mixture EM algorithm. The
samples that are determined as inliers are utilized to
estimate the variance for the sample mean for the data
predicted as inliers.

• The variance of the sample mean for the filtered (clas-
sified) data is found algebraically when the variance of
inliers is unknown.

To the best of our knowledge, WLS-based approaches com-
bined with the Hampel filter and skipped filter have not
yet been investigated in the existing literatures. Further-
more, the Gaussian mixture EM-based WLS algorithm is
the first attempt at resolving robust localization problems.
Although the Gaussianmixture EM algorithm has been inves-
tigated for the localization in [30], the variance informa-
tion has not been utilized there. Also, note that the pro-
posed methods are the closed-form localization algorithms
excluding the Gaussian mixture EM method. The proposed
methods require matrix inverse operation whose computa-
tional complexity is relatively high. However, the complexity
burden can be diminished by updating the inverse matrix
intermittently if the environments are slowly varying. Fur-
thermore, the crucial advantage of the proposed Hampel
filter-based WLS algorithm and skipped filter-based WLS
method is that they are closed-form algorithms. Thus, diver-
gence problem or trapping in the local minima does not
occur.

This paper is organized as follows. Section II deals with
the LOS/NLOS mixed location estimation problem to be
tackled in this work. Section III describes the proposed posi-
tioning algorithms using the robust WLS algorithm based
on the Hampel filter, skipped filter, unsupervised clustering
method and robust bootstrap method. Section IV performs
the analysis for the mean square error (MSE) and computa-
tional complexity. Section V evaluates the root mean square
error (RMSE) performances through simulation results and
analysis. Finally, Section VI presents the conclusion.

II. PROBLEM FORMULATION
The aim of the emitter location method using TOA measure-
ments is to accurately predict the coordinates of a point target
so that the error criterion, e.g., the MSE or sum of squared
error, is minimized. In the context of LOS/NLOS mixed
emitter positioning, the measurement equation is determined
as

ri,j = di + ni,j + ci,j =
√
(x− xi)2 + (y− yi)2 + ni,j + ci,j,

(1)

where ni,j is distributed by (1−ε)N(0, σ 2
1 )+εN(µ2, σ

2
2 ), i =

1, 2, . . . ,M, j = 1, 2, . . . ,P with M and P denoting the
number of sensors and samples in the ith sensor, respec-
tively [30], [35]–[37]. Also, ci,j is the clock synchronization
error defined as t̂i,j − di (t̂i,j is the estimated range using the
clock synchronization algorithm for the ith sensor and jth
time instance ([38], [39])) and di is the true range between
the emitter and ith receiver. The measurement error ni,j is the
random process that follows a two-mode Gaussian mixture
distribution in which the LOS noise component is distributed
asN(0, σ 2

1 ) and the NLOS noise followsN(µ2, σ
2
2 ) (N (µ, σ 2)

denotes a Gaussian probability density function (PDF) with
mean µ and variance σ 2). The LOS noise has a proba-
bility of 1−ε and the LOS/NLOS noise has a probability
of ε. Unlike previous research for the LOS/NLOS mixture
localization, the mean and variance of the inlier and outlier
distribution are unavailable. Here, ε (0 ≤ ε ≤ 1) is a measure
of contamination, which is usually lower than 0.1 [35]–[37],
[x y]T is the unknown emitter coordinates and [xi yi]

T is the
known coordinates of the ith receiver. Also, ri,j is the range
measurement between the point target and the ith receiver at
the jth time instance. Squaring (1) and rearranging yield the
following equation:

xix+ yiy− 0.5R+ mi,j = 0.5(xi2 + yi
2
− r2i,j),

i = 1, 2, . . . ,M, j = 1, 2, . . . ,P (2)

where R = x2 + y2,mi,j = −dini,j − ni,jci,j − dici,j −
1
2n

2
i,j −

1
2c

2
i,j. Representing (2) in a matrix form, we obtain

the following

Ax+mj = bj, j = 1, · · · ,P (3)
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where mj = [m1,j, · · · ,mM,j]T, x = [x y R ]T,

A =

 x1 y1 −0.5
...

...
...

xM yM −0.5

 , and

bj = [b1,j · · · bM ,j]T =
1
2

 x21 + y
2
1 − r

2
1,j

...

x2M + y
2
M − r

2
M,j

 .
Throughout this paper, a vector is presented with a lowercase
boldface letter, a matrix with an uppercase boldface letter and
the operator [·]T denotes a vector/matrix transpose.

III. PROPOSED LOCALIZATION METHOD
In general, the variance for inliers is assumed to be known
in the context of localization. However, the noise statistics
of inliers may be unknown in certain adverse environments.
Thus, we develop the robust WLS localization algorithms
that do not require the variance of inliers as a priori. Below,
we explain in detail the proposed Hampel filter-based WLS,
skipped filter-based WLS, robust bootstrap-based WLS, and
Gaussian-mixture EM-basedWLSmethods. For more details
of the WLS algorithm, refer to [40].

A. THE HAMPEL FILTER-BASED WLS ALGORITHM
In this subsection, the Hampel filter-based WLS localization
algorithm is in detail described. Specifically, Hampel filter’s
response is given by:

yi,j =

{
bi,j, |bi,j − mi|<tDi;
mi, |bi,j − mi|>tDi

(4)

where mi is the median value from the moving data win-
dow and Di is the median absolute deviation (MAD) scale
estimate of the ith sensor, defined as: Di = 1.4826 ×
median|bi,1:P − mi|. The parameter t is empirically selected
by the experiment and this parameter is determined by search-
ing for the minimum point in the RMSE plot. As the other
method, 2.5 or 3 was suggested in [41] and [42], respectively.
The threshold, 3, is the reasonable and natural value by the
3-σ edit rule. The filtered data, yi,1:P, are averaged using the

sample mean, i.e., bh,fi =
∑P

p=1 yi,p
P . Then, the variance of the

statistic bh,fi is found via algebraic methods as follows:

Var[bh,fi ] =


Si1
P2
, if i ∈ 3;

Si2 +
π

2
×
Si2
Q2
i

× Ri

P2
, if i ∈ 3c

(5)

where Si1 =
∑

p(yi,p − mei1)2, p’s are the sample indices
which are associated with the ith LOS sensor, Si2 =∑

qi (yi,qi−mei2)
2, qi’s are the sample indices for the samples

which are predicted as inliers in the ith LOS/NLOS mixture
sensor, Qi is the number of samples predicted as inliers in the
ith LOS/NLOS mixture sensor, Ri is the number of samples

determined as outliers in the ith LOS/NLOS mixture sensor,
P = (Qi + Ri) is the total number of samples in the ith
sensor, mei1 =

1
P

∑P
p=1 yi,p and mei2 =

1
Qi

∑Qi
qi=1

yi,qi .
Also, 3 is the LOS set in which the elements are indices of
sensors which are predicted as the LOS sensors and3c is the
LOS/NLOS mixture set where the components are indices of
sensors predicted as LOS/NLOS mixture sensors. Namely,
all measurements are inliers in the LOS sensor and at least
one outlier exists in the LOS/NLOS mixture sensor. In the
numerator of the second equation of (5), the constant π2 is
introduced because the variance of the median is asymp-
totically larger than the variance of the sample mean by π

2
times [14]. Var[bh,fi ∈ 3] and Var[bh,fi ∈ 3

c] were derived
in the following manner:

Var[bh,fi ∈ 3]

=
Var[one inlier of the ith sensor (i ∈ 3)]× IN

P2

=

Si1
P × P

P2
, (6)

Var[bh,fi ∈ 3
c]

=
Var[one inlier of the ith sensor (i ∈ 3c)]× IN

P2

+
Var[median for yi,1:P(i ∈ 3c)]× OUT

P2

=

Si2
Qi
× Qi + π

2 ×
Si2
Q2
i
× Ri

P2
(7)

where IN and OUT denote the number of inliers and number
of outliers, respectively. Then, the transformed measurement
equation for the WLS estimator using the Hampel-filter is
determined as follows:

Ax+ ε = bh,f (8)

where ε = [ε1, · · · , εM ]T, bh,f = [bh,f1 · · · b
h,f
M ]T and ε is the

noise components of bh,f . Finally, the WLS estimate based
on the Hampel filter is determined in the following:

x̂h,f = (ATWh,fA)−1ATWh,f bh,f (9)

where Wh,f
= C−1bh,f = (diag[Var{bh,f1 } · · ·Var{b

h,f
M }])

−1.
Furthermore, the accuracy of the first-step estimate can be
improved using the well-known second-step approach [2], [3]
and is represented as given below:

x̂h,s = (HTC−1
ĥ

H)−1HTC−1
ĥ

ĥ (10)

where

ĥ =
[
[x̂h,f ]21 [x̂h,f ]

2
2 [x̂h,f ]3

]T
, and (11)

H =

 1 0
0 1
1 1

 , (12)

Cĥ = diag[2x 2y 1](ATC−1bh,f A)
−1diag[2x 2y 1] (13)

' X(ATC−1bh,f A)
−1XT , (14)
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[a]r is the r th component of vector a and X =

diag[2[x̂h,f ]1 2[x̂h,f ]2 1]. The final second-stepWLS emitter
position estimate is given as follows:

x̂f =
[
sgn([x̂h,f ]1)

√
[x̂h,s]1 sgn([x̂h,f ]2)

√
[x̂h,s]2

]T
(15)

where sgn(·) denotes the sign function.

B. THE SKIPPED FILTER-BASED WLS ALGORITHM
In the Hampel filter of the previous section, when the absolute
value of the difference between the sample and median is
larger than the threshold, the sample median is substituted for
the corresponding sample. In contrast, in the skipped filter,
when the sample is predicted as an outlier, the correspond-
ing sample is removed from the sample set of the sensor.
The filtered data, yi,qi , are averaged using the sample mean,
i.e., bs,fi =

∑
p
yi,p
P in the LOS sensor or bs,fi =

∑
qi

yi,qi
Qi

in the LOS/NLOS mixture sensor. Then, the variance of the
statistic bs,fi is found algebraically in the same manner as the
Hampel filter-based WLS method:

Var[bs,fi ] =


Si1
P2
, if i ∈ 3;

Si2
Q2
i

, if i ∈ 3c.
(16)

The WLS estimate based on the skipped filter is found as
given below:

x̂s,f = (ATWs,fA)−1ATWs,f bs,f (17)

where bs,f = [bs,f1 · · · b
s,f
M ]T and Ws,f

= C−1bs,f =

(diag[Var{bs,f1 } · · ·Var{b
s,f
M }])

−1. Furthermore, the second-
step solution is obtained in the samemanner as in Section 3.1.

C. ROBUST BOOTSTRAP-BASED WLS ALGORITHM
The samples are taken randomly with replacement like the
bootstrap method, but the difference from the existing boot-
strap method is that the samples whose absolute difference
from the median is smaller than the threshold (to be deter-
mined through the empirical experiment) are only taken in
the variance calculation. On the contrary, in the conven-
tional bootstrap method, samples are selected randomly with
replacement in the calculation of variance, independent of
the absolute difference between the median and the corre-
sponding sample. Thus, the existing bootstrap method would
evidently include the outlier in the evaluation of the variance
and fail to estimate the variance of inliers in the situation
that outliers exist. The inverse of the estimated variance is
determined as the weight in the robust bootstrap-based WLS
algorithm and the variance estimation procedure is summa-
rized in Algorithm 1. Also, the WLS estimate based on the
robust bootstrap algorithm is represented as follows:

x̂s,b = (ATWs,bA)−1ATWs,bbs,b (18)

where Ws,b
= (diag[Var{bs,b1 } · · ·Var{b

s,b
M }])

−1 and bs,b is
identical to bs,f defined in (17). The second-step solution can

be obtained in the same manner as Section 3.1. The disadvan-
tage of the robust bootstrap method is that the computational
complexity is higher than those of the Hampel filter, skipped
filter and unsupervised clustering-based WLS algorithms.

Algorithm 1 Robust Bootstrap-Based Variance Estimation
Procedure
Suppose b∗i = (b∗i,1, b

∗

i,2, · · · , b
∗
i,P) are samples which are

selected randomly with replacement from given data bi =
(bi,1, bi,2, · · · , bi,P).
1. Resample the bootstrap samples b∗1i ,b

∗2
i , · · · b

∗C
i inde-

pendently. If |b∗ci (p) − mci | > tD, do a resampling until
|b∗ci (p)− mci | ≤ tD (mci is the median of b∗ci , t and D are the
same with those in [22] and b∗ci (p) denotes the pth element of
b∗ci ).
2. Calculate the sample variance in each b∗ci as Var(b∗ci ) =∑P

p=1(b
∗c
i (p)−b̄∗ci )2

P (b̄∗ci is the sample mean for b∗ci ).

3. Determine Var(bs,bi ) =
∑C

c=1 Var(b
∗c
i )

C , where bs,bi is the ith
element of bs,b.
4. Repeat 1-3 for all sensors.

D. THE GAUSSIAN MIXTURE EM-BASED WLS ALGORITHM
Gaussian mixture EM-based outlier detection has been inves-
tigated in [30]. However, the existing robust algorithm does
not employ the weights for sensors. In the proposed Gaussian
mixture EM-based WLS method, we devise a way to use
the weight (inverse of variance). The number of clusters of
the Gaussian mixture is two because two-mode Gaussian
mixture distribution has been widely used in the existing
literatures [30]. The samples are labeled as inliers or outliers
using the Gaussian mixture EM algorithm. The samples that
are determined as inliers are utilized to estimate the variance
of the sample mean for the data determined as inliers and
the samples that are predicted as outliers are removed. As a
consequence, the variance of the sample mean for the data
predicted as inliers is calculated in the following:

Var[bg,fi ] =


Si1
P2
, if i ∈ 3;

Si2
Q2
i

, if i ∈ 3c.
(19)

Finally, the first-step and second-step WLS estimates based
on the Gaussian mixture EM algorithm are derived in the
same manner as that described in the Section 3.1.

IV. PERFORMANCE ANALYSIS
A. MSE PERFORMANCE ANALYSIS
In this section, we analyze the MSEs of the proposed meth-
ods. The MSE is the sum of the squared bias and variance.
The RMSE can be obtained by taking the square root of the
MSE. The estimation error 1̂xf is represented as

1̂xf (20)

= D−12 1̂xh,s (21)
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TABLE 1. Comparison of the computational complexity.

= D−12 (HTC−1
ĥ

H)−1HTC−1
ĥ

(̂h−Hxh,s) (22)

= D−12 (HTC−1
ĥ

H)−1HTC−1
ĥ

D1 (̂xh,f − xh,f ) (23)

= G(ATC−1bh,f A)
−1ATC−1bh,f (b

h,f
− Axh,f ) (24)

where D1 = diag[2x 2y 1], D2 = 2diag[x y], G =
D−12 (HTC−1

ĥ
H)−1HTC−1

ĥ
D1 and xh,f , xh,s are the true values

for x̂h,f , x̂h,s. Then, the error covariance matrix of x̂f is
represented as follows:

cov[1̂xf] = G(ATC−1bh,f A)
−1GT . (25)

Because E [̂h] ' h in the sufficiently small noise
condition, the bias for the second step estimate of the Ham-
pel filter-based WLS estimate is approximately the zero
vector. Thus, the bias of the final solution for the Ham-
pel filter-based WLS algorithm is the zero vector. Then,
MSE(x̂f ) ' tr[cov(x̂f )], where tr(·) denotes the trace oper-
ator. Furthermore, the MSEs of the skipped filter-based
WLS method and the Hampel filter-basedWLS estimator are
nearly the same because each diagonal component of Cbs,f is
similar with that ofCbh,f . Evidently, the diagonal components
of the covariance matrices are the same when i ∈ 3. When
i ∈ 3c, using the property that P� Ri the following property
is satisfied

Si2
Q2
i

'
Si2 + π

2
Si2
Qi
Ri

P2
, i ∈ 3c. (26)

Therefore, the MSEs of the skipped filter-based WLS and
Hampel filter-based WLS methods are nearly the same under
the condition of P� Ri.

B. COMPUTATIONAL COMPLEXITY ANALYSIS
Table 1 shows the computational complexity of the existing
robust algorithms and proposed algorithms, where M is the
number of sensors, N is the number of parameters and I
is the iteration number. The computational complexity was
dependent on thematrix inverse andmultiplication operations
because their computational load is higher than that of other
operations. The computational complexity of the Gaussian
mixture EMwas higher than that of the weighted skipped and
Hampel filters due to the discerning operations of the inliers
and outliers. Also, it should be noticed that the RMSE per-
formance of the Gaussian mixture EM is severely degraded
when the standard deviation of LOS noise is large (see Fig. 4).
Therefore, it can be concluded that weighted skipped and
weighted Hampel filters have competitive advantages in both

FIGURE 1. Deployment of sensors.

respects of the localization accuracy and computational com-
plexity compared to the other algorithms. Although, the pro-
posed algorithms require thematrix inverse operation, inverse
matrix may be updated intermittently in the slowly varying
environments. Then, the computational complexity can be
much diminished.

V. SIMULATION RESULTS
We compared the performance of the proposed LOS/NLOS
mixed emitter positioning methods with that of the robust
WLSmethod [20] and bisection estimator [25] in this section.
The simulation setting is provided in Table 2.

The RMSE is defined as follows:

RMSE =

√∑10
i=1

∑200
k=1[(̂x

k(i)− x(i))2 + (̂yk(i)− y(i))2]
10× 200

(27)

where x̂k(i), ŷk(i) is the estimated location of the point target
in the ith position set and kth iteration and x(i) and y(i)
denote the ith true coordinates of the emitter. Fig. 1 shows
the arrangement of the receivers. Although we used the fixed
sensor deployment in this simulation, the RMSE performance
varies according to the geometry of sensors. This observation
can be justified by the concept of the geometric dilution of
precision (GDOP) (the localization accuracy is better as the
GDOP is lower). The localization accuracy with respect to the
standard deviation of the NLOS error is displayed in Fig. 2.
In Fig. 2(a), the contamination ratio (ε) was 20%, the sample
size was 20, the bias of the NLOS error (µ2) was 4 m,
the standard deviation of the LOS noise (σ1) was 0.1 m, t
was 3, receivers 5, 6 and 7 were the LOS/NLOS mixture
sensors and the remaining receivers were LOS sensors. It is
evident that RMSEs of the proposed robust WLS methods
were lower than those of the other existing methods. The
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TABLE 2. Simulation settings.

FIGURE 2. Comparison of RMSEs of the proposed estimators with that of
the existing methods when the sensor 5, 6 and 7 are the LOS/NLOS
mixture sensors and the remaining sensors are the LOS sensors.
(a) contamination ratio (ε): 20 %, the bias of NLOS noise (µ2): 4 m,
standard deviation of LOS noise (σ1): 0.1 m. (b) ε: 30 %, σ1: 0.1 m,
µ2: 4 m.

RMSEs of the proposed algorithms were about 2.8 cm and
the RMSEs of the bisection and existing WLS methods were
about 3.0 cm in Fig. 2(a). The proposed methods outper-
formed the bisection and existing robust WLS methods by

FIGURE 3. Comparison of RMSEs of the proposed estimators with that of
the existing methods when the sensor 4, 5, 6 and 7 are the LOS/NLOS
mixture sensors and the remaining sensors are the LOS sensors.
(a) contamination ratio (ε): 20 %, the bias of NLOS noise (µ2): 4 m,
standard deviation of LOS noise (σ1): 0.1 m. (b) ε: 30 %, σ1: 0.1 m, µ2:
4 m.

about 0.2 cm. The RMSEs of the proposed weighted skipped
filter and weighted Hampel filter were nearly the same. The
CRLB was 1.9 cm and it was calculated using the numerical
approximation [30]. The RMSE by an analysis using (25) was
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FIGURE 4. RMSEs of the localization algorithms as a function of standard
deviation of LOS noise (bias of NLOS noise (µ2): 4 m, contamination ratio:
30%, standard deviation of NLOS noise (σ2): 10 m).

1.7 cm. The RMSEs of the proposed methods were larger
than the CRLB by about 0.9 cm. In Fig. 2(b), the contamina-
tion ratio was 30%, while the remaining environments were
identical with those in Fig. 2(a). The RMSEs of the proposed
methods were about 3.0 cm and the RMSEs of the bisection
and existing WLS methods were 4.0 cm. In Fig. 2(b), the
proposed methods outperformed the bisection and existing
robustWLSmethods by about 1.0 cm. The CRLBwas 2.0 cm
and the RMSEs of the proposed methods were larger than the
CRLB by 1.0 cm. The error variance by an analysis using (25)
was 1.9 cm.

Fig. 3 postulates the same environment as that in Fig. 2,
except that receivers 4, 5, 6 and 7 are the LOS/NLOSmixture
receivers. The RMSEs of the proposed methods were about
2.7 cm and those of the bisection and existing WLS methods
were about 3 cm in Fig. 3(a). Namely, the RMSEs of the
proposed algorithms were lower than the existing algorithms
by 0.3 cm. The CRLB was 1.9 cm and the RMSEs of the
proposed methods were larger than the CRLB by about
0.8 cm. The error variance by an analysis using (25) was
1.7 cm. In Fig. 3(b), the RMSEs of the proposed algorithms
were about 3.0 cm and those of the bisection and existing
WLS methods were about 6.0 cm. That is, the RMSEs of
the proposed algorithms were lower than those of the existing
algorithms by 3.0 cm. The CRLB was 2.0 cm and the RMSEs
of the proposed algorithms were larger than the CRLB by
1.0 cm. The error variance by an analysis using (25) was
1.9 cm.

Indeed, Fig. 4 shows the RMSEs vs. the standard deviation
of inliers. In Fig. 4, sensors 1, 2, 3 and 4 were assumed to
be the LOS sensors, sensors 5, 6 and 7 were the LOS/NLOS
mixture sensors and the contamination ratio was 30%. The
RMSEs of the proposed methods were lower than those

FIGURE 5. RMSEs of the localization algorithms as a function of
contamination ratio (bias of NLOS noise (µ2): 4 m, contamination ratio:
30%, standard deviation of LOS noise (σ1): 0.1 m, standard deviation of
NLOS noise (σ2): 10 m).

of the other methods in Fig. 4. The performances of all
robust methods got worse as the standard deviation of LOS
error was increased. The RMSEs of the proposed methods
approximated the CRLB in the small LOS noise regimes, but
moderately degraded than the CRLB in the high LOS noise
conditions.

Next, Fig. 5 illustrates the RMSEs vs. the contamination
ratio. Again, the proposed robust WLS-based methods out-
performed the other methods, as shown in Fig. 5. When the
contamination ratio became larger than 50%, the RMSEs
of the existing robust methods were significantly increased.
However, those of the proposed methods were nearly con-
stant. This observation is due to the usage of the weights that
are larger as the sample variance is lower. Thus, the adverse
effects of outliers can be attenuated using the proposed robust
WLS algorithm although the contamination ratio is larger
than 50%.

Fig. 6 shows the RMSEs vs. the bias. The RMSEs of
all methods were nearly constant as the bias varied and
the proposed methods outperformed the other existing algo-
rithms. Namely, the localization performances of the pro-
posed WLS-based algorithms are not affected by the bias
because the bias is filtered by the skipped and Hampel
filters.

Fig. 7 illustrates the RMSEs vs. sample size. As the sample
size increased, the RMSEs of all methods decreased and
proposed methods outperformed the existing algorithms. The
RMSEs of the proposed methods were moderately larger
than the CRLB in small sample condition, but the difference
from the CRLB was decreased as the sample size increased.
In particular, the RMSEs of the proposed algorithms were
much superior to that of existing algorithms when the sample
size was small.
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FIGURE 6. RMSEs of the localization algorithms as a function of bias
(contamination ratio: 30%, standard deviation of LOS noise (σ1): 0.1 m,
standard deviation of NLOS noise (σ2): 10m).

FIGURE 7. RMSEs of the localization algorithms as a function of sample
size (bias of NLOS noise (µ2): 4 m, contamination ratio: 30%, standard
deviation of LOS noise (σ1): 0.1 m, standard deviation of NLOS noise (σ2):
10m).

The clustering result when using the Gaussian mixture
EM method is exhibited in Fig. 8. The circles denote
the inliers and crosses are the outliers. Fig. 8(a) repre-
sents the clustering result in the low inlier noise condition
(σ1 = 0.1 m) and Fig. 8(b) is that in the high inlier noise
condition (σ1 = 0.25 m). The clustering was accurately
performed in Fig. 8(a) when the inlier noise level was low,
but some outliers were wrongly classified as inliers when
the inlier noise level was high in Fig. 8(b). Thus, as can be
seen from Fig. 4, the RMSE performance of the Gaussian
mixture EM algorithm deteriorated as the level of inlier noise

FIGURE 8. Clustering of inliers (o) and outliers (+) set using the Gaussian
mixture EM. (a) bias of NLOS noise (µ2): 4 m, contamination ratio: 30%,
standard deviation of LOS noise (σ1): 0.1 m, standard deviation of NLOS
noise (σ2): 10m. (b) bias of NLOS noise (µ2): 4 m, contamination ratio:
30%, standard deviation of LOS noise (σ1): 0.25 m, standard deviation of
NLOS noise (σ2): 10 m.

increased compared to the other algorithms. Therefore, it is
desirable to utilize the Hampel filter, skipped filter and robust
bootstrap-based WLS algorithms rather than the unsuper-
vised clustering based WLS method when the noise level of
inliers is high.

Finally, Fig. 9 shows the diagonal components of Cbs,f

when the sensors 1, 2, 3 and 4 are LOS sensors, the 5, 6 and
7 sensors are LOS/NLOS mixture sensors and ε = 0.8.
The variances of LOS sensors were significantly lower than
those of the LOS/NLOS mixture sensors. This observation is
caused because the median value is not robust to outliers any
more when ε ≥ 0.5. Therefore, the localization performance
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FIGURE 9. Diagonal components of Cbs,f when sensors 1, 2, 3 and 4 are
LOS sensors, sensors 5, 6 and 7 are LOS/NLOS mixture sensors and
ε = 0.8.

of the proposedmethods was not drastically deteriorated even
when ε ≥ 0.5 unlike the existing robust WLS algorithm
because LOS sensors exist.

VI. CONCLUSIONS
The robust range-based WLS localization methods were
developed utilizing the Hampel filter, skipped filter, robust
bootstrap and unsupervised clustering algorithms. The pro-
posed methods employed the weighting matrix determined
from the proposed Hampel filter, skipped filter, unsuper-
vised clustering and robust bootstrap-based methods. The
RMSE performances of the proposed WLS-based methods
were superior to the existing algorithms. The unsupervised
clustering based WLS algorithm was effective in discerning
the outliers and inliers in the high SNR condition of inliers,
but deteriorated as the noise level of inliers increased. Fur-
thermore, theoretical performance analysis was provided for
the proposed methods.
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