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A knot in S3 in genus-1 1-bridge position (called a (1, 1)-position) can be
described by an element of the braid group of two points in the torus. Our
main results tell how to translate between a braid group element and the
sequence of slope invariants of the upper and lower tunnels of the (1, 1)-
position. After using them to verify previous calculations of the slope invari-
ants for all tunnels of 2-bridge knots and (1, 1)-tunnels of torus knots, we
obtain characterizations of the slope sequences of tunnels of 2-bridge knots,
and of a class of tunnels we call toroidal. The main results lead to a general
algorithm to calculate the slope invariants of the upper and lower tunnels
from a braid description. The algorithm has been implemented as software,
and we give some sample computations.

Introduction

Genus-2 Heegaard splittings of the exteriors of knots in S3 have been a topic of
considerable interest and recent progress. Usually these are discussed in the lan-
guage of tunnels, which we will use from now on. In particular, the term tunnel
will mean a tunnel of a tunnel number 1 knot in S3.

A rich source of examples of tunnels are the upper and lower tunnels associated
to a knot positioned with bridge number 1 with respect to a standard torus in S3.
Traditionally this is called a (1, 1)-position of the knot, and the associated tunnels
are called (1, 1)-tunnels.

In [Cho and McCullough 2009a], we laid out a theory of tunnels based on the
disk complex of the genus-2 handlebody. It provides a unique construction of each
knot tunnel by a sequence of “cabling” constructions, each determined by a rational
“slope” invariant (the slope invariant of the first cabling is only defined in Q/Z).
There is a second invariant, a binary sequence, which is trivial for (1, 1)-tunnels.
Thus the sequence of slope invariants is a complete invariant for a (1, 1)-tunnel.
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Naturally it is not very easy to calculate a complete invariant, but the invariants
are known for all the tunnels of 2-bridge knots [Cho and McCullough 2009a, Sec-
tion 15] and torus knots [Cho and McCullough 2009b]. K. Ishihara [2011] has
given a computational algorithm which is effective for some examples.

There is a simple description of a (1, 1)-position in terms of a braid of two points
in a standard torus T in S3: Regard the braid as two arcs in T × I ⊂ S3, connect
the top two points with a small trivial arc in the “upper” solid torus, and similarly
for the bottom two points in the “lower” solid torus. Many different braids can
give equivalent (1, 1)-positions. Some of this ambiguity is resolved by using the
quotient of the braid group by its center, which we call the reduced braid group.
A braid that produces the (1, 1)-position is called a braid description of it. In
Section 1, we will examine braid descriptions and the reduced braid group, before
detailing in Section 2 the first of several “maneuvers” involving braids and (1, 1)-
positions. Sections 3–6 contain a review of our general theory of tunnels, focusing
on the parts needed for this paper.

Our main results are Theorems 8.1 and 9.3, which allow one to pass back and
forth between a braid description of a (1, 1)-position and the cabling slope sequence
of its upper (or its lower) tunnel. This has several applications. In Example 9.4,
we show how to find a braid description and use it to calculate the slope invariants
for a more-or-less random example, the knot and tunnel drawn in Figure 10 of
[Cho and McCullough 2009a]. In Section 10 we use braid descriptions for the
(1, 1)-positions of all 2-bridge knots to recover the general calculation of slope
invariants obtained in the same work. We also give a precise characterization of
the slope sequences that arise from tunnels of 2-bridge knots. In Section 11, we
use braid descriptions for the (1, 1)-positions of torus knots (each has a unique
(1, 1)-position) to recover the slope invariants for their upper and lower tunnels,
first found in [Cho and McCullough 2009b].

A more theoretical application is given in Section 12, where we show that a
certain property of the sequence of slope invariants corresponds to a (1, 1)-position
in T × I with no critical points in either of the S1-directions. We call such positions
toroidal positions. Among the 2-bridge knots, only the (2n+ 1,±2)-torus knots
admit a toroidal position.

Our final applications make the procedure of passing between braid descriptions
and slope invariants completely algorithmic. Passing from the sequence of slope
invariants to a braid description is rather easy, as seen in Section 13. The other
direction, detailed in Section 14, is more difficult, since anomalous infinite-slope
cablings can arise (technically speaking, these are not even “cablings”) when the
braid word is put into its standard form, and one must manipulate the word to
eliminate these. Both of the algorithms, as well as the general slope calculations for
2-bridge knot tunnels and (1, 1)-tunnels of torus knots, are very effective and have
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been implemented in Python; the software is available in the Electronic Supplement
or at [Cho and McCullough 2010b]. (See also www.math.ou.edu/~dmccullough
for other software that finds the invariants for the “middle” tunnels of torus knots.)
Sample calculations are given in Section 15.

1. Braid descriptions of (1, 1)-positions

In this section, we recall the 2-braid group on the torus, and its quotient by its center.
The latter, which we call the reduced braid group B, or just the braid group, will
play a central role in our work. We will also see how an element ω ∈B describes
a knot K (ω), and moreover a (1, 1)-position of that knot.

Let T be a standard torus in S3, bounding a solid torus W ⊂ S3. In our figures,
W usually lies above T . Denoting the unit interval [0, 1] by I , fix a collar T × I ⊂
S3−W with T = T ×{0}, and denote by V the solid torus S3− (W ∪ T × I ).

Fix a point b∈ T , which we will refer to as the black point. Fix standard meridian
and longitude curves m and ` in T such that

(i) m ∩ `= b,

(ii) m bounds a disk in V ∪ T × I , and

(iii) ` bounds a disk in W .

Choose a point w in T that is not in m ∪ `. We will refer to w as the white point.
A braid can be described geometrically as a pair of disjoint arcs properly embed-

ded in T × I such that each endpoint of the arcs is one of b×{0}, b×{1}, w×{0},
or w×{1}, and each of the arcs meets each T ×{s} transversely in a single point.
There is an obvious multiplication operation on the collection of such pairs defined
by “stacking” two pairs.

Two such pairs are equivalent if there is an isotopy Jt of T × I such that

(i) J0 = idT×I ,

(ii) Jt |T×∂ I = idT×∂ I for t ∈ [0, 1],

(iii) Jt(T ×{s})= T ×{s} for s ∈ [0, 1] and t ∈ [0, 1], and

(iv) J1 sends one pair to the other pair.

The multiplication operation induces a group structure on the set of equivalence
classes, producing B2(T ), the classical braid group of two points in the torus.

A presentation of B2(T ) is given in [Birman 1969; Takebayashi 2006]. We
rewrite it as

〈δm, δ`, σ | δmσδmσ = σδmσδm, δ`σδ`σ = σδ`σδ`,

δ−1
m δ`δmδ

−1
` = σ

2, σ δ`σδm = δmσδ`σ
−1
〉.

In the notation of [Takebayashi 2006], δm = y1, δ` = x−1
1 , and σ = s1.

http://msp.berkeley.edu/pjm/2012/258-1/pjm-v258-n1-x03-suppl.zip
http://www.math.ou.edu/~dmccullough
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m

`

Figure 1. An imbedding that represents the element δ`δmσ in
B2(T ). We read braids from the top down, so in this picture, the
solid torus W lies above the upper copy of the torus, which is
T = T ×{0}.

As seen in Figure 1, representatives of δm and δ` slide the black point around
m and ` respectively, while keeping the white point fixed. A representative of σ
produces a half-twist of the two strands, as shown.

Now we weaken condition (ii) in the definition of equivalence of braids to

(ii′) J1|T×∂ I = idT×∂ I .

That is, we do not require that each Jt be the identity on T × ∂ I for t ∈ (0, 1). We
call the new equivalence classes of the pairs of arcs under this condition reduced
braids, and the group of all reduced braids is the reduced braid group, denoted
by B.

The fundamental group π1(T )= Z×Z can be regarded as a subgroup of B2(T ),
as the subgroup generated by δ`σδ`σ and δmσδmσ . Figure 2 illustrates a pair of

m

`

Figure 2. A braid that represents δ`σδ`σ . A similar pair, winding
in the m-direction, represents δmσδmσ .
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Figure 3. Two imbeddings representing the element δ`δmσ in B.
Also shown are the meridian M and longitude L for the reverse
braid σδLδM , and the trivial arcs αW and αV added to form the
knot K (δ`δmσ). It is the trivial knot.

arcs representing δ`σδ`σ in B2(T ). Using the presentation of B2(T ), one can
verify that π1(T ) is central in B.

Weakening condition (ii) to (ii′) has the effect of making the braids δ`σδ`σ and
δmσδmσ trivial. On the other hand, the additional isotopies allowed by condition
(ii′) are just products of the isotopies that move those two braids to the trivial
braid (or the reverses of these isotopies). Thus (ii′) has the effect of adding the
two relations δmσδmσ and δ`σδ`σ to the above presentation of B2(T ), giving the
following proposition.

Proposition 1.1. The reduced braid group B has the presentation

〈 δm, δ`, σ | (δmσ)
2
= (δ`σ)

2
= 1, δ−1

m δ`δmδ
−1
` = σ

2
〉.

As shown in Figure 3(b), in B there are other representatives of δm and δ` that
slide the white point backwards along loops parallel to m and ` respectively. An
isotopy that moves b×{0} around the loop ` changes the first representative of δ`,
that moves the black point strand, to the second, that moves the white point strand
in the other direction. Similarly, an isotopy that moves b×{0} around m changes
the representative of δm that moves the black strand to one that moves the white
strand in the other direction. These correspond to the facts that σ−1δ−1

` σ−1
= δ`

and similarly for δm .
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δ` δ`

δ` δ`

δm δm δm

δm δm δm

σ σ

σ σ

Figure 4. The universal cover of T , illustrating the relations in B.

A nice way to understand the relations in B is to consider the picture of the
universal cover of T shown in Figure 4. In this picture, δ` slides the black points one
unit to the right, δm slides the black points one unit downward, and σ interchanges
black and white points as indicated. The product σδ`σ slides the white points one
unit to the right, so the effect of δ`σδ`σ is to slide both black and white one unit to
the right. The relation δmσδmσ is similar, while the word δ−1

m δ`δmδ
−1
` corresponds

to a braid for which the white points are fixed and the black points travel clockwise
around the squares in Figure 4, starting from the lower left-hand corner, which is
the effect of σ 2.

Since we will have no further use for B2(T ), it is safe just to call B the braid
group, and its elements braids.

Figure 3 also illustrates the reverse braid, which is obtained if one views the
picture from below. The meridian and longitude M and L seen from below are
analogous to the meridian m and longitude ` seen from above. Note that they
are interchanged, so that δm seen from below is δL and δ` seen from below is δM .
Although both have the reversed orientation, a braid δm or δ` seen from below has
the point moving in reversed time, so δm becomes δL and δ` becomes δM . On the
other hand, σ seen from below still looks like σ . Thus the reverse braid has δm

replaced by δL and δ` replaced by δM , with σ unchanged, and the order of the
letters reversed.

Figure 3 also illustrates the knot described by the braid ω. One simply attaches
the two standard arcs αV and αW at the bottom and top. In Figure 3, αV and αW

are obtained from arcs α×{1} and α×{0} respectively, pushing the former slightly
into V and the latter into W , where α is a fixed arc in T connecting b and w,
and meeting m ∪ ` only in b. There are four isotopy classes of such arcs, and we
select α to lie in the isotopy class that at b leaves m in the direction of the positive
orientation on ` (using the orientation shown in of Figure 3) and leaves ` in the
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direction of the negative orienation on m. The lifts of α to the universal covering
space of T shown in Figure 4 leave the preimages of b from the lower-left hand
corner of each square.

The resulting knot K (ω) is well-defined, indeed equivalent reduced braids de-
scribe knots that are in (1, 1)-position with respect to T and are (1, 1)-isotopic
(that is, isotopic by an isotopy of S3 preserving T at all times). The notation
K (ω) implicitly includes this well-defined (1, 1)-position. We say that K (ω) is
in braid position, and that the element ω is a braid description of the knot and
its (1, 1)-position (with respect to the fixed arc α). A braid and its reverse braid
describe isotopic knots, but the two (1, 1)-positions have upper and lower tunnels
interchanged.

Observe that K (ω) and K (ωδm) are (1, 1)-isotopic, by an isotopy that pushes
K (ω) across the core circle of the solid torus V . Similarly, K (ω) is (1, 1)-isotopic
to K (δ`ω), and K (ω) to both K (ωσ) and K (σω). In general, if W0(δ`, σ ) is a
word in the letters δ` and σ , and W1(δm, σ ) is a word in δm and σ , then

K (W0(δ`, σ )ωW1(δm, σ )) and K (ω)

are (1, 1)-isotopic. For example, the knot K (δ`δmσ) in Figure 3 is (1, 1)-isotopic
to K (1), hence is trivial.

Notation 1.2. Let 〈δ`, σ 〉 denote the subgroup of B generated by δ` and σ , and
similarly for 〈δm, σ 〉. We will write ω1 ∼ ω2 to mean that ω1 and ω2 represent
the same double coset of the form 〈δ`, σ 〉ω1〈δm, σ 〉, and consequently are braid
descriptions of the same (1, 1)-position.

2. Tunnels in standard position

In this section, we will introduce a basic maneuver. Figure 5(a) shows the torus
T = T × {0}, the portion of a (1, 1)-knot that lies in W , and a tunnel arc for the

α

αW

(a) (b) (c)

Figure 5. Introduction of an initial σ−1δ−1
m in order to reposition

a tunnel into standard position.
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“upper” (1,1)-tunnel of the knot. The segment on T connecting black and white
vertices is the fixed arc α used to define the (1, 1)-knot from a braid description as
in Section 1. The knot is not in braid position, because it does not meet W in an
arc parallel to α. There is an isotopy of the knot, preserving (1, 1)-position, that
changes the placement in Figure 5(a) to the one in Figure 5(b). The arc of the knot
in W moves to a different arc, and a braid letter δ−1

m appears just inside the solid
torus. The tunnel arc is stretched out to wind around the core of W . A further
(1, 1)-isotopy changes Figure 5(b) to Figure 5(c), introducing another braid letter
σ−1. If we push the knot down into T × I until its intersection with W is parallel
to α (or equivalently enlarge T × I to include the portion of the knot that lies below
the black and white points), then the knot is now in braid position (assuming that
its original intersection with V ∪ T × I is consistent with braid position).

When the upper tunnel and the portion of K in W consist of a tunnel arc and a
trivial arc as in the portion above the black and white points in Figure 5(c), we say
that K and the upper tunnel (arc) are in standard position. Thus the effect of the
maneuver just described is to move a tunnel arc and K that appear as in Figure 5(a)
so that K and the tunnel are in standard position, while changing the braid rep-
resented by the portion of K in T × I by premultiplication by σ−1δ−1

m . Since
σ−1δ−1

m = (δmσ)
−1
= δmσ in B, this is equivalent to premultiplication by δmσ .

3. Tunnels as disks

Our previous articles [Cho and McCullough 2009a; 2009b; 2010a; 2011] give the
details of our general theory of knot tunnels. Of these, [2009a] is the most complete,
while of the shorter summaries in the other papers, the material in [2009b] is the
closest to our present needs. For convenience of the reader, we will provide in this
and the next three sections a review adapted to our work here. It also establishes
notation that is used in the rest of the paper.

This section gives a brief overview of the theory in [Cho and McCullough
2009a]. Fix a “standard” genus-2 unknotted handlebody H in S3. Regard a tunnel
of K as a 1-handle attached to a neighborhood of K to obtain an unknotted genus-2
handlebody. Moving this handlebody to H by an isotopy of S3, a cocore disk for the
1-handle moves to a nonseparating disk in H . The indeterminacy due to the choice
of isotopy is exactly the Goeritz group, which is the group of path components
of the space of orientation-preserving homeomorphisms of S3 that take H onto
H . Consequently, the collection of all tunnels of all tunnel number 1 knots, up to
orientation-preserving homeomorphism, corresponds to the orbits of nonseparating
disks in H under the action of the Goeritz group. Indeed, it is convenient for us to
define a tunnel to be an orbit of nonseparating disks in H under the action of the
Goeritz group.
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λ ρ

Figure 6. A slope disk of {λ, ρ}, and a pair of its cabling arcs
contained in B.

Work of Scharlemann [2004], Akbas [2008], and Cho [2008] gives a very good
understanding of the way that the Goeritz group acts on the disks in H . As detailed
in [Cho and McCullough 2009a], the orbits (tunnels) can be arranged in a treelike
structure which encodes much of the topological structure of tunnel number 1 knots
and their tunnels.

When a nonseparating disk τ ⊂ H is regarded as a representative of a tunnel,
or simply a tunnel itself, the corresponding knot is a core circle of the solid torus
that results from cutting H along τ . This knot is denoted by Kτ . For example, in
the handlebody shown in Figure 6, a core circle of the solid torus cut off by the
middle disk is a trefoil knot.

A disk τ in H is called primitive if there is a disk τ ′ in S3− H such that ∂τ and
∂τ ′ cross in one point in ∂H . Equivalently, Kτ is the trivial knot in S3. All primitive
disks are equivalent under the action of the Goeritz group. This equivalence class
is the unique tunnel of the trivial knot.

A primitive pair is an isotopy class of two disjoint nonisotopic primitive disks in
H . A primitive triple is defined similarly. All primitive pairs are equivalent under
the Goeritz group, as are all primitive triples.

It is important to understand that a triple of nonseparating disks in H corresponds
to an isotopy class of θ -curves in H , specifically, the θ -curve whose arcs are “dual”
to the three disks — each arc cuts across exactly one of the three disks once, each
disk meets exactly one of the three arcs, and each of the balls obtained by cutting
H along the union of the three disks deformation retracts to the portion of the θ-
curve that it contains. This θ-curve is “unknotted” in S3, that is, the closure of
the complement of a regular neighborhood is a genus-2 handlebody. Thus an orbit
of such triples under the Goeritz group corresponds to an isotopy class in S3 of
unknotted θ -curves.

4. Slope disks and cabling arcs

This section gives the definitions needed for computing the slope invariants that
will be discussed in Section 5. Fix a pair of disjoint nonseparating disks λ and ρ
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(for “left” and “right”) in the standard unknotted handlebody H in S3, as shown
abstractly in Figure 6. The pair {λ, ρ} is arbitrary, so in the true picture in H in
S3, they will typically look a great deal more complicated than the pair shown in
Figure 6. Let N be a regular neighborhood of λ∪ ρ and let B be the closure of
H − N . The frontier of B in H consists of four disks which appear vertical in
Figure 6. Denote this frontier by F , and let 6 be B ∩ ∂H , a sphere with four holes.

A slope disk for {λ, ρ} is an essential disk in H , possibly separating, which is
contained in B− F and is not isotopic to any component of F . Any loop in 6 that
is not homotopic into ∂6 is the boundary of a unique slope disk. (Throughout our
work, “unique” means unique up to isotopy in an appropriate sense.) If two slope
disks are isotopic in H , then they are isotopic in B. The boundary of a slope disk
always separates 6 into two pairs of pants.

An arc in 6 whose endpoints lie in two different boundary circles of 6 is called
a cabling arc. Figure 6 shows a pair of cabling arcs disjoint from a slope disk.
A slope disk is disjoint from a unique pair of cabling arcs, and each cabling arc
determines a unique slope disk.

Each choice of nonseparating slope disk for a pair µ = {λ, ρ} determines a
correspondence between Q ∪ {∞} and the set of isotopy classes of slope disks
of µ, as follows. Fixing a nonseparating slope disk τ for µ, write (µ; τ) for the
ordered pair consisting of µ and τ .

Definition 4.1. A perpendicular disk for (µ; τ) is a disk τ⊥, with the following
properties:

(i) τ⊥ is a slope disk for µ.

(ii) τ and τ⊥ intersect transversely in one arc.

(iii) τ⊥ separates H .

There are infinitely many choices for τ⊥, but since H ⊂ S3 there is a natural way to
choose a particular one, which we call τ 0. It is illustrated in Figure 7. To construct
it, start with any perpendicular disk and change it by Dehn twists of H about τ
until the core circles of the complementary solid tori have linking number 0 in S3.

For calculations, it is convenient to draw the picture as in Figure 7, and orient
the boundaries of τ and τ 0 so that the orientation of τ 0 (the “x-axis”), followed
by the orientation of τ (the “y-axis”), followed by the outward normal of H , is
a right-hand orientation of S3. At the other intersection point, these give the left-
hand orientation. The coordinates will be unaffected by changing which of the
disks in {λ, ρ} is called λ and which is ρ.

Let 6̃ be the covering space of 6 such that:

(i) 6̃ is the plane with an open disk of radius 1/8 removed at each point with
coordinates in Z×Z+ ( 1

2 ,
1
2).
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λ+ ρ+

λ− ρ−

λ τ ρ

Kρ Kλ

τ 0

Figure 7. The slope-zero perpendicular disk τ 0. It is chosen so
that Kλ and Kρ have linking number 0.

λ+ λ− λ+ λ−

ρ+ ρ− ρ+ ρ−

λ+ λ− λ+ λ−

ρ+ ρ− ρ+ ρ−

λ+ λ−

ρ+ ρ−

τ 0

τ

Figure 8. The covering space 6̃→6, and some lifts of the pair
of [1,−3]-cabling arcs from Figure 6. The shaded region is a
fundamental domain.

(ii) The components of the preimage of τ are the vertical lines with integer x-
coordinate.

(iii) The components of the preimage of τ 0 are the horizontal lines with integer
y-coordinate.

Figure 8 shows a picture of 6̃ and a fundamental domain for the action of its group
of covering transformations, which is the orientation-preserving subgroup of the
group generated by reflections in the half-integer lattice lines (that pass through
the centers of the missing disks). Each circle of ∂6̃ double covers a circle of ∂6.

Each lift of a cabling arc α of 6 to 6̃ runs from a boundary circle of 6̃ to one
of its translates by a vector (p, q) of signed integers, defined up to multiplication
by the scalar −1. In this way α receives a slope pair [p, q] = {(p, q), (−p,−q)},
and is called a [p, q]-cabling arc. The corresponding slope disk is assigned the
slope pair [p, q] as well, and can be called a [p, q]-slope disk. The cabling arcs in
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Figure 8 are [1,−3]-cabling arcs. A corresponding [1,−3]-slope disk is the one
shown in Figure 6.

An important observation is that a [p, q]-slope disk is nonseparating in H if and
only if q is odd. Both happen exactly when a corresponding cabling arc has one
endpoint in λ+ or λ− and the other in ρ+ or ρ−.

Definition 4.2. Let λ, ρ, and τ be as above, and let µ= {λ, ρ}. The (µ; τ)-slope
of a [p, q]-slope disk or cabling arc is q/p ∈Q∪ {∞}.

The (µ; τ)-slope of τ 0 is 0, the (µ; τ)-slope of τ is∞, and the (µ; τ)-slope of a
slope disk that looks like the one in Figure 6 is −3. The (µ; τ)-slope can also be
called the {τ, τ 0

}-slope, when the choice of µ is clear.
Slope disks for a primitive pair are called simple disks, and are handled in a

special way. Rather than using a particular choice of τ from the context, one
chooses τ to be some third primitive disk. Altering this choice can change [p, q]
to any [p+nq, q], but the quotient p/q is well-defined as an element of Q/Z∪{∞}.
This element [p/q] is called the simple slope of the slope disk. For example, if µ
is a primitive pair, the simple slope of the disk from Figure 6 is [2/3]. The simple
slope of a slope disk is [0] exactly when the slope disk is itself primitive. Simple
disks have the same simple slope exactly when they are equivalent by an element
of the Goeritz group.

5. The cabling construction

In a sentence, the cabling construction (sometimes just called a cabling) is to
“Think of the union of K and the tunnel arc as a θ-curve, and rationally tangle
the ends of the tunnel arc and one of the arcs of K in a neighborhood of the other
arc of K .” We sometimes call this “swap and tangle,” since one of the arcs in the
knot is exchanged for the tunnel arc, then the ends of other arc of the knot and the
tunnel arc are connected by a rational tangle.

Figure 9 illustrates two cablings, one starting with the trivial knot and obtaining
the trefoil, then another starting with the tunnel of the trefoil.

More precisely, begin with a triple {λ, ρ, τ }, regarded as a pair µ = {λ, ρ}
with a slope disk τ which represents a tunnel. Choose one of the disks in {λ, ρ},
say λ, and a nonseparating slope disk τ ′ of the pair {λ, τ }, other than ρ. This is a
cabling operation producing the tunnel τ ′ from τ . In terms of the “swap and tangle”
description of a cabling, λ is dual to the arc of Kτ that is retained, and the slope
disk τ ′ determines a pair of cabling arcs that form the rational tangle that replaces
the arc of Kτ dual to ρ.

Provided that {λ, ρ, τ } was not a primitive triple, we define the slope of this
cabling operation to be the ({λ, τ }; ρ)-slope of τ ′. When {λ, ρ, τ } is primitive, the
cabling construction starts with the tunnel of the trivial knot and produces an upper
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π0 π π1 π0

τ0

π1

π1

τ0

π0

τ1

π0

τ0

Figure 9. Examples of the cabling construction.

or lower tunnel of a 2-bridge knot, unless τ ′ is primitive, in which case it is again
the tunnel of the trivial knot and the cabling is called trivial. The slope of a cabling
starting with a primitive triple is defined to be the simple slope of τ ′. The cabling
is trivial when the simple slope is [0].

Since tunnel disks for knot tunnels are nonseparating, the slope invariant of
a cabling construction producing a knot tunnel is of the form q/p with q odd
(or [p/q] with q odd, for a simple slope). In this paper, all cablings will use
nonseparating disks and produce knots. In general, a cabling construction can also
use a separating disk as τ ′, which will produce a tunnel of a tunnel number 1 link,
and no further cabling is then possible. The slope invariant of such a cabling is
defined in the same way, and has q even.

A nontrivial tunnel τ0 produced from the tunnel of the trivial knot by a single
cabling construction is called a simple tunnel. These are the well-known “upper
and lower” tunnels of 2-bridge knots. Not surprisingly, the simple slope m0 is a
version of the standard rational parameter that classifies the 2-bridge knot Kτ0 .

A tunnel is called semisimple if it is disjoint from a primitive disk, but not
from any primitive pair. The simple and semisimple tunnels are exactly the (1, 1)-
tunnels, that is, the upper and lower tunnels of knots in 1-bridge position with
respect to a standard torus of S3. A tunnel is called regular if it is neither primitive,
simple, or semisimple.

6. The tunnel invariants and the principal vertex

Theorem 13.2 of [Cho and McCullough 2009a] shows that every tunnel of every
tunnel number 1 knot can be obtained by a uniquely determined sequence of cabling
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constructions. The associated cabling slopes form a sequence

m0, m1, . . . , mn = [p0/q0], q1/p1, . . . , qn/pn

where m0 ∈Q/Z and each qi is odd, called the sequence of slope invariants of the
tunnel, or just its slope sequence.

The unique sequence of cabling constructions producing a tunnel τ begins with
a primitive triple {λ−1, ρ−1, τ−1}, where τ−1 is regarded as the tunnel of the trivial
knot. The cabling constructions produce triples {λi , ρi , τi } for 0 ≤ i ≤ n, each
{λi , ρi , τi } is either {λi−1, τi−1, τi } or {τi−1, ρi−1, τi }. The triple {λn, ρn, τn} is
called the principal vertex of τ . (It is called a vertex because it corresponds to a ver-
tex in the “tree of knot tunnels” of [Cho and McCullough 2009a]). The uniquenss
of the sequence of cabling constructions producing τ is really just the fact that in
this tree there is a unique arc between any two vertices — in this case the unique
vertex corresponding to the primitive triple and the nearest vertex containing τ —
and each cabling construction corresponds to a step along this arc.

As we noted in Section 3, the principal vertex is dual to a specific isotopy class
of θ-curves in S3. The arc of this θ-curve that is dual to the tunnel disk furnishes
a canonical tunnel arc representing the tunnel (and the other two arcs form the
knot). Indeed, each of the triples {λi , ρi , τi } determines the canonical tunnel arc
representative of the tunnel τi . Geometrically, each cabling construction along the
way produces the canonical tunnel arc of the resulting tunnel.

There is a second set of invariants associated to a tunnel. Each mi is the slope
of a cabling that begins with a triple of disks {λi−1, ρi−1, τi−1} and finishes with
{λi , ρi , τi }. For i ≥2, put si =1 if {λi , ρi , τi }={τi−2, τi−1, τi }, and si =0 otherwise.
In terms of the swap-and-tangle construction, the invariant si is 1 exactly when the
rational tangle replaces the arc of the knot that was retained by the previous cabling
(for i = 1, the choice does not matter, as there is an element of the Goeritz group
that preserves τ0 and interchanges λ0 and ρ0).

A tunnel is simple or semisimple if and only if all si = 0. The reason is that both
conditions characterize cabling sequences in which one of the original primitive
disks is retained in every cabling; this corresponds to the fact that there exists a
tunnel arc for the tunnel (the canonical tunnel arc, in fact) whose union with one
of the arcs of the knot is unknotted.

7. Standard tangles

As we have seen, the cabling construction involves the replacement of a portion of
a knot by a rational tangle in the ball B. In our later slope calculations, the rational
tangle is positioned in B according to the picture seen in Figure 10, which we call
a standard tangle. Notice that a standard tangle is isotopic (keeping endpoints in
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bn bn−1 b1

an a1

Figure 10. A standard tangle of type (a1, b1, . . . , an, bn). For ai ,
each left-hand half-twist counts as +1, while for bi , each right-
hand half-twist does.

the frontier of B) to a unique pair of cabling arcs. So it makes sense to speak of
the slope of a standard tangle. The next proposition gives a simple expression for
this slope.

Proposition 7.1. In the coordinates coming from the pair {τ, τ 0
} shown in the first

drawing in Figure 11, the standard tangle of type (a1, b1, . . . , an, bn) has slope
given by the continued fraction [a1, b1, . . . , an, bn].

Proof. We write U =
[ 1

0
1
1

]
and L =

[ 1
1

0
1

]
, and refer to Figure 11. The pair of arcs

in the first picture of B has slope∞, and performing bn left-hand half-twists of the
right half of B produces the pair in the second picture, which has slope coordinates
[bn, 1]. Regarding a pair of slope coordinates [p, q] as a column vector

[ q
p

]
, this

is expressed algebraically by the calculation

Lbn

[
1
0

]
=

[
1 0
bn 1

] [
1
0

]
=

[
1
bn

]
,

in which the resulting column vector gives the slope coordinates of the resulting
cable. Next, we perform an right-hand half-twists of the bottom half of B. As
seen in the third, fourth, and fifth pictures of Figure 11, this moves the arcs to
the standard tangle of type (an, bn). The effect of a right-hand half-twist on slope
coordinates is to send [p, q] to [p, q + p], which is the effect of multiplication by

τ 0

τ bn

bn

an

Figure 11. Calculating the slope of a standard tangle.
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U . So the resulting slope coordinates from an twists are

U an Lbn

[
1
0

]
=

[
1 an

0 1

] [
1
bn

]
=

[
1+ anbn

bn

]
,

and the slope is an + 1/bn = [an, bn]. An inductive calculation shows that

U a1 Lb1 · · ·U an Lbn

[
1
0

]
=

[
q
p

]
where q/p = [a1, b1, . . . , an, bn] [Cho and McCullough 2009a, Lemma 14.3], ver-
ifying the proposition. �

8. Unwinding rational tangles

In this section, we introduce two isotopy maneuvers similar to the one in Section 2.
They reposition a knot that is produced by a cabling construction on a knot and
tunnel in the standard position detailed in Section 2. This leads to our first main
result, Theorem 8.1, which tells how performing a cabling construction on an upper
tunnel in standard position changes a braid description of the (1, 1)-position.

Figure 12(a) shows a knot and tunnel produced by a cabling construction, start-
ing from a tunnel in the standard position seen in Figure 5(c). Notice that the
original tunnel arc seen in Figure 5(c) now appears as an arc of the new knot — this
is the “swap” part of the cabling construction. The arc labeled αW in Figure 5(c),
that was an arc of the original knot, is replaced by a standard tangle in the position
shown in Figure 12(a). The new tunnel arc is the dotted arc at the lower left of the
two-bridge configuration. Provided that the original tunnel arc was the canonical
tunnel arc of the original knot, the new tunnel arc is the canonical tunnel arc of the

2a1

b1

(a) (b)

Figure 12. Unwinding full twists of the middle two strands.
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new knot. This is because the cablings in the unique sequence producing a tunnel
produce the canonical tunnel arcs for each tunnel (see Section 6).

The knot resulting from this cabling construction depends on the element ω ∈B,
not just on its double coset 〈δ`, σ 〉ω〈δm, σ 〉.

Since the slope of any cabling producing a knot (rather than a two-component
link) is of the form q/p with q odd, Lemma 14.2 of [Cho and McCullough 2009a]
shows that q/p has a continued fraction expansion of the form

[2a1, b1, 2a2, b1, . . . , 2an, bn].

So we can and will assume that the standard tangle in Figure 12 has type of the
form (2a1, b1, 2a2, . . . , 2an, bn), and conseqeuntly the middle two strands in the
tangle have only full twists.

The first maneuver unwinds one left-hand full twist of the middle two strands at
the top of the braid, adding a letter δ−1

` at the beginning of the braid description of
the previous knot. During the isotopy, the knot cuts once across a core circle of W .
The resulting knot is shown in Figure 12(b). If the twist is right-hand, the isotopy
is similar but a letter δ` is added.

The second maneuver is possible when there are no twists of the middle two
strands at the top of the braid, as in Figures 12(b) and 13(a). It is similar to the first
maneuver, but unwinds half-twists of the left two strands at the expense of adding
initial powers of σ to ω. During the isotopy, the knot need not pass through a core
circle of W ; it can be fixed outside a small neighborhood of the ball B that contains
the standard tangle. As seen in Figure 13(b), unwinding a single half-twist adds
an initial letter σ or σ−1 to the braid description, according as the half-twist is
right-handed or left-handed.

(a) (b)

Figure 13. Unwinding half-twists of the left two strands.
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If there are additional twists of the middle or left strands lying below those shown
in Figure 12, they can be unwound by repeating the previous two maneuvers. Thus
the sequence of full twists of the middle two strands and half-twists of the left
two strands unwinds to add σ bnδ

−an
` · · · σ b1δ

−a1
` at the start of the braid description.

The knot and tunnel are then in the position in Figure 5(a), and the maneuver of
Section 2 puts the knot and tunnel into the standard position of Figure 5(c), adding
δmσ to the front of the braid description. This establishes our first main result:

Theorem 8.1 (Unwinding theorem). Suppose that a (1, 1)-knot K and its upper
(1, 1)-tunnel are in standard position with braid description w ∈B. Perform a ca-
bling construction that introduces a standard tangle of type (2a1, b1, . . . , 2an, bn),
positioned as shown in Figure 12. Then using (1, 1)-isotopy, the new knot and
tunnel can be put into standard position with braid description

δmσ · σ
bnδ
−an
` σ bn−1 · · · σ b1δ

−a1
` ·w.

9. The slope theorem

To calculate the slope invariant of a cabling as in Figure 12, we must find the slope-
zero perpendicular disk ρ0 of ρ, where ρ is the slope disk in Figure 14(a). Then we
determine the {ρ, ρ0

}-slope of the standard tangle of type (2a1, b1, . . . , 2an, bn). In
this section, we will carry these out, leading to our second main result, Theorem 9.3.
It gives a simple expression for the slope of a cabling construction of the type
considered in Theorem 8.1. The expression involves an integer that counts the
number of turns the knot makes around the solid torus T × I ∪ V . Definition 9.1
and Proposition 9.2 will show how to compute this integer from a braid description
of the (1, 1)-position.

ρ

t times

(a) (b)

Figure 14. Finding the slope-zero perpendicular disk ρ0. The first
drawing (a) shows ρ and indicates the direction of algebraically
positive winding of the knot around V . The second (b) shows the
0-linking pair for ρ0, for the case t = 3. The corresponding disk
ρ0 appears in Figure 15(b).
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Assuming that the upper tunnel of K is in standard position as in Figure 5(c), we
always choose the orientation on K to be directed over the top arch αW from the
black point to the white point. The algebraic winding number for this position of
K is defined to be the net number of turns that K makes in the direction of positive
orientation on the longitude ` of T × I ∪V (the direction indicated in Figure 14(a)),
that is, the algebraic intersection of K with a meridian disk of T × I ∪ V bounded
by the loop m.

Definition 9.1. For ω ∈B, define t (ω) ∈ Z as follows. For each appearance of δε`
(ε =±1) in ω, write ω=ω1δ

ε
`ω2, and let k be the total exponent of σ in ω1. Assign

the value (−1)k+1ε to this appearance of δε` , and sum these over all appearances to
give t (ω).

Proposition 9.2. If K=K(ω), then t (ω) equals the algebraic winding number of K.

Proof. For our designated orientation on K and choice of direction of positive
winding, an initial letter δ` in ω as in the example of Figure 3(a) would contribute
−1 to the algebraic winding number of K . If it were δ−1

` it would contribute
+1. When δε` is not the initial letter, each of the appearances of σ preceding
an appearance of δε` in ω reverses the direction in which the orientation of K is
directed around the turn corresponding to this δε` term. So if there are k such
appearances of σ , this appearance of δε` contributes (−1)k(−ε)= (−1)k+1ε to the
algebraic winding number. Apart from this effect of σ on the signs of these terms,
the appearances of δm and σ in ω make no contribution to the algebraic winding
number. �

We can now state our second main result.

Theorem 9.3 (Slope theorem). Let K = K (ω) be a knot in braid position with
upper tunnel in standard position as shown in Figure 5(c). Suppose that a ca-
bling construction as in Figure 12 is performed using a standard tangle of type
(2a1, b1, . . . , 2an, bn). Then the slope of the cabling is given by the continued
fraction [2t (ω)+ 2a1, b1, 2a2, . . . , bn].

Proof. Figure 14(b) shows the link formed by the core circles of the solid tori
into which the slope disk in Figure 15(b) will cut a handlebody neighborhood of
the union of the knot and the tunnel. The lower component is (1, 1)-isotopic to
K , while the upper component is a core circle of the solid torus W . Let t be
the number of full left-handed twists of the right half of B needed to change the
disk ρ⊥ in Figure 15(a) to the disk in Figure 15(b). Recalling that the algebraic
winding number of K is its algebraic intersection number with a meridian disk of
T × I ∪ V , we see that the linking number of the lower component with the upper
component is t less than the algebraic winding number of K . If we choose t to equal
this algebraic winding number, then the linking number will be 0, and therefore
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τ+ τ− τ+ τ−
ρ

ρ⊥
ρ0

λ+ λ− λ+ λ−

(a) (b)

Figure 15. A perpendicular disk ρ⊥ and the slope-zero perpen-
dicular disk ρ0 for the case t = 3.

the disk in Figure 15(b) will be the canonical zero-slope disk ρ0. According to
Proposition 9.2, the algebraic winding number of K is t (ω), so the condition is
that t = t (ω).

Now consider a standard tangle K0 of type (2a1, b1, . . . , 2an, bn), as shown
in Figure 10. Regard it as contained in the portion of the handlebody shown in
Figure 15, as in Figure 12. Proposition 7.1 gives the slope of K0 with respect to
the pair {ρ, ρ⊥} in Figure 15(a) to be [2a1, b1, . . . , 2an, bn]. We denote this slope
by m(K0, {ρ, ρ

⊥
}), and by m(K0, {ρ, ρ

0
}) the slope with respect to {ρ, ρ0

}.
Let u denote a full left-hand twist of the right-hand side of the ball in Figure 15.

We have already seen that ut(ρ⊥) = ρ0, and we note also that ut(ρ) = ρ. In the
view of Figure 10, u is a full left-hand twist of the bottom half of B, so u−t moves
K0 to the standard tangle of type (2t + 2a1, b1, 2a2, b2, . . . , 2an, bn). We can now
compute the slope of the cabling as

m(K0, {ρ, ρ
0
})= m(K0, {ρ, ut(ρ⊥)})= m(K0, {ut(ρ), ut(ρ⊥)})

= m(u−t(K0), {ρ, ρ
⊥
})= [2t + 2a1, b1, . . . , 2an, bn]

where Proposition 7.1 gives the final equality. �

Example 9.4. Figure 16 shows the knot of Figure 9 of [Cho and McCullough
2009a] moved into (1, 1)-position. The upper right-hand drawing is the original
knot and its upper and lower tunnels τ1 and τ2. In the (1, 1)-position in Figure 9
of [Cho and McCullough 2009a], τ2 is the upper tunnel. From the bottom-right
drawing, we read off a braid description of τ2 as ω = δ−1

m σ−1δ`δ
−1
m σ 3δ−1

` =

σδmδ`δ
−1
m σ 3δ−1

` ∼ δmδ`δ
−1
m σ 3δ−1

` .
To compute the slope invariants for the tunnel τ2, we use the relation δ−1

m =σδmσ

to put ω into the form

δmσ ·ω1(δ`, σ ) · δmσ ·ω0(δ`, σ )= δmσ · σ
−1δ`σ · δmσ · σ

3δ−1
` .

We now use Theorems 8.1 and 9.3 to read off the slopes. The first cabling starts
from the trivial knot K , which has algebraic winding number t (1)= 0. Since the
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τ1

τ2

τ1

τ2

τ1

τ2

τ1

τ2

Figure 16. Putting a knot into (1, 1)-position.

cabling corresponds to the portion δmσ · ω0(δ`, σ ) = δmσ · σ
3δ−1
` , Theorem 8.1

shows that the standard tangle used in the cabling is of type (2a1, b1) = (2, 3).
By Theorem 9.3, the ordinary slope of the first cabling is given by the continued
fraction [0+ 2, 3] = 7/3, so the simple slope is [3/7] in Q/Z. The second cabling
begins with this knot, so has algebraic winding number t (δmσ ·σ

3δ−1
` )= (−1)4+1

·

(−1) = 1. From Theorem 8.1, we have a1 = 0, b1 = 1, a2 = −1, and b2 = −1,
so by Theorem 9.3 the second cabling slope is given by the continued fraction
[2+ 0, 1,−2,−1] = 7/2. Therefore the slope sequence of τ2 is [3/7], 7/2.

The tunnel τ1 is the upper tunnel of the (1, 1)-position described by the reverse
braid of ω,

δ−1
m σ 3δ−1

` δmδ` ∼ δmσ · σ
3δ−1
` · δmσ · σ

−1δ` ,

giving the first slope of τ1 to be [0+ (−2),−1] = −3 and consequently its simple
slope to be [−1/3] = [2/3] ∈ Q/Z. For the second slope, we have t (δmδ`) =

(−1)0+1
· 1 = −1, a1 = 1, and b1 = 3, giving the slope [2 · (−1)+ 2, 3] = 1/3.

Therefore the cabling slope sequence of the lower tunnel is [2/3], 1/3.

10. Tunnels of 2-bridge knots

In this section we will give braid descriptions of the tunnels of 2-bridge knots, and
use them to calculate the slope invariants. We obtain, of course, the same values as
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in the calculation of [Cho and McCullough 2009a, Section 15]. In Theorem 10.5
we give a characterization of which sequences of rational numbers (with initial
term in Q/Z) occur as slope sequences of tunnels of 2-bridge knots.

A convenient reference for the tunnels of 2-bridge knots is [Morimoto and
Sakuma 1991, Section (1.6)]. In [ibid., Section (1.1)], the authors give a definition
of dual tunnels, and the discussion in [ibid., Section (1.2)] shows that two tunnels
of a knot in S3 are dual exactly when they are the upper and lower tunnels for the
same (1, 1)-position of the knot. As we saw in Section 1, the dual of a tunnel given
by a braid description ω has a braid description by the reverse braid of ω.

Figure 17 shows a 2-bridge knot, where the regions labeled 2ai indicate 2ai

left-hand half-twists and those labeled bi indicate bi right-hand half-twists. The
upper, lower, upper semisimple, and lower semisimple tunnels are shown; from
[ibid., Section (1.6)], the upper semisimple and lower simple tunnels are dual, as
are the lower semisimple and upper simple tunnels.

This position is assigned to the rational number a/b given by the continued frac-
tion [2a1, b1, 2a2, . . . , 2an, bn]. Changing the position by (1, 1)-isotopy if need be,
we may assume that 2a1 and bn are nonzero (indeed we may assume that no ai or
bi is zero, although for some calculations it is convenient to allow zero values),
and we always choose a positive, so have 0< |b|< a. Also, a is odd (the values
when a is even correspond to 2-bridge links).

Notice that there is an isotopy moving the knot in Figure 17 to the position
given by the continued fraction [−bn,−2an,−bn−1, . . . ,−b1,−2a1]. The first
step is to move the top horizontal strand down to the bottom. The twists bi then
appear in the middle and the 2ai at the top. Then the entire knot is rotated until
it looks as in Figure 17 except with the twists bi in the middle and the 2ai at the
bottom; the minus signs are due to the convention about which directions of twists
are considered to be positive for the middle versus the bottom two strands. The
upper tunnel for the second position is the lower tunnel for the original position.
Similarly, the upper semisimple tunnel for the first position is the lower semisimple
tunnel for the second.

U

US

L

L S

2a1 2a2

b1 bn

Figure 17. A 2-bridge knot with classifying invariant given by
the continued fraction 1/[2a1, b1, 2a2, . . . , 2an, bn]. The upper
and lower tunnels U and L and the upper and lower semisimple
tunnels US and L S are shown.
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If [2a1, b1, . . . , 2an, bn] = a/b, then [−bn,−2an,−bn−1, . . . ,−b1,−2a1] is
a/b′ where 0 < |b| < a, 0 < |b′| < a, and bb′ ≡ 1 mod a. This and many other
basic facts about continued fraction expansions can be verified using Lemma 14.3
of [Cho and McCullough 2009a]. For suppose we use Lemma 14.2 of that reference
(which is itself a consequence of Lemma 14.3) to write [2a1, b1, . . . , 2an, bn] =

a/b. By Lemma 14.3, we have U 2a1 Lb1 · · ·U 2an Lbn =
[a

b
r
s

]
, where

[−bn,−2an,−bn−1, . . . ,−b1,−2a1] = −[bn, 2an, bn−1, . . . , b1, 2a1] = a/(−r).

Since as− rb = 1, we have (−r)b = 1 mod a.
The 2-bridge knot is actually classified up to isotopy by the pair of (possibly

equal) values b/a and b′/a in Q/Z. Replacing a/b by a/(b ± a), if necessary,
and applying Lemma 14.2 of [Cho and McCullough 2009a], we may assume that
all terms in the continued fraction expansion of a/b are even. The corresponding
2-bridge position, having only full twists of the left two strands and the middle two
strands, is called the Conway position of the 2-bridge knot.

Proposition 10.1. The lower simple tunnel has slope invariant

m0 = [1/[2a1, b1, . . . , 2an, bn]] ,

and the upper simple tunnel has slope invariant

m0 = [1/[−bn,−2an,−bn−1, . . . ,−b1,−2a1]].

Proof. Figure 18, a case of Figure 12(a), shows a 2-bridge knot K obtained from
the trivial knot K0 by a single cabling. The tunnel arc is the lower simple tun-
nel of K . Since the algebraic winding number t (K0) is 0, Theorem 9.3 gives
the slope of this cabling to be [2a1, b1, . . . , 2an, bn], so the simple slope of the
lower tunnel is [1/[2a1, b1, . . . , 2an, bn]]. Since the upper simple tunnel is the
lower simple tunnel for the position of K corresponding to the continued fraction
[−bn,−2an,−bn−1, . . . ,−b1,−2a1], the simple slope of the upper tunnel is as
given in the proposition. (To apply Theorem 9.3, the position would have to be
moved by isotopy to change the −bi to be even, but this would not change the
value of the continued fraction.) �

From Proposition 10.1, we have:

Corollary 10.2. Let the rational invariant of the 2-bridge knot be given by the
continued fraction a/b = [2a1, b1, 2a2, . . . , 2an, bn], with 0< b < a. Let b′ be the
integer with 0 < b′ < a and bb′ ≡ 1 mod a. Then the simple slope of the upper
tunnel of K is [b′/a], and the simple slope of the lower tunnel is [b/a].

We turn now to the semisimple tunnels, whose slope invariants were calculated
in [Cho and McCullough 2009a]. We will obtain a braid description such that the
upper semisimple tunnel is the upper tunnel for the associated (1, 1)-position, then
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2a1

b1

Figure 18. The slope calculation for the lower tunnel of a 2-bridge knot.

use it to recover the slope calculation of [Cho and McCullough 2009a]. We will
also prove a new result, Theorem 10.5, which characterizes the slope sequences of
these tunnels.

Braid descriptions of these (1, 1)-positions were given by A. Cattabriga and M.
Mulazzani [2004] and more recently in the dissertation of A. Seo [2008]. Here is
the braid description that we will use:

Lemma 10.3. The braid word δ−a1
m σ b1 · · · δ

−an
m σ bnδ−1

` describes a (1, 1)-position
of the 2-bridge knot K given by [2a1, b1, . . . , 2an, bn]. The upper tunnel of this
(1, 1)-position is the upper semisimple tunnel of K .

A quick way to obtain this braid description is to use the fact that the upper
semisimple tunnel is dual to the lower simple tunnel. As seen in Figure 18, the
lower simple tunnel is obtained from the upper tunnel of the trivial knot by a
single cabling of type (2a1, b1, . . . , 2an, bn). By Theorem 8.1, this (1, 1)-position
is described by the braid δmσ

bn+1δ
−an
` · · · σ b1δ

−a1
` . Since the upper semisimple

tunnel is dual to the lower simple tunnel, it is the upper tunnel of the (1, 1)-position
described by the reverse of this word, which is

δ−a1
m σ b1 · · · δ−an

m σ bn+1δ` ∼ δ
−a1
m σ b1 · · · δ−an

m σ bnδ−1
` .

A second, perhaps more satisfying way to obtain Lemma 10.3 is to see the braid
directly. Figure 19 shows the setup. The second drawing shows the view from
inside W , similar to the view of Figure 3, and the first shows the view from T × I
looking at W from the outside. Observe that a full twist of the middle two strands
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m

`

δ−1
m

σ

`

m

Figure 19. Calculation of the braid description for the upper
semisimple tunnel of a 2-bridge knot, as seen from the outside
and from the inside of the standard torus.

represents the braid that moves the white point around m in the positive direction,
which is δ−1

m , and the half-twist of the left two strands represents σ .
Figure 20 shows the tunnel of the trivial knot as the upper semisimple tunnel of

the trivial 2-bridge knot. It is the upper tunnel for the (1, 1)-position of the trivial
knot described by the braid δ−1

` that moves the white point around ` in the positive
direction, that is, K (δ−1

` ).
Now, modify the trivial knot in Figure 20 by inserting a standard tangle of type

(2a1, b1, . . . , 2an, bn) into T × I , in the position seen in Figure 19. The portion
labeled δ−1

m in Figure 19 will be 2a1 left-hand half-twists, the portion labeled σ
will be b1 right-hand half twists, below this will be 2a2 left-hand half-twists, and
so on, ending with bn half-twists and then the δ−1

` already present. This produces
the knot seen in Figure 17, and the upper semisimple tunnel seen there, and the
braid description of Lemma 10.3.

m

`

Figure 20. The initial position of the trivial tunnel as an upper
semisimple tunnel has braid description δ−1

` .
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We are now ready to calculate the slope invariants. By allowing the possibility
that bi = 0, we may assume that every ai is ±1 (since continued fractions have the
property that [· · · , n1+ n2, . . . ] = [· · · , n1, 0, n2, . . . ]). We may further assume
that if the last term bn =±1 then an and bn have the same sign.

It is convenient to reindex the continued fraction as [2ad ,bd ,2ad−1, . . . ,2a0,b0].
We first consider four cases with i ≥ 1:

Case I: ai = 1, ai−1 = 1. In this case the braid appears as

ω1 δ
−1
m σ bi δ−1

m σ bi−1 ω2 = ω1 σ (δmσ)σ
bi+1 δmσ

bi−1+1 ω2

and the cabling corresponding to ai has slope [2t (ω), bi + 1], where

ω = δmσ
bi−1+1 ω2.

Case II: ai =−1, ai−1 = 1. The braid is

ω1 δmσ
bi δ−1

m σ bi−1 ω2 = ω1 (δmσ)σ
bi δmσ

bi−1+1 ω2

and the cabling corresponding to ai has slope [2t (ω), bi ], with ω as in Case I.

Case III: ai = 1, ai−1 =−1. The braid is

ω1 δ
−1
m σ bi δmσ

bi−1 ω2 = ω1 σ (δmσ)σ
bi δmσ

bi−1 ω2

and the cabling corresponding to ai has slope [2t (ω), bi ], but this time

ω = δmσ
bi−1 ω2.

Case IV: ai =−1, ai−1 =−1. The braid is

ω1 δmσ
bi δmσ

bi−1 ω2 = ω1 (δmσ)σ
bi−1 δmσ

bi−1 ω2

and the cabling corresponding to ai has slope [2t (ω), bi−1], with ω as in Case III.

For the initial cabling, we have

Case V: a0 = 1. The braid is

· · · σ b1 δ−1
m σ b0δ−1

` = · · · σ
b1+1 (δmσ)σ

b0 δ−1
`

and the initial cabling has simple slope [1/[2, b0]] = [b0/(2b0+ 1)].

Case VI: a0 =−1. The braid is

· · · σ b1 δmσ
b0δ−1

` = · · · σ
b1 (δmσ)σ

b0−1 δ−1
`

and the initial cabling has simple slope [1/[2, b0− 1]] = [(b0− 1)/(2b0− 1)].
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From Cases V–VI, we have m0 = [b0/(2b0+ 1)] or m0 = [(b0− 1)/(2b0− 1)]
according as a0 is 1 or −1.

To compute the remaining mi , we assume that the knot is in Conway position
so that all the bi are even. We then have

t (ω2)= t (δ−ai−2
m σ bi−2 · · · δ−a0

m σ b0δ−1
` )= (−1)bi−2+···+b0 = 1 ,

and from Cases I–IV, using the fact that bi−1 is even, t (ω) equals−1 when ai−1= 1
and 1 when ai−1 =−1. That is, t (ω)=−ai−1. Summarizing, we have

Proposition 10.4. Let K be in the 2-bridge position corresponding to the contin-
ued fraction [2ad , 2bd , . . . , 2a0, 2b0], with b0 6= 0 and each ai = ±1. Then the
slope invariants of the upper semisimple tunnel of K are as follows:

(i) m0 =

[
2b0

4b0+ 1

]
or m0 =

[
2b0− 1
4b0− 1

]
according as a0 is 1 or −1.

(ii) For 1≤ i ≤ d , mi =−2ai−1+ 1/ki , where

(a) ki = 2bi + 1 if ai = ai−1 = 1,
(b) ki = 2bi if ai and ai−1 have opposite signs, and
(c) ki = 2bi − 1 if ai = ai−1 =−1.

This agrees with the calculation obtained in Section 15 of [Cho and McCullough
2009a].

Using Proposition 10.4, we can characterize the slope sequences of semisimple
tunnels of 2-bridge knots.

Theorem 10.5. Let m0,m1, . . . , md be a sequence with m0 ∈ Q/Z and mi ∈ Q

for i > 0. Then m0,m1, . . . , md is the slope sequence for a semisimple tunnel of a
2-bridge knot if and only if it satisfies the following:

(i) m0 =

[ n0
2n0+1

]
for some n0 /∈ {−1, 0}.

(ii) For i > 0, mi =±2+
1
ki

for some integer ki 6= 0.

(iii) m1 is positive or negative according as n0 is odd or even.

(iv) For 1≤ i ≤ d , mi has the same sign as mi−1 if and only if ki−1 is odd.

Proof. First assume that this is a slope sequence for a semisimple tunnel. Part
(i) follows from Proposition 10.4(i), with the excluded cases corresponding to the
cases when b0 = 0. Part (ii) is immediate from Proposition 10.4(ii). In Proposition
10.4(ii), m1 has the opposite sign from a0, and Proposition 10.4(i) shows that a0 is
negative or positive according as n0 is odd or even. This establishes part (iii). For
part (iv), Proposition 10.4(ii) shows that the signs of mi and mi−1 differ exactly
when ai−1 and ai−2 have opposite signs. By Proposition 10.4(ii), this is exactly
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the case when ki−1 = 2bi−1, and when ai−1 and ai−2 have the same sign, ki−1 =

2bi−1± 1 which is odd.
For the converse, given a sequence m0, . . . , md as stated in the theorem, we will

construct the continued fraction expansion a/b = [2ad , 2bd , . . . , 2a0, 2b0] for the
Conway position, with each ai =±1. Let a0 be −1 or 1 according to whether n0

is odd or even. For ascending i with 1 ≤ i ≤ d, let ai be ai−1 if ki is odd, and
−ai−1 if it is even. For the bi , put 2b0 = n0 or n0+ 1 according as n0 is even or
odd. Cases I–IV now determine the choices of the remaining 2bi which produce
the correct values for the mi : When ai = −ai−1, ki is even and Cases II and III
give 2bi = ki . When ai = ai−1, ki is odd and Cases I and IV show that 2bi = ki −1
if ai = 1 and 2bi = ki + 1 if ai =−1. �

11. Semisimple tunnels of torus knots

To set notation, consider a (nontrivial) (p, q)-torus knot K p,q , contained in our
standard torus T . It represents p times a generator in π1(V ∪ T × I ), and q times
a generator in π1(W ).

The tunnels of torus knots were classified by M. Boileau, M. Rost, and H. Zi-
eschang [Boileau et al. 1988] and Y. Moriah [1988]. The middle tunnel of K p,q is
represented by an arc in T that meets K p,q only in its endpoints. The upper tunnel
of K p,q is represented by an arc α properly imbedded in W , such that the circle
which is the union of α with one of the two arcs of K p,q with endpoints equal to
the endpoints of α is a deformation retract of W . The lower tunnel is like the upper
tunnel, but interchanging the roles of V ∪ T × I and W . For some choices of p
and q , some of these tunnels are equivalent.

A braid description for torus knots was obtained by A. Cattabriga and M. Mu-
lazzani [Cattabriga and Mulazzani 2005, Section 4]. Here we will use a similar
description due to A. Seo [2008]. Fix (p, q) relatively prime, and suppose for now
that p, q ≥ 2. In R2 we construct a polygonal path Pp,q from (0, 0) to (p, q), as
indicated in Figure 21 for the cases when (p, q) is (3, 7) and (7, 3), as follows:
Regard R2 as made up of squares with side length 1, whose corners have integer
coordinates. Consider the rectangle R with corners (0, 0) and (p, q), and let S be
the union of the squares in R2 whose bottom sides contain no points above the line
containing (0, 0) and (p, q). Then Pp,q is R ∩ ∂S.

Explicitly, for 0 ≤ k ≤ q put pk = dkp/qe. The points (pk, k) are indicated
in Figure 21. The intersection point of the diagonal of R with the line y = k has
x-coordinate kp/q, so dkp/qe is the x-coordinate of the first integral lattice point
on y = k that lies on or to the right of this intersection point. The path Pp,q is
the union for 1≤ i ≤ q of the segments (some of which may have length 0) from
(pi−1, i − 1) to (pi−1, i) and from (pi−1, i) to (pi , i).
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Figure 21. The points (pk, k) for 0≤ k ≤ q for the cases (p, q)=
(3, 7) and (p, q)= (7, 3).

We will now use Pp,q to obtain a braid description of K p,q . As usual, the braid
portion will start in T . Referring again to Figure 21, we may assume that the plane
picture is drawn so that the lifts of the fixed arc α in T from the black point to the
white point are short straight line segments positioned so that each meets only the
translate of the diagonal of R that contains its lower left point (that is, its black
point), and apart from that point lies below that translate.

Consider the braid β with the following description. As we descend in T × I ,
the T -coordinate of the white point stays fixed, while the T -coordinate of the black
point moves backward along the (p, q)-curve which is the image of the diagonal
of the rectangle (that is, the lift to R2 of its path in T starting (p, q) travels along
the diagonal of R to (0, 0)). The choice of the backward direction is not essential,
but leads to a simpler calculation. Since each lift of α lie below the translate of
the diagonal that it meets, the diagonal of R is isotopic, not crossing any lift of α
and in particular not crossing any lift of the white point, to Pp,q . This implies that
β is represented by the braid word whose letters correspond to the horizontal and
vertical steps along Pp,q (starting from the upper right), with each downward step
being δm and each leftward step being δ−1

` . This word is

ω(p,q) = δ
pq−1−pq
` δm · · · δ

p0−p1
` δm .

Similar considerations give a braid description for the case when p > 0 and
q < 0. For 0≤ k ≤ p put qk = dkq/pe. The braid is then

ω(p,q) =

p−1∏
k=0

δ`δ
qk−qk+1
m .
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Assuming as before that p, q ≥ 2, we now use ω(p,q) to compute the slope
coefficients of the upper tunnel of K p,q . We have

ω(p,q) ∼ δmδ
pq−2−pq−1
` · · · δmδ

p1−p2
` δmδ

p0−p1
`

= δmσ σ
−1δ

pq−2−pq−1
` · · · δmσ σ

−1δ
p1−p2
` δmσ σ

−1δ
p0−p1
` .

Putting ω j = δmδ
pj−1−pj
` · · · δmδ

p1−p2
` δmδ

−p1
` , we have

t (ω j )= (pj − pj−1)+ · · ·+ (p2− p1)+ (p1− p0)= pj − p0 = pj .

Now, working from the right, Theorem 9.3 finds the cabling slope sequence for
the upper tunnel:

[2(p1− p0),−1] = 2p1− 1

[2t (ω1)+ 2(p2− p1),−1] = 2p2− 1

· · ·

[2t (ωq−2)+ 2(pq−1− pq−2),−1] = 2pq−1− 1

These give the trivial knot as long as pj ≤ 1, so we have reproved one of the main
results from [Cho and McCullough 2009b]:

Theorem 11.1. Let p and q be relatively prime integers, both greater than 1. For
1 ≤ k ≤ q, put pk = dkp/qe, and let k0 =min{k | pk > 1}. Then the upper tunnel
of K p,q is produced by q − k0 cabling constructions, whose slopes are

[1/(2pk0 − 1)], 2pk0+1− 1, . . . , 2pq−1− 1.

Of course if p, q < 0, then K p,q = K−p,−q . When pq < 0, there is an orientation-
reversing equivalence from K p,q to K p,−q which takes upper tunnel to upper tunnel,
so the slopes are just the negatives of those given in Theorem 11.1 for K|p|,|q|. The
lower tunnel of K p,q is equivalent to the upper tunnel of Kq,p, so Theorem 11.1
also finds the slope sequences of the lower tunnels.

12. Toroidal (1, 1)-positions

As usual, we fix a decomposition S3
= V ∪ T × I ∪W , with T = T × {0} = ∂W

the standard torus in S3. A knot is said to be in a toroidal position if it is contained
in T × I and both of the coordinate projections from S1

× S1
× I to S1 restrict

to immersions on the knot. That is, when traveling along the knot, neither of the
S1-coordinates ever reverses direction.

Theorem 12.1. A simple or semisimple tunnel is the upper or lower tunnel of a
toroidal (1, 1)-position if and only if its sequence of slope coefficients is of the
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form
[1/n0], n1, . . . , nk

with the ni , 1≤ i ≤ k, either a nondecreasing sequence of positive odd integers or
a nonincreasing sequence of negative odd integers.

Before proving Theorem 12.1, we will use it to find the toroidal 2-bridge knots.

Corollary 12.2. A 2-bridge knot K admits a toroidal (1, 1)-position if and only if
it satisfies one of the following equivalent conditions:

(i) For some n > 0, its upper simple and upper semisimple tunnels have respective
slope sequences either [1/(2n+ 1)] and [1/3], 3, 3, . . . , 3, or [2n/(2n+ 1)]
and [2/3],−3,−3, . . . ,−3, where the latter sequences in each case have
length n.

(ii) Its classifying invariants are b/a = b′/a = 1/(2n+ 1).

(iii) It is a torus knot, in fact a (2n+ 1,±2)-torus knot for some n 6= 0.

Proof. Examining Proposition 10.4, we find that the only 2-bridge knots whose up-
per semisimple tunnels have slope sequences satisfying the condition of Theorem
12.1 are those whose rational invariants are given by the continued fractions

[−2, 2,−2, 2, . . . ,−2, 2] and [2,−2, 2,−2, . . . , 2,−2],

which give the slope sequences in (i) and correspond to the invariants in (ii). Using
Theorem 11.1, these are exactly the torus knots listed in (iii). �

We note that the 2-bridge knots in Corollary 12.2 have only one (1, 1)-position,
so no two-bridge knot with two (1, 1)-positions is toroidal.

Proof of Theorem 12.1. A toroidal (1, 1)-position is described by a braid of the
form δa1

m δ
b1
` · · · δ

an
m δ

bn
` where the ai all have the same sign and the same is true of

the bi ’s. If the ai are all negative, apply an orientation-reversing equivalence that
reverses the orientation on the S1-factor corresponding to δm so that the ai are all
positive. Since this negates all the cabling slopes, it will not affect whether the
slopes satisfy the conclusion of the theorem.

To compute the cabling slopes, it is convenient to allow some b j = 0, and rewrite
the braid as

δmδ
b0
` · · · δmδ

bk
` ∼ δmσ σ

−1δ
b0
` · · · δmσ σ

−1 δ
bk
` .

Using Theorem 9.3 to read off the cabling slopes, working from the right, we obtain
continued fractions

[−2bk,−1], [−2(bk−1+ bk),−1], . . . , [−2(b0+ · · ·+ bk),−1]

and the slope invariants are as claimed.
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Conversely, given the sequence n0, . . . , nk , put m j =−(n j + 1)/2 and let K be
in the (1, 1)-position with braid description

δmδ
mk−mk−1
` δmδ

mk−1−mk−2
` · · · δmδ

m1−m0
` δmδ

m0
` .

Calculation as above finds the slope coefficients of the upper tunnel to be [1/n0],
n1, . . . , nk . �

13. Algorithmic computation of braid descriptions

Using Theorems 8.1 and 9.3, it is not difficult to obtain a braid description for a
(1, 1)-position of a knot from the slope sequence [m0],m1, . . . , md of its upper
(1, 1)-tunnel:

(i) Assuming that m0 is selected so that 0< m0 < 1, write 1/m0 as a continued
fraction of the form [2a1, b1, 2a2, . . . , 2an, bn]. Put

ω0 = δmσ · σ
bnδ
−an
` · · · σ b1δ

−a1
` .

If we start with the trivial knot in braid position with braid description 1, by
Theorems 8.1 and 9.3 a cabling construction of slope [2a1,b1,2a2, . . . ,2an,bn]

(on the upper tunnel) produces the knot with braid description ω0. Since this
is the initial cabling, its simple slope is [1/[2a1, b1, 2a2, . . . , 2an, bn]] = [m0].

(ii) Write m1 in the form [2a1, b1, . . . , 2an, bn], and put

ω1 = δmσ · σ
bnδ
−an
` · · · σ b1δ

−a1
` · δ

t (ω0)
` .

By Theorems 8.1 and 9.3, a cabling of slope

m1 = [2t (ω0)+ 2(a1− t (ω0)), b1, 2a2, . . . , bn]

now produces a knot in (1, 1)-position with braid description ω1ω0.

(iii) Write m2 as [2a1, b1, . . . , 2an, bn], put ω2= δmσ ·σ
bnδ
−an
` · · · σ bnδ

−a1
` ·δ

t (ω1ω0)
` ,

and so on.

(iv) Put w = ωd · · ·ω1ω0.

14. Algorithmic computation of slope invariants

In this section we develop an effective algorithm for computing the slope invariants
of an upper or lower tunnel of a (1, 1)-position given by a braid description. We
will only concern ourselves with the upper tunnel, since the lower tunnel is the
upper tunnel of the knot described by the reverse braid.

The basic approach is obvious from the various examples that we have seen
computed; the main difficulties will arise in the technical matter of dealing with
anomalous infinite slopes.
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We start by writing the given braid description in the form

W0(δ`, σ ) ω W1(δm, σ ) ,

where ω starts with δ±1
m and ends with δ±1

` , and W0(δ`, σ ) and W1(δm, σ ) are words
in the indicated letters. Replacing each appearance of δ−1

m in ω with σδmσ , we can
write

ω ∼ δmσ ·ωd(δ`, σ ) · δmσ ·ωd−1(δ`, σ ) · · · δmσ ·ω0(δ`, σ )

where each ωi (δ`, σ ) lies in 〈δ`, σ 〉.
According to Theorem 8.1, the (1, 1)-position described by ω is obtained starting

from the trivial position (with braid description 1 and upper tunnel in standard
position) by a sequence of d + 1 cabling constructions with slopes given as in
Theorem 9.3. It may happen, however, that some have infinite slope (hence, strictly
speaking, are not genuine cabling constructions). This occurs exactly when the
slope given by Theorem 9.3 would be infinite — for instance, when ωi (δ`, σ )= δ

k
`

for some integer k, since then the slope is of the form [2t − 2k, 0] =∞.
To understand when the cabling produced by δmσ ·ωi (δ`, σ ) has infinite slope,

we will need a description of the subgroup 〈δ`, σ 〉 of B. The Reidemeister–Schreier
algorithm does not seem to be effective in this case, but there is an easy argument
giving a presentation for this subgroup:

Lemma 14.1. The subgroup 〈δ`, σ 〉 of B has presentation

〈δ`, σ | (δ`σ)
2
= 1〉.

Proof. Let B be the quotient of B obtained by adding the relation δ2
m = 1. It has

presentation

B= 〈δm, δ`, σ | (δ`σ)
2
= 1, δmσδ

−1
m = σ

−1, δm δ` δ
−1
m = σ

2δ`, δ
2
m = 1〉

which we may regard as a semidirect product

〈δ`, σ | (δ`σ)
2
= 1〉o 〈δm | δ

2
m = 1〉.

There is an obvious homomorphism 〈δ`, σ | (δ`σ)2 = 1〉→B, and the composition
〈δ`, σ | (δ`σ)

2
= 1〉 → B → B carries 〈δ`, σ | (δ`σ)2 = 1〉 isomorphically to

〈δ`, σ | (δ`σ)
2
= 1〉. The lemma follows. �

By Lemma 14.1, 〈δ`, σ 〉 is a free product of the form C2 ∗ C∞, where C2 is
generated by δ`σ and C∞ is generated by σ . Recall the elementary matrices U =[ 1

0
1
1

]
and L =

[ 1
1

0
1

]
from Section 7.

Lemma 14.2. The subgroup 〈L2,U 〉 of PSL(2,Z) is given by the presentation
〈L2,U | (L−2U )2 = I 〉. Consequently, sending δ` to L−2 and σ to U defines an
isomorphism from the subgroup 〈δ`, σ 〉 of B to 〈L2,U 〉.
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Proof. We use the homomorphism PSL(2,Z)→ PSL(2,Z/2)= SL(2,Z/2), where
the latter is isomorphic to the permutation group on three letters. One can check
that 〈L2,U 〉 consists exactly of the elements of the form

[ a
2c

b
d

]
, so 〈L2,U 〉 is the

inverse image of the subgroup
〈
I,
[ 1

0
1
1

]〉
of PSL(2,Z/2). Therefore 〈L2,U 〉 has

index 3 in PSL(2,Z). Note also that this shows that every element of 〈L2,U 〉 has
even trace, and hence is not of order 3.

It is well-known that PSL(2,Z) ∼= C2 ∗C3. Since 〈L2,U 〉 is a two-generator
subgroup, it is a free product of two cyclic subgroups. It contains the involution
L−2U , and no elements of order 3, so is isomorphic to either C2 ∗C∞ or C2 ∗C2.
The latter is impossible since C2 ∗C2 contains an infinite cyclic subgroup of index
2, which would have index 6 in PSL(2,Z). Every element of order 2 in C2 ∗C∞
is conjugate to the generator of C2, so as generators of the free factors we may
choose the involution L−2U and the infinite order element U . The lemma follows,
making use of Lemma 14.1. �

Lemma 14.3. Let S ⊂Q∪ {∞} consist of the a/b with a odd. Sending

σ bnδ
−an
` · · · σ b1δ

−a1
`

to the element of Q∪ {∞} given by the continued fraction [2a1, b1, . . . , 2an, bn]

induces a bijection from the set of right cosets 〈δ`〉\〈δ`, σ 〉 to S.

Proof. Regard the elements a/b of Q ∪ {∞} as row vectors [a b] (with [a b]
equivalent to [an bn] for n 6= 0). Define an action of 〈δ`, σ 〉 on the right on S by[

a b
]
δ` =

[
a b

]
L−2 and

[
a b

]
σ =

[
a b

]
U,

where U and L are the upper and lower elementary matrices as in Section 7. Since
L−2U L−2U =−I acts trivially on elements of Q∪ {∞}, Lemma 14.2 shows that
this is well-defined. We have[

a b
]
σ bnδ

−an
` · · · σ b1δ

−a1
` =

[
a b

]
U bn L2an · · ·U b1 L2a1

and taking the transpose gives

U 2a1 Lb1 · · ·U 2an Lbn

[
a
b

]
=

[
q s
p r

] [
a
b

]
,

where, according to Lemma 14.3 of [Cho and McCullough 2009a], q/p has contin-
ued fraction expansion [2a1, b1, . . . , 2an, bn]. Every a/b with a odd can be written
as a continued fraction of the form [2a1, b1, . . . , 2an, bn], by Lemma 14.2 of the
same reference, so [1 0] σ bnδ

−an
` · · · σ b1δ

−a1
` = [2a1, b1, . . . , 2an, bn] and therefore

the action is transitive on S. One can check easily that the stabilizer of [1 0] under
the right action of PSL(2,Z) is the subgroup generated by L . Using Lemma 14.2,
the stabilizer of 1/0 ∈ S under the action of 〈δ`, σ 〉 is 〈δ`〉. �
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Proposition 14.4. Suppose the cabling produced by the segment δmσ ·ωi (δ`, σ ) of
the braid description ω has infinite slope. Then

ωi (δ`, σ )= δ
−t (ωi (δ`,σ ))
`

in 〈δ`, σ 〉.

Proof. Write ωi (δ`, σ ) = σ
bnδ
−an
` · · · σ b1δ

−a1
` . By Theorem 9.3, the cabling pro-

duced by δmσ ·ωi (δ`, σ ) has slope [2t + 2a1, b1, . . . , 2an, bn], where t is the alge-
braic winding number of the portion of ω that follows ωi (δ`, σ ). By Lemma 14.3,
this is infinite exactly when σ bnδ

−an
` · · · σ b1δ

−a1
` is equal in 〈δ`, σ 〉 to some power

δk
` . Since inserting or deleting the word δ`σδ`σ does not change the winding num-

ber of a braid, we have t (ωi (δ`, σ ))= t (δk
` )=−k and the lemma follows. �

We can now give the algorithm. Suppose that in the braid description δmσ ·

ωd(δ`, σ )·δmσ ·ωd−1(δ`, σ ) · · · δmσ ·ω0(δ`, σ ), the portion δmσ ·ωi (δ`, σ ) produces
a cabling of infinite slope. If i 6= 0, d, we have

· · ·ωi+1(δ`, σ ) δmσ ωi (δ`, σ ) δmσ ωi−1(δ`, σ ) δmσ · · ·

= · · ·ωi+1(δ`, σ ) δmσ δ
−t (ωi (δ`,σ ))
` δmσ ωi−1(δ`, σ ) δmσ · · ·

= · · ·ωi+1(δ`, σ ) δ
t (ωi (δ`,σ ))
` δmσ δmσ ωi−1(δ`, σ ) δmσ · · ·

= · · ·ωi+1(δ`, σ ) δ
t (ωi (δ`,σ ))
` ωi−1(δ`, σ ) δmσ · · ·

with d decreased by 2. In going from the second line to the third, we used the fact
that

δmσδ` = δmδ
−1
` σ−2σ = δmδ

−1
` (δ`δ

−1
m δ−1

` δm)σ = δ
−1
` δmσ.

In the special case when i = d, this looks like

δmσ δ
−t (ωd (δ`,σ ))
` δmσ ωd−1(δ`, σ ) δd−2σ ω3(δ`, σ ) · · ·

= δ
t (ωd (δ`,σ ))
` δmσ δmσ ωd−1(δ`, σ ) δd−2σ ω3(δ`, σ ) · · ·

= δ
t (ωd (δ`,σ ))
` ωd−1(δ`, σ ) δmσ ωd−2(δ`, σ ) · · ·

∼ δmσ ωd−2(δ`, σ )

with d decreased by 2.
In the special case when i = 0, we have

· · ·ω1(δ`, σ ) δmσ ω0(δ`, σ )

= · · ·ω1(δ`, σ ) δmσ δ
−t (ω0(δ`,σ ))
`

= · · ·ω1(δ`, σ ) δ
t (ω0(δ`,σ ))
` δmσ

∼ · · ·ω1(δ`, σ ) δ
t (ω0(δ`,σ ))
`

with d decreased by 1.
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We repeat these until there are no cablings of infinite slope. The cabling slopes
can then be read off from the new ωi (δ`, σ ), starting from the rightmost. Some
of the initial cablings may have integral simple slope, which occurs when their
ordinary slope is of the form 1/k. The first slope invariant is obtained by inverting
the first slope not of the form 1/k (and regarding the result as an element of Q/Z).
In terms of the algebraic manipulations we have been doing, what is happening is
this: When the slope associated to ω0(δ`, σ ) is some 1/k, its continued fraction
has value equal to that of the continued fraction [0, k]. Lemma 14.3 shows that
ω0(δ`, σ ) is equal to δ−t (ω0(δ`,σ ))

` σ k . So we have

· · ·ω1(δ`, σ ) δmσ ω0(δ`, σ )

= · · ·ω1(δ`, σ ) δmσ δ
−t (ω0(δ`,σ ))
` σ k

= · · ·ω1(δ`, σ ) δ
t (ω0(δ`,σ ))
` δmσ σ

k

∼ · · ·ω1(δ`, σ ) δ
t (ω0(δ`,σ ))
`

with d decreased by 1.

15. Computations

We have implemented the algorithms of Sections 13 and 14 in Python; the program
is available in the Electronic Supplement or at [Cho and McCullough 2010b]. In
this section, we give some sample calculations.

Using the algorithm of Section 14, slopes of the upper tunnel or lower tunnel are
computed from a braid description. For example, the braid δ3

mσ
−2δ3

`σ
−4δ−1

m σ−4δ3
`

gives

Semisimple> upperSlopes( ’m 3 s -2 l 3 s -4 m -1 s -4 l 3’ )
[ 21/25 ], 341/60, -13, -13

To compute the lower slopes, the script just finds the reverse braid and applies
upperSlopes:

Semisimple> lowerSlopes( ’m 3 s -2 l 3 s -4 m -1 s -4 l 3’ )
[ 16/19 ], -7, -7, -195/31, -5, -5

Using the method of Section 13, a braid describing the (1, 1)-position can be recov-
ered from the upper tunnel slope sequence. In the next example, the slope sequence
[21/25], 341/60, −13, −13 is represented as the input list

[21, 25, 341, 60,−13, 1,−13, 1] :

Semisimple> print braidWord( [21,25,341,60,-13,1,-13,1] ) )
m 3 s -3 m -1 l -2 m 1 l -1 s -4 m 1 s -4 m -1 l -2 m 1 l -1

which checks:

http://msp.berkeley.edu/pjm/2012/258-1/pjm-v258-n1-x03-suppl.zip
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Semisimple> upperSlopes( ’m 3 s -3 m -1 l -2 m 1 l -1 s -4
m 1 s -4 m -1 l -2 m 1 l -1’ )
[ 21/25 ], 341/60, -13, -13

To compute the slopes of one tunnel associated to a (1, 1)-position from the
slopes of the other, the script generates a braid describing an upper tunnel which
has those slopes, then find the slope sequence of the lower tunnel:

Semisimple> dualSlopes([21,25,341,60,-13,1,-13,1])
[ 16/19 ], -7, -7, -195/31, -5, -5

Semisimple> dualSlopes([16,19,-7,1,-7,1,-195,31,-5,1,-5,1])
[ 21/25 ], 341/60, -13, -13

Functions are also included which calculate slope sequences for semisimple tunnels
of 2-bridge and torus knots. For example, for 2-bridge knots we have

Semisimple> twoBridge( 413, 227 )
Upper simple tunnel: [ 131/413 ]
Upper semisimple tunnel: [ 1/3 ], 15/7, 9/5
Lower simple tunnel: [ 227/413 ]
Lower semisimple tunnel: [ 2/5 ], -1, -3/2, 1, 1, 1, 3

Semisimple> print upperSemisimpleBraidWord( 413, 227 )
m -1 s -6 m -1 s 6 m -1 s 1 l -1

Semisimple> print lowerSimpleBraidWord( 413, 227 )
m -1 s 1 l -1 s 6 l -1 s -6 l -1
For torus knots, we have:

Semisimple> torusUpperSlopes( 13, 5 )
[ 1/5 ], 11, 15, 21

Semisimple> torusLowerSlopes( 13, 5 )
[ 1/3 ], 3, 3, 5, 5, 7, 7, 7, 9, 9

Semisimple> print fullTorusBraidWord( 13, 5 )
l -2 m 1 l -3 m 1 l -2 m 1 l -3 m 1 l -3 m 1

Theorem 10.5 allows us to test whether a slope sequence belongs to some 2-
bridge knot tunnel:

Semisimple> find2BridgeKnot( [ 1, 3, 15, 7, 9, 5 ] )
The tunnel is the upper semisimple tunnel of K( 413, 227 ), or
equivalently the lower semisimple tunnel of K( 413, 131).

Semisimple> find2BridgeKnot( [ 1, 3, 15, 8, -9, 5 ] )
The tunnel is the upper semisimple tunnel of K( 493, 222 ), or
equivalently the lower semisimple tunnel of K( 493, 171).
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Semisimple> find2BridgeKnot( [ 1, 3, 15, 11, 9, 5 ] )
Slopes other than first must be of the form 2 + 1/k or 2 - 1/k.

Semisimple> find2BridgeKnot( [ 1, 3, 15, 8, 9, 5 ] )
The ith and (i+1)st slopes must have opposite signs
when k sub i is even.

Semisimple> find2BridgeKnot( [ 1, 3, -15, 8, 9, 5 ] )
m1 must be positive or negative according as n0 is odd or even.
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