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Abstract. Let X ,Y are linear space. In this paper, we prove the generalized Hyers-Ulam stability
of the following quartic equation
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(n ∈ N , n � 3) in non-Archimedean Banach spaces

1. Introduction and preliminaries

By a non-Archimedean field we mean a field K equipped with a function (valu-
ation) | · | : K → [0,∞) such that, for all r,s ∈ K , the following conditions hold: (a)
|r| = 0 if and only if r = 0; (b) |rs| = |r||s| ; (c) |r+ s| � max{|r|, |s|}.

Clearly, by (b), |1|= |−1|= 1 and so, by induction, it follows from (c) that |n|� 1
for all n � 1.

DEFINITION 1.1. Let X be a vector space over a scalar field K with a non-
Archimedean non-trivial valuation | · | .

(1) A function ‖ · ‖ : X → R is a non-Archimedean norm (valuation) if it satisfies
the following conditions: (a) ‖x‖ = 0 if and only if x = 0 for all x ∈ X ; (b) ‖rx‖ =
|r|‖x‖ for all r ∈ K and x ∈ X ; (c) the strong triangle inequality (ultra-metric) holds,
that is, ‖x+ y‖� max{‖x‖,‖y‖} for all x,y ∈ X .

(2) The space (X ,‖ ·‖) is called a non-Archimedean normed space (briefly, NAN-
space).

Note that ||xn − xm|| � max{||x j+1 − x j|| : m � j � n− 1} for all m,n ∈ N with
n > m .

Mathematics subject classification (2010): 39B82, 39B52.
Keywords and phrases: Stability, quartic mapping, non-Archimedean normed space.

c© � � , Zagreb
Paper JMI-09-48

553

http://dx.doi.org/10.7153/jmi-09-48


554 H. AZADI KENARY, H. KESHAVARZ, C. PARK AND D. Y. SHIN

DEFINITION 1.2. Let (X ,‖ · ‖) be a non-Archimedean normed space.
(a) A sequence {xn} is a Cauchy sequence in X if {xn+1−xn} converges to zero

in X .
(b) The non-Archimedean normed space (X ,‖ · ‖) is said to be complete if every

Cauchy sequence in X is convergent.

The most important examples of non-Archimedean spaces are p -adic numbers. A
key property of p -adic numbers is that they do not satisfy the Archimedean axiom: for
all x,y > 0, there exists a positive integer n such that x < ny .

A basic question in the theory of functional equations is as follows: ’when is it
true that a function, which approximately satisfies a functional equation must be close
to an exact solution of the equation’?

If the problem accepts a solution, we say the equation is stable. The first stability
problem concerning group homomorphisms was raised by Ulam [12] in 1940 and af-
firmatively solved by Hyers [5]. The result of Hyers was generalized by Aoki [1] for
approximate additive function and by Rassias [10] for approximate linear functions by
allowing the difference Cauchy equation ‖ f (x+ y)− f (x)− f (y)‖ to be controlled by
ε(‖ x ‖p + ‖ y ‖p) . Taking into consideration a lot of influence of Ulam, Hyers and
Rassias on the development of stability problems of functional equations, the stability
phenomenon that was proved by Rassias is called the Hyers–Ulam–Rassias stability. In
1994, a generalization of Rassias’ theorem was obtained by G ǎvruta [4], who replaced
ε(‖ x ‖p + ‖ y ‖p) by a general control function ϕ(x,y).

The stability problems of several functional equations have been extensively in-
vestigated by a number of authors and there are many interesting results concerning
this problem ([1]–[5], [9], [14]–[17]).

The mapping f (x) = x4 satisfies equation:

f (2x1 + x2)+ f (2x1− x2) = 4 f (x1 + x2)+4 f (x1− x2)+24 f (x1)−6 f (x2) (1.1)

every solution of Eq. (1.1) is called a quartic mapping. Equation (1.1) was solved by S.
H. Lee, S. M. Im and I. S. Hwang [9].

Now, we introduce the new quartic equation in n–variables as follows:
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where n � 3. As a special case, if n = 3 in (1.2), then the equation (1.2) reduces to
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that is,

f (x1 − x2− x3)+ f (x1− x2 + x3)+ f (x1 + x2− x3)+ f (x1 + x2 + x3)
= 2( f (x1 + x2)+ f (x1− x2)+ f (x1 + x3)+ f (x1− x3)+ f (x2 + x3)+ f (x2− x3))

−2−2( f (2x1)+ f (2x2)+ f (2x3)).

The main purpose of this paper is to prove the generalized Hyers–Ulam stability for
equation (1.2), in non-Archimedean normed spaces(briefly, NAN-spaces).

2. Solution

In this section, we prove the Hyers–Ulam–Rassias stability of quartic equation
(1.2) in NAN-spaces. For convenience, we define the difference operator Df for a
given mapping f :
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∑
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f (2xi).

We will use the following lemma:

LEMMA 2.1. A mapping f : X → Y satisfies (1.2) if and only if the mapping
f : X → Y is quartic.

Proof. Let f satisfies (1.2). Setting xi = 0 (i = 1, . . . ,n) in (1.2), we have
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and also n � 3 therefore f (0) = 0. By putting xi = 0 (i = 2, . . . ,n) in (1.2) and then
using f (0) = 0, we get

n
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for all x1 ∈ X . Hence

2n−1 f (x1) = 2n−1(n−1) f (x1)−2n−5(n−2) f (2x1),

for all x1 ∈X . So f (2x1)= 16 f (x1) for all x1 ∈X . Now, by using the identity f (2x1) =
16 f (x1) and (1.2), we obtain that
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for all x1, . . . ,xn ∈ X . Setting xi = 0 (i = 1, . . . ,n−1) in (2.1) and then using f (0) = 0,
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for all xn ∈ X . By using
n−2

∑
�=0

(
n−2
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= 2n−2,

and (2.2), we obtain f (−xn) = f (xn) for all xn ∈ X . Putting x2 = x1 and xi = 0 (i =
3, . . . ,n−1) in (2.1), hence similar to the above method, we infer that

2n−3( f (2x1 + xn)+ f (2x1− xn)+ f (xn)+ f (−xn))

= 2n−2 f (2x1)+2n(n−3) f (x1)+2n−1( f (x1 + xn)+ f (x1− xn))

+2n−2(n−3)( f (xn)+ f (−xn))−2n(n−2) f (x1)−2n−1(n−2) f (xn),
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for all x1,xn ∈ X . So

f (2x1+xn)+ f (2x1−xn)= 4 f (x1+xn)+4 f (x1−xn)+24 f (x1)−6 f (xn)

for all x1,xn ∈ X , which implies that f is quartic.
Conversely, suppose that f is quartic thus f satisfies (1.1). Hence we have f (0) =

0, f is even and f (2x) = 16 f (x) for all x ∈ X . Interchange x1 with x2 in (1.1), gives

f (2x2 + x1)+ f (2x2− x1) = 4 f (x2 + x1)+4 f (x2− x1)+24 f (x2)−6 f (x1) (2.3)

for all x1,x2 ∈ X . By evenness of f , it follows from (2.3) that

f (x1 +2x2)+ f (x1−2x2) = 4 f (x1 + x2)+4 f (x1− x2)−6 f (x1)+24 f (x2) (2.4)

for all x1,x2 ∈ X . Replacing x2 by 2x2 in (2.4) and employing the fact that f (2x) =
16 f (x) and then using (2.4), we obtain that

f (x1 +4x2)+ f (x1−4x2) = 16 f (x1 + x2)+16 f (x1− x2)−30 f (x1)+480 f (x2)
(2.5)

for all x1,x2 ∈ X . Putting x1 = x1 + x2 and x2 = x1 − x2 in (1.1) and then using the
identity f (2x) = 4 f (x) , we have

f (3x1 + x2)+ f (x1 +3x2) = 64( f (x1)+ f (x2))+24 f (x1 + x2)−6 f (x1− x2) (2.6)

for all x1,x2 ∈ X . Replacing x1 and x2 by x1 +2x3 and x2 +2x3 in (2.6), respectively,
gives

f (3x1 + x2 +8x3)+ f (x1 +3x2 +8x3)
= 64( f (x1 +2x3)+ f (x2 +2x3))+24 f (x1 + x2 +4x3)−6 f (x1− x2) (2.7)

for all x1,x2,x3 ∈ X . Replacing x1 and x2 by x1 − 2x3 and x2 − 2x3 in (2.6), respec-
tively, one gets that

f (3x1 + x2−8x3)+ f (x1 +3x2−8x3)
= 64( f (x1−2x3)+ f (x2−2x3))+24 f (x1 + x2−4x3)−6 f (x1− x2) (2.8)

for all x1,x2,x3 ∈ X . Now, by adding (2.7) and (2.8), we arrive at

f (3x1 + x2 +8x3)+ f (3x1 + x2−8x3)+ f (x1 +3x2 +8x3)+ f (x1 +3x2−8x3)
= 64( f (x1 +2x3)+ f (x1−2x3)+ f (x2 +2x3)+ f (x2−2x3))

+24( f (x1 + x2 +4x3)+ f (x1 + x2−4x3))−12 f (x1− x2) (2.9)

for all x1,x2,x3 ∈ X . On the other hand, we substitute x1 = x1 +2x3 and x2 = x2−2x3

in (2.6), we obtain

f (3x1 + x2 +4x3)+ f (x1 +3x2−4x3)
= 64( f (x1 +2x3)+ f (x2−2x3))+24 f (x1 + x2)−6 f (x1− x2 +4x3) (2.10)
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for all x1,x2,x3 ∈ X . And putting x1 = x1−2x3 and x2 = x2 +2x3 in (2.6), we get

f (3x1 + x2−4x3)+ f (x1 +3x2 +4x3)
= 64( f (x1−2x3)+ f (x2 +2x3))+24 f (x1 + x2)−6 f (x1− x2−4x3) (2.11)

for all x1,x2,x3 ∈ X . Adding (2.10) to (2.11), we lead to

f (3x1 + x2 +4x3)+ f (3x1 + x2−4x3)+ f (x1 +3x2 +4x3)+ f (x1 +3x2−4x3)
= 64( f (x1 +2x3)+ f (x1−2x3)+ f (x2 +2x3)+ f (x2−2x3))

+48 f (x1 + x2)−6( f (x1− x2 +4x3)+ f (x1− x2−4x3)) (2.12)

for all x1,x2,x3 ∈ X . Now, replacing x3 by x3
2 in (2.9), gives

f (3x1 + x2 +4x3)+ f (3x1 + x2−4x3)+ f (x1 +3x2 +4x3)+ f (x1 +3x2−4x3)
= 64( f (x1 + x3)+ f (x1− x3)+ f (x2 + x3)+ f (x2− x3))

+24( f (x1 + x2 +2x3)+ f (x1 + x2−2x3))−12 f (x1− x2) (2.13)

for all x1,x2,x3 ∈ X . If we compare (2.12) with (2.13), we conclude that

64( f (x1 +2x3)+ f (x1−2x3)+ f (x2 +2x3)+ f (x2−2x3))
+48 f (x1 + x2)−6( f (x1− x2 +4x3)+ f (x1− x2−4x3))

= 64( f (x1 + x3)+ f (x1− x3)+ f (x2 + x3)+ f (x2− x3))
+24( f (x1 + x2 +2x3)+ f (x1 + x2−2x3))−12 f (x1− x2) (2.14)

for all x1,x2,x3 ∈ X . It follows from (2.4), (2.5) and (2.14) that

f (x1 − x2− x3)+ f (x1− x2 + x3)+ f (x1 + x2− x3)+ f (x1 + x2 + x3)
= 2( f (x1 + x2)+ f (x1− x2)+ f (x1 + x3)+ f (x1− x3)+ f (x2 + x3)+ f (x2− x3))

−22( f (x1)+ f (x2)+ f (x3))

for all x1,x2,x3 ∈ X , which by considering f (2x) = 16 f (x), gives

f (x1 − x2− x3)+ f (x1− x2 + x3)+ f (x1 + x2− x3)+ f (x1 + x2 + x3)
= 2( f (x1 + x2)+ f (x1− x2)+ f (x1 + x3)+ f (x1− x3)+ f (x2 + x3)+ f (x2− x3))

−2−2( f (2x1)+ f (2x2)+ f (2x3)) (2.15)

for all x1,x2,x3 ∈ X . This means f satisfies (1.1) for n = 3. Assume that (1.1) holds
on the case where n = p ; that is, we have

p

∑
k=2

(
k

∑
i1=2

k+1

∑
i2=i1+1

. . .
p

∑
ip−k+1=ip−k+1

)
f

⎛
⎝ p

∑
i=1,i�=i1,...,ip−k+1

xi −
p−k+1

∑
r=1

xir

⎞
⎠+ f

(
p

∑
i=1

xi

)

= 2p−2 ∑
1�i< j�p

( f (xi + x j)+ f (xi − x j))−2p−5(p−2)
p

∑
i=1

f (2xi) (2.16)
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for all x1, . . . ,xp ∈ X . Replacing x1 by x1 + xp+1 in (2.16), we obtain

p

∑
k=2

(
k

∑
i1=2

k+1

∑
i2=i1+1

. . .
p

∑
ip−k+1=ip−k+1

)
f

⎛
⎝x1+xp+1+

p

∑
i=2,i�=i1,...,ip−k+1

xi−
p−k+1

∑
r=1

xir

⎞
⎠+ f

(
p+1

∑
i=1

xi

)

= 2p−2

[
p

∑
j=2

( f (x1+xp+1+x j)+ f (x1+xp+1−x j))+ ∑
2�i< j�p

( f (xi+x j)+ f (xi−x j))

]

−2p−5(p−2)[ f (2x1 +2xp+1)+
p

∑
i=2

f (2xi)] (2.17)

for all x1, . . . ,xp ∈ X . Replacing xp+1 by −xp+1 in (2.17), we obtain

p

∑
k=2

(
k

∑
i1=2

k+1

∑
i2=i1+1

. . .
p

∑
ip−k+1=ip−k+1

)
f

⎛
⎝x1− xp+1 +

p

∑
i=2,i�=i1,...,ip−k+1

xi −
p−k+1

∑
r=1

xir

⎞
⎠

+ f

(
p

∑
i=1

xi− xp+1

)
= 2p−2

[ p

∑
j=2

( f (x1 − xp+1 + x j)+ f (x1− xp+1− x j))

+ ∑
2�i< j�p

( f (xi + x j)+ f (xi− x j))
]
−2p−5(p−2)[ f (2x1−2xp+1)+

p

∑
i=2

f (2xi)

(2.18)

for all x1, . . . ,xp+1 ∈ X . Adding (2.17) to (2.18), one gets

p+1

∑
k=2

(
k

∑
i1=2

k+1

∑
i2=i1+1

. . .
p+1

∑
ip−k+2=ip−k+1+1

)
f

⎛
⎝ p+1

∑
i=1,i�=i1,...,ip−k+2

xi −
p−k+2

∑
r=1

xir

⎞
⎠+ f

(
p+1

∑
i=1

xi

)

= 2p−2
[ p

∑
j=2

( f (x1 + x j + xp+1)+ f (x1 + x j − xp+1)+ f (x1− x j + xp+1)

+ f (x1− x j − xp+1))+2 ∑
2�i< j�p

( f (xi + x j)+ f (xi− x j))
]

−2p−5(p−2)( f (2x1 +2xp+1)+ f (2x1−2xp+1))−2p−4(p−2)
p

∑
i=2

f (2xi)

(2.19)

for all x1, . . . ,xp+1 ∈ X . Therefore, by the case n = 3 and employing the fact that
f (2x) = 16 f (x), we obtain that (1.2) holds for n = p+ 1. This complete the proof of
the lemma. �
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3. Stability in non-Archimedean normed spaces

From now on, we deal with the stability problem for the generalized additive func-
tional equation (1.1) in NAN-spaces. In the rest of the paper, let |16| �= 1.

THEOREM 3.1. ([7]) Let (X ,d) be a complete generalized metric space and J :
X → X be a strictly contractive mapping with Lipschitz constant L < 1 . Then, for all
x∈ X , either d(Jnx,Jn+1x) = ∞ for all nonnegative integers n or there exists a positive
integer n0 such that

(a) d(Jnx,Jn+1x) < ∞ for all n0 � n0 ;
(b) the sequence {Jnx} converges to a fixed point y∗ of J ;
(c) y∗ is the unique fixed point of J in the set Y = {y ∈ X : d(Jn0x,y) < ∞} ;

(d) d(y,y∗) � d(y,Jy)
1−L for all y ∈ Y .

THEOREM 3.2. Let X be a non-Archimedean normed space and Y is a complete
non-Archimedean space. Let ϕ : Xn → [0,∞) be a function such that there exists an
α < 1 with

ϕ
(x1

2
,
x2

2
, · · · , xn

2

)
� αϕ (x1,x2, · · · ,xn)

|16| , (3.1)

for all x1,x2, · · · ,xn ∈ X . Let f : X → Y with f (0) = 0 be a mapping satisfying∥∥Df (x1,x2, · · · ,xn)
∥∥

Y � ϕ(x1,x2, · · · ,xn), (3.2)

for all x1,x2, · · · ,xn ∈ X . Then there exists a unique additive mapping ℑ : X → Y such
that

‖ f (x)−ℑ(x)‖Y �
αϕ
(
x,

n−1︷ ︸︸ ︷
0, · · · ,0

)
|2|n−1|n−2|− |2|n−1|n−2|α , (3.3)

for all x ∈ X .

Proof. Putting x1 = x and x2 = · · · = xn = 0 in (3.2), we get∥∥∥∥∥
n

∑
k=2

(
k

∑
i1=2

k+1

∑
i2=i1+1

. . .
n

∑
in−k+1=in−k+1

)
f (x)+ f (x)−2n−2

n

∑
j=2

2 f (x)+2n−5(n−2) f (2x)

∥∥∥∥∥
Y

� ϕ
(
x,0, · · · ,0︸ ︷︷ ︸

n−1

)
(3.4)

for all x ∈ X . That is∥∥∥∥∥
(

1+
n−1

∑
�=1

(
n−1

�

))
f (x)−2n−1(n−1) f (x)+2n−5(n−2) f (2x)

∥∥∥∥∥
Y

� α
(
x,0, · · · ,0︸ ︷︷ ︸

n−1

)
,

(3.5)
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for all x ∈ X . So by using the equation

1+
n−1

∑
�=1

(
n−1

�

)
=

n−1

∑
�=0

(
n−1

�

)
= 2n−1,

gives ∥∥∥∥ f (x)− 1
24 f (2x)

∥∥∥∥
Y

� 1
|2|n−1|n−2| ϕ

(
x,0, · · · ,0︸ ︷︷ ︸

n−1

)
. (3.6)

Replacing x by x
2 in (3.6), we have∥∥∥ f (x)−24 f

( x
2

)∥∥∥
Y

� |16|
|2|n−1|n−2| ϕ

( x
2
,0, · · · ,0︸ ︷︷ ︸

n−1

)
� α

|2|n−1|n−2| ϕ
(
x,0, · · · ,0︸ ︷︷ ︸

n−1

)
,

(3.7)
Consider the set S := {h : X →Y ; h(0) = 0} and introduce the generalized metric

on S :

d(g,h) = inf
μ∈(0,+∞)

‖g(x)−h(x)‖Y � μϕ
(
x,0, · · · ,0︸ ︷︷ ︸

n−1

)
,

for all x ∈ X , where, as usual, infφ = +∞ . It is easy to show that (S,d) is complete
(see [12]). Now we consider the linear mapping J : S → S such that

Jg(x) := 24g
( x

2

)
for all x ∈ X . Let g,h ∈ S be given such that d(g,h) = ε . Then ‖g(x)− h(x)‖Y �
εϕ
(
x,0, · · · ,0︸ ︷︷ ︸

n−1

)
for all x ∈ X . Hence

‖Jg(x)− Jh(x)‖Y =
∥∥∥24g

( x
2

)
−24h

( x
2

)∥∥∥
Y

� α · εϕ
(
x,0, · · · ,0︸ ︷︷ ︸

n−1

)
,

for all x∈ X . So d(g,h) = ε implies that d(Jg,Jh) � αε . This means that d(Jg,Jh) �
αd(g,h) for all g,h ∈ S . It follows from (3.7) that

d( f ,J f ) � α
|2|n−1|n−2| .

By Theorem 3.1, there exists a mapping ℑ : X → Y satisfying the following:
(1) ℑ is a fixed point of J , i.e.,

ℑ(x) = 24ℑ
( x

2

)
, (3.8)

for all x ∈ X . The mapping ℑ is a unique fixed point of J in the set M = {g ∈ S :
d(h,g) < ∞}. This implies that ℑ is a unique mapping satisfying (3.8) such that there
exists a μ ∈ (0,∞) satisfying

‖ f (x)−ℑ(x)‖Y � μϕ
(
x,0, · · · ,0︸ ︷︷ ︸

n−1

)
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for all x ∈ X ;
(2) d(Jp f ,ℑ) → 0 as p → ∞ . This implies the equality

lim
p→∞

16p f
( x

2p

)
= ℑ(x), (3.9)

for all x ∈ X ;
(3) d( f ,ℑ) � d( f ,J f )

1−α , which implies the inequality

d( f ,ℑ) � α
|2|n−1|n−2|− |2|n−1|n−2|α .

This implies that the inequalities (3.3) holds. It follows from (3.1) and (3.2) that

‖Dℑ(x1,x2, · · · ,xn)‖Y

= lim
p→∞

16p
∥∥∥Dℑ

( x1

2p ,
x2

2p , · · · , xn

2p

)∥∥∥
Y

� lim
p→∞

α pϕ(x1,x2, · · · ,xn),= 0

for all x1,x2, · · · ,xn ∈ X . So

n

∑
k=2

(
k

∑
i1=2

k+1

∑
i2=i1+1

. . .
n

∑
in−k+1=in−k+1

)
ℑ

(
n

∑
i=1,i�=i1,...,in−k+1

xi −
n−k+1

∑
r=1

xir

)
+ ℑ

(
n

∑
i=1

xi

)

= 2n−2 ∑
1�i< j�n

(ℑ(xi + x j)+ℑ(xi− x j))−2n−5(n−2)
n

∑
i=1

ℑ(2xi)

for all x1,x2, · · · ,xn ∈ X . Hence ℑ : X → Y is an additive mapping and we get desired
results. �

COROLLARY 3.3. Let θ be a positive real number and r is a real number with
0 < r < 1 . Let f : X → Y with f (0) = 0 be a mapping satisfying

∥∥Df (x1,x2, · · · ,xn)
∥∥

Y � θ

(
n

∑
i=1

‖xi‖r

)
, (3.10)

for all x1,x2, · · · ,xn ∈ X . Then there exists a unique additive mapping ℑ : X →Y such
that

‖ f (x)−ℑ(x)‖Y � |16|θ‖x‖r

|2|n+4r−1|n−2|− |2|n+3|n−2| , (3.11)

for all x ∈ X .

Proof. The proof follows from Theorem 3.2 by taking

ϕ(x1,x2, · · · ,xn) = θ

(
n

∑
i=1

‖xi‖r

)

for all x1,x2, · · · ,xn ∈ X . Then we can choose α = |16|1−r and we get the desired
result. �
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REMARK 3.4. Similar works have been done before. For example Ulam-Gavruta-
Rassias product stability, (see [17]), used the control function θ (∏n

i=1 ‖xi‖r) instead of
θ (∑n

i=1 ‖xi‖r) . But, since we put x2 = · · · = xn = 0, in this functional equation, the
Ulam-Gavruta-Rassias product stability has the obvious approximation ℑ(x) = f (x) .
Also JMRassias mixed product-sum stability, (see [17]), used the control function
θ (∑n

i=1 ‖xi‖r + ∏n
i=1‖xi‖r) instead of θ (∑n

i=1 ‖xi‖r) . Again, since we put x2 = · · · =
xn = 0, in this functional equation, the JMRassias mixed product-sum stability has the
obvious approximation ℑ(x) = f (x) .

THEOREM 3.5. Let X be a non-Archimedean normed space and Y is a complete
non-Archimedean space. Let ϕ : X3 → [0,∞) be a function such that there exists an
α < 1 with ϕ (x1,x2, · · · ,xn) � |16|αϕ

( x1
2 , x2

2 , · · · , xn
2

)
, for all x1,x2, · · · ,xn ∈ X . Let

f : X → Y with f (0) = 0 be a mapping satisfying (3.2). Then there exists a unique
additive mapping ℑ : X → Y such that

‖ f (x)−ℑ(x)‖Y �
ϕ
(
x,

n−1︷ ︸︸ ︷
0, · · · ,0

)
|2|n−1|n−2|− |2|n−1|n−2|α , (3.12)

for all x ∈ X .

Proof. Let (S,d) be the generalized metric space defined in the proof of Theorem
2.1. Now we consider the linear mapping J : S → S such that

Jg(x) :=
g(2x)
24

for all x ∈ X . Let g,h ∈ S be given such that d(g,h) = ε . Then ‖g(x)− h(x)‖Y �
εϕ
(
x,0, · · · ,0︸ ︷︷ ︸

n−1

)
for all x ∈ X . Hence

‖Jg(x)− Jh(x)‖Y =
∥∥∥∥g(2x)

24 − h(2x)
24

∥∥∥∥
Y

�
|16|α · εϕ

(
x,

n−1︷ ︸︸ ︷
0, · · · ,0

)
|16|

for all x∈ X . So d(g,h) = ε implies that d(Jg,Jh) � αε . This means that d(Jg,Jh) �
αd(g,h) for all g,h ∈ S . It follows from (3.6) that

d( f ,J f ) � 1
|2|n−1|n−2| ϕ

(
x,0, · · · ,0︸ ︷︷ ︸

n−1

)
.

By Theorem 3.1, there exists a mapping ℑ : X → Y satisfying the following:
(1) ℑ is a fixed point of J , i.e.,

ℑ(2x)
24 = ℑ(x) (3.13)
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for all x ∈ X . The mapping ℑ is a unique fixed point of J in the set M = {g ∈ S :
d(h,g) < ∞}. This implies that ℑ is a unique mapping satisfying (3.13) such that there
exists a μ ∈ (0,∞) satisfying

‖ f (x)−ℑ(x)‖Y � μϕ
(
x,

n−1︷ ︸︸ ︷
0, · · · ,0

)
for all x ∈ X ;

(2) d(Jp f ,ℑ) → 0 as p → ∞ . This implies the equality

lim
p→∞

f (2px)
24p = ℑ(x)

for all x ∈ X ;
(3) d( f ,ℑ) � d( f ,J f )

1−α , which implies the inequality

d( f ,ℑ) � 1
|2|n−1|n−2| .

This implies that the inequalities (3.12) holds. The rest of the proof is similar to the
proof of Theorem 2.1. �

COROLLARY 3.6. Let θ be a positive real number and r is a real number with
r > 1 . Let f : X →Y be a mapping satisfying (3.10). Then there exists a unique additive
mapping ℑ : X → Y such that

‖ f (x)−ℑ(x)‖Y � |16|θ‖x‖r

|2|n+3|n−2|− |2|n+4r−1|n−2| (3.14)

for all x ∈ X .

Proof. The proof follows from Theorem 3.5 by taking

ϕ(x1,x2, · · · ,xn) = θ

(
n

∑
i=1

‖xi‖r

)

for all x1,x2, · · · ,xn ∈ X . Then we can choose α = |16|r−1 and we get the desired
result. �

REMARK 3.7. Similar works have been done before. For example Ulam-Gavruta-
Rassias product stability, (see [17]), used the control function θ (∏n

i=1 ‖xi‖r) instead of
θ (∑n

i=1 ‖xi‖r) . But, since we put x2 = · · · = xn = 0, in this functional equation, the
Ulam-Gavruta-Rassias product stability has the obvious approximation ℑ(x) = f (x) .
Also JMRassias mixed product-sum stability, (see [17]), used the control function
θ (∑n

i=1 ‖xi‖r + ∏n
i=1‖xi‖r) instead of θ (∑n

i=1 ‖xi‖r) . Again, since we put x2 = · · · =
xn = 0, in this functional equation, the JMRassias mixed product-sum stability has the
obvious approximation ℑ(x) = f (x) .
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THEOREM 3.8. Let G be an additive semigroup and X is a non-Archimedean
Banach space. Assume that γ : Gn → [0,+∞) be a function such that

lim
m→∞

|2|4mγ
( x1

2m ,
x2

2m , · · · , xn

2m

)
= 0, (3.15)

for all x1,x2, · · · ,xn ∈ G. Suppose that, for any x ∈ G, the limit

£(x) = lim
m→∞

max
0�k<m

|2|4k+4

|2|n−1|n−2|γ
⎛
⎝ x

2k+1 ,0,0, · · · ,0︸ ︷︷ ︸
n−1

⎞
⎠ , (3.16)

exists and f : G → X with f (0) = 0 be a mapping satisfying∥∥Df (x1,x2, · · · ,xn)
∥∥

X � γ(x1,x2, · · · ,xn). (3.17)

Then the limit
ℑ(x) := lim

m→∞
24m f

( x
2m

)
exists for all x ∈ G and defines an additive mapping ℑ : G → X such that

‖ f (x)−ℑ(x)‖X � £(x). (3.18)

Moreover, if

lim
j→∞

lim
m→∞

max
j�k<m+ j

|2|4k+4

|2|n−1|n−2|γ
⎛
⎝ x

2k+1 ,0,0, · · · ,0︸ ︷︷ ︸
n−1

⎞
⎠= 0

then ℑ is the unique additive mapping satisfying (3.18) .

Proof. Putting x1 = x and x2 = x3 = · · · = 0 in (3.17) and replacing x by x
2 in

(3.17), we have ∥∥∥ f (x)−24 f
( x

2

)∥∥∥
X

� |16|
|2|n−1|n−2| γ

( x
2
,0, · · · ,0︸ ︷︷ ︸

n−1

)
, (3.19)

for all x ∈ G . Replacing x by x
2m in (3.19), we obtain

∥∥∥24m+4 f
( x

2m+1

)
−24m f

( x
2m

)∥∥∥
X

�
|2|4m+4γ

(
x

2m+1 ,

n−1︷ ︸︸ ︷
0, · · · ,0

)
|2|n−1|n−2| . (3.20)

Thus, it follows from (3.15) and (3.20) that the sequence
{

24m f
(

x
2m

)}
m�1

is a Cauchy

sequence. Since X is complete, it follows that
{

24m f
(

x
2m

)}
m�1

is convergent. Set

ℑ(x) := limm→∞ 24m f
(

x
2m

)
. By induction on m , one can show that

∥∥∥24m f
( x

2m

)
− f (x)

∥∥∥
X

� max
0�k<m

|2|4k+4

|2|n−1|n−2| γ
( x

2k+1 ,0, · · · ,0︸ ︷︷ ︸
n−1

)
; (3.21)
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for all n � 1 and x ∈ G . By taking m → ∞ in (3.21) and using (3.16), one obtains
(3.18). By (3.15) and (3.17), we get

‖Dℑ(x1,x2, · · · ,xn)‖X

= lim
m→∞

|2|4m
∥∥∥Df

( x1

2m ,
x2

2m , · · · , xn

2m

)∥∥∥
X

� lim
m→∞

|2|4mγ
( x1

2m ,
x2

2m , · · · , xn

2m

)
= 0

for all x1,x2, · · · ,xn ∈ X .So

n

∑
k=2

(
k

∑
i1=2

k+1

∑
i2=i1+1

. . .
n

∑
in−k+1=in−k+1

)
ℑ

(
n

∑
i=1,i�=i1,...,in−k+1

xi −
n−k+1

∑
r=1

xir

)
+ ℑ

(
n

∑
i=1

xi

)

= 2n−2 ∑
1�i< j�n

(ℑ(xi + x j)+ℑ(xi− x j))−2n−5(n−2)
n

∑
i=1

ℑ(2xi)

for all x1,x2, · · · ,xn ∈ X . Hence ℑ : G → X is an additive mapping.
To prove the uniqueness property of ℑ , let ℜ be another mapping satisfying

(3.18). Then we have∥∥∥ℑ(x)−ℜ(x)
∥∥∥

X
= lim

m→∞
|2|4m

∥∥∥ℑ
( x

2m

)
−ℜ

( x
2m

)∥∥∥
X

� lim
m→∞

|2|4m max
{∥∥∥ℑ

( x
2m

)
− f

( x
2m

)∥∥∥
X

,
∥∥∥ f
( x

2m

)
−ℜ

( x
2m

)∥∥∥
X

}

� lim
j→∞

lim
m→∞

max
j�k<m+ j

|2|4k+4

|2|n−1|n−2|γ
⎛
⎝ x

2k+1 ,0,0, · · · ,0︸ ︷︷ ︸
n−1

⎞
⎠= 0,

for all x ∈ G . Therefore, ℑ = ℜ . This completes the proof. �

COROLLARY 3.9. Let ξ : [0,∞) → [0,∞) be a function satisfying ξ
(

t
|2|
)

�

ξ
(

1
|2|
)

ξ (t) , ξ
(

1
|2|
)

< 1
|2|4 for all t � 0 . Assume that κ > 0 and f : G → X with

f (0) = 0 be a mapping such that

∥∥Df (x1,x2, · · · ,xn)
∥∥

X � κ

(
n

∑
i=1

ξ (|xi|)
)

(3.22)

for all x1,x2, · · · ,xn ∈ G. Then there exists a unique additive mapping ℑ : G → X such
that

‖ f (x)−ℑ(x)‖ � ξ (|x|)
|2|n−1|n−2|

Proof. If we define γ : Gn → [0,∞) by

γ(x1,x2, · · · ,xn) := κ

(
n

∑
i=1

ξ (|xi|)
)

,
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then we have limm→∞ |2|4mγ
( x1

2m , x2
2m , · · · , xn

2m

)
= 0, for all x1,x2, · · · ,xn ∈ G . On the

other hand, it follows that £(x) = ξ (|x|)
|2|n−1|n−2| exists for all x ∈ G . Also, we have

lim
j→∞

lim
m→∞

max
j�k<m+ j

|2|4k+4

|2|n−1|n−2|γ
⎛
⎝ x

2k+1 ,0,0, · · · ,0︸ ︷︷ ︸
n−1

⎞
⎠

= lim
j→∞

|2|4 j+4

|2|n−1|n−2|γ
⎛
⎝ x

2 j+1 ,0,0, · · · ,0︸ ︷︷ ︸
n−1

⎞
⎠= 0.

Thus, applying Theorem 3.8, we have the conclusion. This completes the proof. �

THEOREM 3.10. Let G be an additive semigroup and X is a non-Archimedean
Banach space. Assume that γ : Gn → [0,+∞) be a function such that

lim
m→∞

γ (2mx1,2mx2, · · · ,2mxn)
24m = 0,

for all x1,x2, · · · ,xn ∈ G. Suppose that, for any x ∈ G, the limit

£(x) = lim
m→∞

max0�k<m
1

|2|4k γ
(
2kx,0, · · · ,0︸ ︷︷ ︸

n−1

)
(3.23)

exists and f : G → X with f (0) = 0 be a mapping satisfying (3.17). Then the limit

ℑ(x) := lim
m→∞

f (2mx)
24m

exists for all x ∈ G and

‖ f (x)−ℑ(x)‖ � £(x)
|2|n−1|n−2| , (3.24)

for all x ∈ G. Moreover, if

lim
j→∞

lim
m→∞

max j�k<m+ j
1

|2|4k γ
(
2kx,0, · · · ,0︸ ︷︷ ︸

n−1

)
= 0,

then ℑ is the unique additive mapping satisfying (3.24) .

Proof. It follows from (3.19), we get∥∥∥∥ f (x)− 1
24 f (2x)

∥∥∥∥
X

� 1
|2|n−1|n−2| γ

(
x,0, · · · ,0︸ ︷︷ ︸

n−1

)
, (3.25)
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for all x ∈ G . Replacing x by 2mx in (3.25), we obtain∥∥∥∥ f (2mx)
24m − f (2m+1x)

24m+4

∥∥∥∥
X

� 1
|2|n+4m−1|n−2| γ

(
2mx,0, · · · ,0︸ ︷︷ ︸

n−1

)
. (3.26)

Thus it follows from (3.26) that the sequence
{

f (2mx)
24m

}
m�1

is convergent. Set ℑ(x) :=

limm→∞
f (2mx)
24m . On the other hand, it follows from (3.26) that

∥∥∥∥ f (2px)
24p − f (2qx)

24q

∥∥∥∥
X

=

∥∥∥∥∥
q−1

∑
k=p

f (2k+1x)
24k+4 − f (2kx)

24k

∥∥∥∥∥
X

� max
p�k<q

{∥∥∥∥ f (2k+1x)
24k+4 − f (2kx)

24k

∥∥∥∥
X

}

� 1
|2|n−1|n−2|maxp�k<q

1
|2|4k γ

(
2kx,0, · · · ,0︸ ︷︷ ︸

n−1

)

for all x ∈ G and p,q � 0 with q > p � 0. Letting p = 0, taking q → ∞ in the last
inequality and using (3.23), we obtain (3.24).

The rest of the proof is similar to the proof of Theorem 3.8. This completes the
proof. �

Similarly, we have the following corollary and we will omit the proof.

COROLLARY 3.11. Let ξ : [0,∞) → [0,∞) be a function satisfying

ξ (|2|t) � ξ (|2|)ξ (t), ξ (|2|) < |2|4

for all t � 0 . Let κ > 0 and f : G → X with f (0) = 0 be a mapping satisfying (3.22).
Then there exists a unique additive mapping ℑ : G → X such that

‖ f (x)−ℑ(x)‖ � κξ (|x|)
|2|n−1|n−2| .
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