ADDITIVE ρ-FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN NORMED SPACES

Choonkil Park
(Communicated by A. Gilányi)

Abstract. In this paper, we solve the additive ρ-functional inequalities

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leqslant\left\|\rho\left(2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)\right)\right\| \tag{0.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)\right\| \leqslant\|\rho(f(x+y)-f(x)-f(y))\|, \tag{0.2}
\end{equation*}
$$

where ρ is a fixed non-Archimedean number with $|\rho|<1$.
Furthermore, we prove the Hyers-Ulam stability of the additive ρ-functional inequalities (0.1) and (0.2) in non-Archimedean Banach spaces and prove the Hyers-Ulam stability of additive ρ-functional equations associated with the additive ρ-functional inequalities (0.1) and (0.2) in non-Archimedean Banach spaces.

1. Introduction and preliminaries

A valuation is a function $|\cdot|$ from a field K into $[0, \infty)$ such that 0 is the unique element having the 0 valuation, $|r s|=|r| \cdot|s|$ and the triangle inequality holds, i.e.,

$$
|r+s| \leqslant|r|+|s|, \quad \forall r, s \in K
$$

A field K is called a valued field if K carries a valuation. The usual absolute values of \mathbb{R} and \mathbb{C} are examples of valuations.

Let us consider a valuation which satisfies a stronger condition than the triangle inequality. If the triangle inequality is replaced by

$$
|r+s| \leqslant \max \{|r|,|s|\}, \quad \forall r, s \in K
$$

then the function $|\cdot|$ is called a non-Archimedean valuation, and the field is called a non-Archimedean field. Clearly $|1|=|-1|=1$ and $|n| \leqslant 1$ for all $n \in \mathbb{N}$. A trivial example of a non-Archimedean valuation is the function $|\cdot|$ taking everything except for 0 into 1 and $|0|=0$.

Throughout this paper, we assume that the base field is a non-Archimedean field, hence call it simply a field.

[^0]DEFINITION 1.1. ([7]) Let X be a vector space over a field K with a nonArchimedean valuation $|\cdot|$. A function $\|\cdot\|: X \rightarrow[0, \infty)$ is said to be a nonArchimedean norm if it satisfies the following conditions:
(i) $\|x\|=0$ if and only if $x=0$;
(ii) $\|r x\|=|r|\|x\| \quad(r \in K, x \in X)$;
(iii) the strong triangle inequality

$$
\|x+y\| \leqslant \max \{\|x\|,\|y\|\}, \quad \forall x, y \in X
$$

holds. Then $(X,\|\cdot\|)$ is called a non-Archimedean normed space.
DEFINITION 1.2. (i) Let $\left\{x_{n}\right\}$ be a sequence in a non-Archimedean normed space X. Then the sequence $\left\{x_{n}\right\}$ is called Cauchy if for a given $\varepsilon>0$ there is a positive integer N such that

$$
\left\|x_{n}-x_{m}\right\| \leqslant \varepsilon
$$

for all $n, m \geqslant N$.
(ii) Let $\left\{x_{n}\right\}$ be a sequence in a non-Archimedean normed space X. Then the sequence $\left\{x_{n}\right\}$ is called convergent if for a given $\varepsilon>0$ there are a positive integer N and an $x \in X$ such that

$$
\left\|x_{n}-x\right\| \leqslant \varepsilon
$$

for all $n \geqslant N$. Then we call $x \in X$ a limit of the sequence $\left\{x_{n}\right\}$, and denote by $\lim _{n \rightarrow \infty} x_{n}=x$.
(iii) If every Cauchy sequence in X converges, then the non-Archimedean normed space X is called a non-Archimedean Banach space.

The stability problem of functional equations originated from a question of Ulam [12] concerning the stability of group homomorphisms.

The functional equation

$$
f(x+y)=f(x)+f(y)
$$

is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive mapping. Hyers [6] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers' Theorem was generalized by Aoki [1] for additive mappings and by Rassias [10] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruta [3] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias' approach.

The functional equation

$$
f\left(\frac{x+y}{2}\right)=\frac{1}{2} f(x)+\frac{1}{2} f(y)
$$

is called the Jensen equation.
In [4], Gilányi showed that if f satisfies the functional inequality

$$
\begin{equation*}
\left\|2 f(x)+2 f(y)-f\left(x y^{-1}\right)\right\| \leqslant\|f(x y)\| \tag{1.1}
\end{equation*}
$$

then f satisfies the Jordan-von Neumann functional equation

$$
2 f(x)+2 f(y)=f(x y)+f\left(x y^{-1}\right)
$$

See also [11]. Gilányi [5] and Fechner [2] proved the Hyers-Ulam stability of the functional inequality (1.1). Park, Cho and Han [9] proved the Hyers-Ulam stability of additive functional inequalities.

In [8], Park defined additive ρ-functional inequalities and additive ρ-functional equations and proved the Hyers-Ulam stability of the additive ρ-functional inequalities and the additive ρ-functional equations in (Archimedean) Banach spaces.

In Section 2, we solve the additive functional inequality (0.1) and prove the HyersUlam stability of the additive functional inequality (0.1) in non-Archimedean Banach spaces. We moreover prove the Hyers-Ulam stability of an additive functional equation associated with the functional inequality (0.1) in non-Archimedean Banach spaces.

In Section 3, we solve the additive functional inequality (0.2) and prove the HyersUlam stability of the additive functional inequality (0.2) in non-Archimedean Banach spaces. We moreover prove the Hyers-Ulam stability of an additive functional equation associated with the functional inequality (0.2) in non-Archimedean Banach spaces

Throughout this paper, assume that X is a non-Archimedean normed space and that Y is a non-Archimedean Banach space. Let $|2| \neq 1$ and let ρ be a non-Archimedean number with $|\rho|<1$.

2. Additive ρ-functional inequality (0.1)

We solve the additive ρ-functional inequality (0.1) in non-Archimedean normed spaces.

Lemma 2.1. Let G be an Abelian semigroup with division by 2. A mapping $f: G \rightarrow Y$ satisfies

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leqslant\left\|\rho\left(2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)\right)\right\| \tag{2.1}
\end{equation*}
$$

for all $x, y \in G$ if and only if $f: G \rightarrow Y$ is additive.
Proof. Assume that $f: G \rightarrow Y$ satisfies (2.1).
Letting $x=y=0$ in (2.1), we get

$$
\|f(0)\| \leqslant 0
$$

So $f(0)=0$.
Letting $y=x$ in (2.1), we get

$$
\|f(2 x)-2 f(x)\| \leqslant 0
$$

and so $f(2 x)=2 f(x)$ for all $x \in G$. Thus

$$
\begin{equation*}
f\left(\frac{x}{2}\right)=\frac{1}{2} f(x) \tag{2.2}
\end{equation*}
$$

for all $x \in G$.
It follows from (2.1) and (2.2) that

$$
\begin{aligned}
\|f(x+y)-f(x)-f(y)\| & \leqslant\left\|\rho\left(2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)\right)\right\| \\
& =|\rho|\|f(x+y)-f(x)-f(y)\|
\end{aligned}
$$

and so

$$
f(x+y)=f(x)+f(y)
$$

for all $x, y \in G$.
The converse is obviously true.

Corollary 2.2. Let G be an Abelian semigroup with division by 2. A mapping $f: G \rightarrow Y$ satisfies

$$
\begin{equation*}
f(x+y)-f(x)-f(y)=\rho\left(2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)\right) \tag{2.3}
\end{equation*}
$$

for all $x, y \in G$ if and only if $f: G \rightarrow Y$ is additive.
We prove the Hyers-Ulam stability of the additive ρ-functional inequality (2.1) in Banach spaces.

THEOREM 2.3. Let $r<1$ and θ be nonnegative real numbers, and let $f: X \rightarrow Y$ be a mapping such that

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leqslant\left\|\rho\left(2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)\right)\right\|+\theta\left(\|x\|^{r}+\|y\|^{r}\right) \tag{2.4}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leqslant \frac{2 \theta}{|2|^{r}}\|x\|^{r} \tag{2.5}
\end{equation*}
$$

for all $x \in X$.

Proof. Letting $y=x$ in (2.4), we get

$$
\begin{equation*}
\|f(2 x)-2 f(x)\| \leqslant 2 \theta\|x\|^{r} \tag{2.6}
\end{equation*}
$$

for all $x \in X$. So

$$
\left\|f(x)-2 f\left(\frac{x}{2}\right)\right\| \leqslant \frac{2}{|2|^{r}} \theta\|x\|^{r}
$$

for all $x \in X$. Hence

$$
\begin{aligned}
\| 2^{l} f & \left(\frac{x}{2^{l}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right) \| \\
& \leqslant \max \left\{\left\|2^{l} f\left(\frac{x}{2^{l}}\right)-2^{l+1} f\left(\frac{x}{2^{l+1}}\right)\right\|, \cdots,\left\|2^{m-1} f\left(\frac{x}{2^{m-1}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right)\right\|\right\} \\
& =\max \left\{|2|^{l}\left\|f\left(\frac{x}{2^{l}}\right)-2 f\left(\frac{x}{2^{l+1}}\right)\right\|, \cdots,|2|^{m-1}\left\|f\left(\frac{x}{2^{m-1}}\right)-2 f\left(\frac{x}{2^{m}}\right)\right\|\right\} \\
& \leqslant \max \left\{\frac{|2|^{l}}{|2|^{r l+1}}, \cdots, \frac{|2|^{m-1}}{|2|^{r(m-1)+1}}\right\} 2 \theta\|x\|^{r} \\
& =\frac{2 \theta}{|2|^{(r-1) l+1}\|x\|^{r}}
\end{aligned}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (2.7) that the sequence $\left\{2^{k} f\left(\frac{x}{2^{k}}\right)\right\}$ is Cauchy for all $x \in X$. Since Y is a non-Archimedean Banach space, the sequence $\left\{2^{k} f\left(\frac{x}{2^{k}}\right)\right\}$ converges. So one can define the mapping $A: X \rightarrow Y$ by

$$
A(x):=\lim _{k \rightarrow \infty} 2^{k} f\left(\frac{x}{2^{k}}\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.7), we get (2.5).

Now, let $T: X \rightarrow Y$ be another additive mapping satisfying (2.5). Then we have

$$
\begin{aligned}
\| A(x) & -T(x)\|=\| 2^{q} A\left(\frac{x}{2^{q}}\right)-2^{q} T\left(\frac{x}{2^{q}}\right) \| \\
& \leqslant \max \left\{\left\|2^{q} A\left(\frac{x}{2^{q}}\right)-2^{q} f\left(\frac{x}{2^{q}}\right)\right\|,\left\|2^{q} T\left(\frac{x}{2^{q}}\right)-2^{q} f\left(\frac{x}{2^{q}}\right)\right\|\right\} \\
& \leqslant \frac{2 \theta}{|2|^{(r-1) q+1}}\|x\|^{r}
\end{aligned}
$$

which tends to zero as $q \rightarrow \infty$ for all $x \in X$. So we can conclude that $A(x)=T(x)$ for all $x \in X$. This proves the uniqueness of A.

It follows from (2.4) that

$$
\begin{aligned}
\|A(x+y)-A(x)-A(y)\| & =\lim _{n \rightarrow \infty}\left\|2^{n}\left(f\left(\frac{x+y}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)-f\left(\frac{y}{2^{n}}\right)\right)\right\| \\
& \leqslant \lim _{n \rightarrow \infty}\left\|2^{n} \rho\left(2 f\left(\frac{x+y}{2^{n+1}}\right)-f\left(\frac{x}{2^{n}}\right)-f\left(\frac{y}{2^{n}}\right)\right)\right\| \\
& +\lim _{n \rightarrow \infty} \frac{|2|^{n} \theta}{|2|^{n r}}\left(\|x\|^{r}+\|y\|^{r}\right) \\
& =\left\|\rho\left(2 A\left(\frac{x+y}{2}\right)-A(x)-A(y)\right)\right\|
\end{aligned}
$$

for all $x, y \in X$. So

$$
\|A(x+y)-A(x)-A(y)\| \leqslant\left\|\rho\left(2 A\left(\frac{x+y}{2}\right)-A(x)-A(y)\right)\right\|
$$

for all $x, y \in X$. By Lemma 2.1, the mapping $A: X \rightarrow Y$ is additive.

THEOREM 2.4. Let $r>1$ and θ be positive real numbers, and let $f: X \rightarrow Y$ be a mapping satisfying (2.4). Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leqslant \frac{2 \theta}{|2|}\|x\|^{r} \tag{2.8}
\end{equation*}
$$

for all $x \in X$.
Proof. It follows from (2.6) that

$$
\left\|f(x)-\frac{1}{2} f(2 x)\right\| \leqslant \frac{2 \theta}{|2|}\|x\|^{r}
$$

for all $x \in X$. Hence

$$
\left\|\frac{1}{2^{l}} f\left(2^{l} x\right)-\frac{1}{2^{m}} f\left(2^{m} x\right)\right\| \text {. } \quad \begin{align*}
& \quad \max \left\{\left\|\frac{1}{2^{l}} f\left(2^{l} x\right)-\frac{1}{2^{l+1}} f\left(2^{l+1} x\right)\right\|, \cdots,\left\|\frac{1}{2^{m-1}} f\left(2^{m-1} x\right)-\frac{1}{2^{m}} f\left(2^{m} x\right)\right\|\right\} \tag{2.9}\\
& \quad=\max \left\{\frac{1}{|2|^{l} \|}\left\|f\left(2^{l} x\right)-\frac{1}{2} f\left(2^{l+1} x\right)\right\|, \cdots, \frac{1}{\mid 2^{m-1}}\left\|f\left(2^{m-1} x\right)-\frac{1}{2} f\left(2^{m} x\right)\right\|\right\} \\
& \quad \leqslant \max \left\{\frac{|2|^{r l}}{|2|^{l+1}}, \cdots, \frac{|2|^{r(m-1)}}{|2|^{(m-1)+1}}\right\} 2 \theta\|x\|^{r} \\
& \quad=\frac{2 \theta}{|2|^{(1-r) l+1}}\|x\|^{r}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (2.9) that the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ converges. So one can define the mapping $A: X \rightarrow Y$ by

$$
A(x):=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.9), we get (2.8).

The rest of the proof is similar to the proof of Theorem 2.3.
Let $A(x, y):=f(x+y)-f(x)-f(y)$ and $B(x, y):=\rho\left(2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)\right)$ for all $x, y \in X$.

For $x, y \in X$ with $\|A(x, y)\| \leqslant\|B(x, y)\|$,

$$
\|A(x, y)\|-\|B(x, y)\| \leqslant\|A(x, y)-B(x, y)\| .
$$

For $x, y \in X$ with $\|A(x, y)\|>\|B(x, y)\|$,

$$
\begin{aligned}
\|A(x, y)\| & =\|A(x, y)-B(x, y)+B(x, y)\| \\
& \leqslant \max \{\|A(x, y)-B(x, y)\|,\|B(x, y)\|\} \\
& =\|A(x, y)-B(x, y)\| \\
& \leqslant\|A(x, y)-B(x, y)\|+\|B(x, y)\|
\end{aligned}
$$

since $\|A(x, y)\|>\|B(x, y)\|$. So we have

$$
\begin{aligned}
& \|f(x+y)-f(x)-f(y)\|-\left\|\rho\left(2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)\right)\right\| \\
& \leqslant\left\|f(x+y)-f(x)-f(y)-\rho\left(2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)\right)\right\|
\end{aligned}
$$

As corollaries of Theorems 2.3 and 2.4, we obtain the Hyers-Ulam stability results for the additivec ρ-functional equation (2.3) in non-Archimedean Banach spaces.

Corollary 2.5. Let $r<1$ and θ be nonnegative real numbers, and let $f: X \rightarrow$ Y be a mapping such that

$$
\left\|f(x+y)-f(x)-f(y)-\rho\left(2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)\right)\right\| \leqslant \theta\left(\|x\|^{r}+\|y\|^{r} \mathbf{2} 2.10\right)
$$

for all $x, y \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$ satisfying (2.5).
Corollary 2.6. Let $r>1$ and θ be nonnegative real numbers, and let f : $X \rightarrow Y$ be a mapping satisfying (2.10). Then there exists a unique additive mapping $A: X \rightarrow Y$ satisfying (2.8).

3. Additive ρ-functional inequality (0.2)

We solve the additive ρ-functional inequality (0.2) in non-Archimedean normed spaces.

Lemma 3.1. Let G be an Abelian semigroup with division by 2. A mapping $f: G \rightarrow Y$ satisfis $f(0)=0$ and

$$
\begin{equation*}
\left\|2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)\right\| \leqslant\|\rho(f(x+y)-f(x)-f(y))\| \tag{3.1}
\end{equation*}
$$

for all $x, y \in G$ if and if $f: G \rightarrow Y$ is additive.

Proof. Assume that $f: X \rightarrow Y$ satisfies (3.1).
Letting $y=0$ in (3.1), we get

$$
\begin{equation*}
\left\|2 f\left(\frac{x}{2}\right)-f(x)\right\| \leqslant 0 \tag{3.2}
\end{equation*}
$$

and so $f\left(\frac{x}{2}\right)-\frac{1}{2} f(x)$ for all $x \in G$.
It follows from (3.1) and (3.2) that

$$
\begin{aligned}
\|f(x+y)-f(x)-f(y)\| & =\left\|2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)\right\| \\
& \leqslant|\rho|\|f(x+y)-f(x)-f(y)\|
\end{aligned}
$$

and so

$$
f(x+y)=f(x)+f(y)
$$

for all $x, y \in G$.
The converse is obviously true.
Corollary 3.2. Let G be an Abelian semigroup with division by 2. A mapping $f: G \rightarrow Y$ satisfies $f(0)=0$ and

$$
\begin{equation*}
2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)=\rho(f(x+y)-f(x)-f(y)) \tag{3.3}
\end{equation*}
$$

for all $x, y \in G$ if and only if $f: G \rightarrow Y$ is additive.
Now, we prove the Hyers-Ulam stability of the additive ρ-functional inequality (3.1) in non-Archimedean Banach spaces.

THEOREM 3.3. Let $r<1$ and θ be nonnegative real numbers, and let $f: X \rightarrow Y$ be a mapping with $f(0)=0$ such that

$$
\begin{equation*}
\left\|2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)\right\| \leqslant\|\rho(f(x+y)-f(x)-f(y))\|+\theta\left(\|x\|^{r}+\|y\|^{r}\right) \tag{3.4}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leqslant \theta\|x\|^{r} \tag{3.5}
\end{equation*}
$$

for all $x \in X$.
Proof. Letting $y=0$ in (3.4), we get

$$
\begin{equation*}
\left\|f(x)-2 f\left(\frac{x}{2}\right)\right\|=\left\|2 f\left(\frac{x}{2}\right)-f(x)\right\| \leqslant \theta\|x\|^{r} \tag{3.6}
\end{equation*}
$$

for all $x \in X$. So

$$
\begin{align*}
\| 2^{l} f & \left(\frac{x}{2^{l}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right) \| \tag{3.7}\\
& \leqslant \max \left\{\left\|2^{l} f\left(\frac{x}{2^{l}}\right)-2^{l+1} f\left(\frac{x}{2^{l+1}}\right)\right\|, \cdots,\left\|2^{m-1} f\left(\frac{x}{2^{m-1}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right)\right\|\right\} \\
& =\max \left\{|2|^{l}\left\|f\left(\frac{x}{2^{l}}\right)-2 f\left(\frac{x}{2^{l+1}}\right)\right\|, \cdots,|2|^{m-1}\left\|f\left(\frac{x}{2^{m-1}}\right)-2 f\left(\frac{x}{2^{m}}\right)\right\|\right\} \\
& \leqslant \max \left\{\frac{|2|^{l}}{|2|^{r l}}, \cdots, \frac{|2|^{m-1}}{|2|^{r(m-1)}}\right\} \theta\|x\|^{r} \\
& =\frac{\theta}{|2|^{(r-1) l} \mid x \|^{r}}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (3.7) that the sequence $\left\{2^{k} f\left(\frac{x}{2^{k}}\right)\right\}$ is Cauchy for all $x \in X$. Since Y is a non-Archimedean

Banach space, the sequence $\left\{2^{k} f\left(\frac{x}{2^{k}}\right)\right\}$ converges. So one can define the mapping $A: X \rightarrow Y$ by

$$
A(x):=\lim _{k \rightarrow \infty} 2^{k} f\left(\frac{x}{2^{k}}\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (3.7), we get (3.5).

The rest of the proof is similar to the proof of Theorem 2.3.
THEOREM 3.4. Let $r>1$ and θ be positive real numbers, and let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ and (3.4). Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leqslant \frac{|2|^{r}}{|2|} \theta\|x\|^{r} \tag{3.8}
\end{equation*}
$$

for all $x \in X$.

Proof. It follows from (3.6) that

$$
\left\|f(x)-\frac{1}{2} f(2 x)\right\| \leqslant \frac{|2|^{r}}{|2|} \theta \|\left. x\right|^{r}
$$

for all $x \in X$. Hence

$$
\begin{aligned}
& \left\|\frac{1}{2^{l}} f\left(2^{l} x\right)-\frac{1}{2^{m}} f\left(2^{m} x\right)\right\| \\
& \quad \leqslant \max \left\{\left\|\frac{1}{2^{l}} f\left(2^{l} x\right)-\frac{1}{2^{l+1}} f\left(2^{l+1} x\right)\right\|, \cdots,\left\|\frac{1}{2^{m-1}} f\left(2^{m-1} x\right)-\frac{1}{2^{m}} f\left(2^{m} x\right)\right\|\right\} \\
& \quad=\max \left\{\frac{1}{|2|^{l}}\left\|f\left(2^{l} x\right)-\frac{1}{2} f\left(2^{l+1} x\right)\right\|, \cdots, \frac{1}{|2|^{m-1}}\left\|f\left(2^{m-1} x\right)-\frac{1}{2} f\left(2^{m} x\right)\right\|\right\} \\
& \quad \leqslant \max \left\{\frac{|2|^{r l}}{|2|^{l+1}}, \cdots, \frac{|2|^{r(m-1)}}{|2|^{(m-1)+1}}\right\}|2|^{r} \theta\|x\|^{r} \\
& \quad=\frac{|2|^{r} \theta}{|2|^{(1-r) l+1}}\|x\|^{r}
\end{aligned}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (3.9) that the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ converges. So one can define the mapping $A: X \rightarrow Y$ by

$$
A(x):=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (3.9), we get (3.8).

The rest of the proof is similar to the proof of Theorem 2.3.

Let $A(x, y):=2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)$ and $B(x, y):=\rho(f(x+y)-f(x)-f(y))$ for all $x, y \in X$.

For $x, y \in X$ with $\|A(x, y)\| \leqslant\|B(x, y)\|$,

$$
\|A(x, y)\|-\|B(x, y)\| \leqslant\|A(x, y)-B(x, y)\| .
$$

For $x, y \in X$ with $\|A(x, y)\|>\|B(x, y)\|$,

$$
\begin{aligned}
\|A(x, y)\| & =\|A(x, y)-B(x, y)+B(x, y)\| \\
& \leqslant \max \{\|A(x, y)-B(x, y)\|,\|B(x, y)\|\} \\
& =\|A(x, y)-B(x, y)\| \\
& \leqslant\|A(x, y)-B(x, y)\|+\|B(x, y)\|
\end{aligned}
$$

since $\|A(x, y)\|>\|B(x, y)\|$. So we have

$$
\begin{aligned}
& \left\|2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)\right\|-\|\rho(f(x+y)-f(x)-f(y))\| \\
& \leqslant\left\|2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)-\rho(f(x+y)-f(x)-f(y))\right\|
\end{aligned}
$$

As corollaries of Theorems 3.3 and 3.4, we obtain the Hyers-Ulam stability results for the additivec ρ-functional equation (3.3) in non-Archimedean Banach spaces.

COROLLARY 3.5. Let $r<1$ and θ be nonnegative real numbers, and let $f: X \rightarrow$ Y be a mapping satisfying $f(0)=0$ and

$$
\left\|2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)-\rho(f(x+y)-f(x)-f(y))\right\| \leqslant \theta\left(\|x\|^{r}+\|y\|^{r}\right)(3.10)
$$

for all $x, y \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$ satisfying (3.5).
Corollary 3.6. Let $r>1$ and θ be nonnegative real numbers, and let $f: X \rightarrow$ Y be a mapping satisfying $f(0)=0$ and (3.10). Then there exists a unique additive mapping $A: X \rightarrow Y$ satisfying (3.8).

REFERENCES

[1] T. AOKI, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.
[2] W. Fechner, Stability of a functional inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 71 (2006), 149-161.
[3] P. GǍvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-43.
[4] A. Gilányi, Eine zur Parallelogrammgleichung äquivalente Ungleichung, Aequationes Math. 62 (2001), 303-309.
[5] A. Gilányi, On a problem by K. Nikodem, Math. Inequal. Appl. 5 (2002), 707-710.
[6] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224.
[7] M.S. Moslehian and Gh. Sadeghi, A Mazur-Ulam theorem in non-Archimedean normed spaces, Nonlinear Anal.-TMA 69 (2008), 3405-3408.
[8] C. PARK, Additive ρ-functional inequalities and equations, J. Math. Inequal. 9 (2015), 17-26.
[9] C. Park, Y. Cho and M. Han, Functional inequalities associated with Jordan-von Neumann-type additive functional equations, J. Inequal. Appl. 2007 (2007), Article ID 41820, 13 pages.
[10] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[11] J. RÄTZ, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 66 (2003), 191-200.
[12] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.

[^0]: Mathematics subject classification (2010): Primary 46S10, 39B62, 39B52, 47S10, 12J25.
 Keywords and phrases: Hyers-Ulam stability, additive ρ-functional equation, additive ρ-functional inequality, non-Archimedean normed space.

 This work was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2012R1A1A2004299).

