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ADDITIVE ρ –FUNCTIONAL INEQUALITIES

IN NON–ARCHIMEDEAN NORMED SPACES

CHOONKIL PARK

(Communicated by A. Gilányi)

Abstract. In this paper, we solve the additive ρ -functional inequalities

‖ f (x+ y)− f (x)− f (y)‖ �
∥∥∥∥ρ

(
2 f

(
x+ y

2

)
− f (x)− f (y)

)∥∥∥∥ (0.1)

and ∥∥∥∥2 f

(
x+ y

2

)
− f (x)− f (y)

∥∥∥∥ � ‖ρ ( f (x+ y)− f (x)− f (y))‖ , (0.2)

where ρ is a fixed non-Archimedean number with |ρ| < 1 .
Furthermore, we prove the Hyers-Ulam stability of the additive ρ -functional inequalities

(0.1) and (0.2) in non-Archimedean Banach spaces and prove the Hyers-Ulam stability of addi-
tive ρ -functional equations associated with the additive ρ -functional inequalities (0.1) and (0.2)
in non-Archimedean Banach spaces.

1. Introduction and preliminaries

A valuation is a function | · | from a field K into [0,∞) such that 0 is the unique
element having the 0 valuation, |rs| = |r| · |s| and the triangle inequality holds, i.e.,

|r+ s| � |r|+ |s|, ∀r,s ∈ K.

A field K is called a valued field if K carries a valuation. The usual absolute values of
R and C are examples of valuations.

Let us consider a valuation which satisfies a stronger condition than the triangle
inequality. If the triangle inequality is replaced by

|r+ s| � max{|r|, |s|}, ∀r,s ∈ K,

then the function | · | is called a non-Archimedean valuation, and the field is called a
non-Archimedean field. Clearly |1| = | − 1| = 1 and |n| � 1 for all n ∈ N . A trivial
example of a non-Archimedean valuation is the function | · | taking everything except
for 0 into 1 and |0| = 0.

Throughout this paper, we assume that the base field is a non-Archimedean field,
hence call it simply a field.
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DEFINITION 1.1. ([7]) Let X be a vector space over a field K with a non-
Archimedean valuation | · | . A function ‖ · ‖ : X → [0,∞) is said to be a non-
Archimedean norm if it satisfies the following conditions:

(i) ‖x‖ = 0 if and only if x = 0;
(ii) ‖rx‖ = |r|‖x‖ (r ∈ K,x ∈ X) ;
(iii) the strong triangle inequality

‖x+ y‖� max{‖x‖,‖y‖}, ∀x,y ∈ X

holds. Then (X ,‖ · ‖) is called a non-Archimedean normed space.

DEFINITION 1.2. (i) Let {xn} be a sequence in a non-Archimedean normed space
X . Then the sequence {xn} is called Cauchy if for a given ε > 0 there is a positive
integer N such that

‖xn− xm‖ � ε

for all n,m � N .
(ii) Let {xn} be a sequence in a non-Archimedean normed space X . Then the

sequence {xn} is called convergent if for a given ε > 0 there are a positive integer N
and an x ∈ X such that

‖xn− x‖ � ε

for all n � N . Then we call x ∈ X a limit of the sequence {xn} , and denote by
limn→∞ xn = x .

(iii) If every Cauchy sequence in X converges, then the non-Archimedean normed
space X is called a non-Archimedean Banach space.

The stability problem of functional equations originated from a question of Ulam
[12] concerning the stability of group homomorphisms.

The functional equation

f (x+ y) = f (x)+ f (y)

is called the Cauchy equation. In particular, every solution of the Cauchy equation
is said to be an additive mapping. Hyers [6] gave a first affirmative partial answer to
the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki
[1] for additive mappings and by Rassias [10] for linear mappings by considering an
unbounded Cauchy difference. A generalization of the Rassias theorem was obtained
by Găvruta [3] by replacing the unbounded Cauchy difference by a general control
function in the spirit of Rassias’ approach.

The functional equation

f

(
x+ y

2

)
=

1
2

f (x)+
1
2

f (y)

is called the Jensen equation.
In [4], Gilányi showed that if f satisfies the functional inequality

‖2 f (x)+2 f (y)− f (xy−1)‖ � ‖ f (xy)‖ (1.1)
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then f satisfies the Jordan-von Neumann functional equation

2 f (x)+2 f (y) = f (xy)+ f (xy−1).

See also [11]. Gilányi [5] and Fechner [2] proved the Hyers-Ulam stability of the
functional inequality (1.1). Park, Cho and Han [9] proved the Hyers-Ulam stability of
additive functional inequalities.

In [8], Park defined additive ρ -functional inequalities and additive ρ -functional
equations and proved the Hyers-Ulam stability of the additive ρ -functional inequalities
and the additive ρ -functional equations in (Archimedean) Banach spaces.

In Section 2, we solve the additive functional inequality (0.1) and prove the Hyers-
Ulam stability of the additive functional inequality (0.1) in non-Archimedean Banach
spaces. We moreover prove the Hyers-Ulam stability of an additive functional equation
associated with the functional inequality (0.1) in non-Archimedean Banach spaces.

In Section 3, we solve the additive functional inequality (0.2) and prove the Hyers-
Ulam stability of the additive functional inequality (0.2) in non-Archimedean Banach
spaces. We moreover prove the Hyers-Ulam stability of an additive functional equation
associated with the functional inequality (0.2) in non-Archimedean Banach spaces

Throughout this paper, assume that X is a non-Archimedean normed space and
that Y is a non-ArchimedeanBanach space. Let |2| �= 1 and let ρ be a non-Archimedean
number with |ρ | < 1.

2. Additive ρ -functional inequality (0.1)

We solve the additive ρ -functional inequality (0.1) in non-Archimedean normed
spaces.

LEMMA 2.1. Let G be an Abelian semigroup with division by 2. A mapping
f : G → Y satisfies

‖ f (x+ y)− f (x)− f (y)‖�
∥∥∥∥ρ

(
2 f

(
x+ y

2

)
− f (x)− f (y)

)∥∥∥∥ (2.1)

for all x,y ∈ G if and only if f : G → Y is additive.

Proof. Assume that f : G → Y satisfies (2.1).
Letting x = y = 0 in (2.1), we get

‖ f (0)‖ � 0.

So f (0) = 0.
Letting y = x in (2.1), we get

‖ f (2x)−2 f (x)‖ � 0

and so f (2x) = 2 f (x) for all x ∈ G . Thus

f
( x

2

)
=

1
2

f (x) (2.2)
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for all x ∈ G .
It follows from (2.1) and (2.2) that

‖ f (x+ y)− f (x)− f (y)‖ �
∥∥∥∥ρ

(
2 f

(
x+ y

2

)
− f (x)− f (y)

)∥∥∥∥
= |ρ |‖ f (x+ y)− f (x)− f (y)‖

and so

f (x+ y) = f (x)+ f (y)

for all x,y ∈ G .
The converse is obviously true. �

COROLLARY 2.2. Let G be an Abelian semigroup with division by 2. A mapping
f : G → Y satisfies

f (x+ y)− f (x)− f (y) = ρ
(

2 f

(
x+ y

2

)
− f (x)− f (y)

)
(2.3)

for all x,y ∈ G if and only if f : G → Y is additive.

We prove the Hyers-Ulam stability of the additive ρ -functional inequality (2.1) in
Banach spaces.

THEOREM 2.3. Let r < 1 and θ be nonnegative real numbers, and let f : X →Y
be a mapping such that

‖ f (x+ y)− f (x)− f (y)‖�
∥∥∥∥ρ

(
2 f

(
x+ y

2

)
− f (x)− f (y)

)∥∥∥∥+ θ (‖x‖r +‖y‖r) (2.4)

for all x,y ∈ X . Then there exists a unique additive mapping A : X → Y such that

‖ f (x)−A(x)‖ � 2θ
|2|r ‖x‖

r (2.5)

for all x ∈ X .

Proof. Letting y = x in (2.4), we get

‖ f (2x)−2 f (x)‖ � 2θ‖x‖r (2.6)

for all x ∈ X . So ∥∥∥ f (x)−2 f
( x

2

)∥∥∥ � 2
|2|r θ‖x‖r
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for all x ∈ X . Hence∥∥∥2l f
( x

2l

)
−2m f

( x
2m

)∥∥∥ (2.7)

� max
{∥∥∥2l f

( x
2l

)
−2l+1 f

( x
2l+1

)∥∥∥ , · · · ,
∥∥∥2m−1 f

( x
2m−1

)
−2m f

( x
2m

)∥∥∥}
= max

{
|2|l

∥∥∥ f
( x

2l

)
−2 f

( x
2l+1

)∥∥∥ , · · · , |2|m−1
∥∥∥ f

( x
2m−1

)
−2 f

( x
2m

)∥∥∥}
� max

{ |2|l
|2|rl+1 , · · · , |2|m−1

|2|r(m−1)+1

}
2θ‖x‖r

=
2θ

|2|(r−1)l+1
‖x‖r

for all nonnegative integers m and l with m > l and all x ∈ X . It follows from (2.7)
that the sequence {2k f ( x

2k )} is Cauchy for all x ∈ X . Since Y is a non-Archimedean

Banach space, the sequence {2k f ( x
2k )} converges. So one can define the mapping

A : X → Y by

A(x) := lim
k→∞

2k f
( x

2k

)
for all x ∈ X . Moreover, letting l = 0 and passing the limit m → ∞ in (2.7), we get
(2.5).

Now, let T : X → Y be another additive mapping satisfying (2.5). Then we have

‖A(x)−T(x)‖ =
∥∥∥2qA

( x
2q

)
−2qT

( x
2q

)∥∥∥
� max

{∥∥∥2qA
( x

2q

)
−2q f

( x
2q

)∥∥∥ ,
∥∥∥2qT

( x
2q

)
−2q f

( x
2q

)∥∥∥}
� 2θ

|2|(r−1)q+1
‖x‖r,

which tends to zero as q → ∞ for all x ∈ X . So we can conclude that A(x) = T (x) for
all x ∈ X . This proves the uniqueness of A .

It follows from (2.4) that

‖A(x+ y)−A(x)−A(y)‖ = lim
n→∞

∥∥∥∥2n
(

f

(
x+ y
2n

)
− f

( x
2n

)
− f

( y
2n

))∥∥∥∥
� lim

n→∞

∥∥∥∥2nρ
(

2 f

(
x+ y
2n+1

)
− f

( x
2n

)
− f

( y
2n

))∥∥∥∥
+ lim

n→∞

|2|nθ
|2|nr (‖x‖r +‖y‖r)

=
∥∥∥∥ρ

(
2A

(
x+ y

2

)
−A(x)−A(y)

)∥∥∥∥
for all x,y ∈ X . So

‖A(x+ y)−A(x)−A(y)‖�
∥∥∥∥ρ

(
2A

(
x+ y

2

)
−A(x)−A(y)

)∥∥∥∥
for all x,y ∈ X . By Lemma 2.1, the mapping A : X → Y is additive. �
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THEOREM 2.4. Let r > 1 and θ be positive real numbers, and let f : X →Y be a
mapping satisfying (2.4). Then there exists a unique additive mapping A : X → Y such
that

‖ f (x)−A(x)‖ � 2θ
|2| ‖x‖

r (2.8)

for all x ∈ X .

Proof. It follows from (2.6) that∥∥∥∥ f (x)− 1
2

f (2x)
∥∥∥∥ � 2θ

|2| ‖x‖
r

for all x ∈ X . Hence∥∥∥∥ 1
2l f (2lx)− 1

2m f (2mx)
∥∥∥∥ (2.9)

� max

{∥∥∥∥ 1
2l

f
(
2lx

)
− 1

2l+1 f
(
2l+1x

)∥∥∥∥ , · · · ,
∥∥∥∥ 1

2m−1 f
(
2m−1x

)− 1
2m f (2mx)

∥∥∥∥
}

= max

{
1
|2|l

∥∥∥∥ f
(
2lx

)
− 1

2
f
(
2l+1x

)∥∥∥∥ , · · · , 1
|2|m−1

∥∥∥∥ f
(
2m−1x

)− 1
2

f (2mx)
∥∥∥∥
}

� max

{
|2|rl
|2|l+1 , · · · , |2|r(m−1)

|2|(m−1)+1

}
2θ‖x‖r

=
2θ

|2|(1−r)l+1
‖x‖r

for all nonnegative integers m and l with m > l and all x ∈ X . It follows from (2.9)
that the sequence { 1

2n f (2nx)} is a Cauchy sequence for all x∈ X . Since Y is complete,
the sequence { 1

2n f (2nx)} converges. So one can define the mapping A : X → Y by

A(x) := lim
n→∞

1
2n f (2nx)

for all x ∈ X . Moreover, letting l = 0 and passing the limit m → ∞ in (2.9), we get
(2.8).

The rest of the proof is similar to the proof of Theorem 2.3. �
Let A(x,y) := f (x + y)− f (x)− f (y) and B(x,y) := ρ

(
2 f

( x+y
2

)− f (x)− f (y)
)

for all x,y ∈ X .
For x,y ∈ X with ‖A(x,y)‖ � ‖B(x,y)‖ ,

‖A(x,y)‖−‖B(x,y)‖� ‖A(x,y)−B(x,y)‖.
For x,y ∈ X with ‖A(x,y)‖ > ‖B(x,y)‖ ,

‖A(x,y)‖ = ‖A(x,y)−B(x,y)+B(x,y)‖
� max{‖A(x,y)−B(x,y)‖,‖B(x,y)‖}
= ‖A(x,y)−B(x,y)‖
� ‖A(x,y)−B(x,y)‖+‖B(x,y)‖,
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since ‖A(x,y)‖ > ‖B(x,y)‖ . So we have

‖ f (x+ y)− f (x)− f (y)‖−
∥∥∥∥ρ

(
2 f

(
x+ y

2

)
− f (x)− f (y)

)∥∥∥∥
�

∥∥∥∥ f (x+ y)− f (x)− f (y)−ρ
(

2 f

(
x+ y

2

)
− f (x)− f (y)

)∥∥∥∥ .

As corollaries of Theorems 2.3 and 2.4, we obtain the Hyers-Ulam stability results for
the additivec ρ -functional equation (2.3) in non-Archimedean Banach spaces.

COROLLARY 2.5. Let r < 1 and θ be nonnegative real numbers, and let f : X →
Y be a mapping such that∥∥∥∥ f (x+ y)− f (x)− f (y)−ρ

(
2 f

(
x+ y

2

)
− f (x)− f (y)

)∥∥∥∥ � θ (‖x‖r +‖y‖r)(2.10)

for all x,y∈X . Then there exists a unique additive mapping A : X →Y satisfying (2.5).

COROLLARY 2.6. Let r > 1 and θ be nonnegative real numbers, and let f :
X → Y be a mapping satisfying (2.10). Then there exists a unique additive mapping
A : X → Y satisfying (2.8).

3. Additive ρ -functional inequality (0.2)

We solve the additive ρ -functional inequality (0.2) in non-Archimedean normed
spaces.

LEMMA 3.1. Let G be an Abelian semigroup with division by 2. A mapping
f : G → Y satisfis f (0) = 0 and∥∥∥∥2 f

(
x+ y

2

)
− f (x)− f (y)

∥∥∥∥ � ‖ρ ( f (x+ y)− f (x)− f (y))‖ (3.1)

for all x,y ∈ G if and if f : G → Y is additive.

Proof. Assume that f : X → Y satisfies (3.1).
Letting y = 0 in (3.1), we get∥∥∥2 f

( x
2

)
− f (x)

∥∥∥ � 0 (3.2)

and so f
(

x
2

)− 1
2 f (x) for all x ∈ G .

It follows from (3.1) and (3.2) that

‖ f (x+ y)− f (x)− f (y)‖ =
∥∥∥∥2 f

(
x+ y

2

)
− f (x)− f (y)

∥∥∥∥
� |ρ |‖ f (x+ y)− f (x)− f (y)‖
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and so
f (x+ y) = f (x)+ f (y)

for all x,y ∈ G .
The converse is obviously true. �

COROLLARY 3.2. Let G be an Abelian semigroup with division by 2. A mapping
f : G → Y satisfies f (0) = 0 and

2 f

(
x+ y

2

)
− f (x)− f (y) = ρ( f (x+ y)− f (x)− f (y)) (3.3)

for all x,y ∈ G if and only if f : G → Y is additive.

Now, we prove the Hyers-Ulam stability of the additive ρ -functional inequality
(3.1) in non-Archimedean Banach spaces.

THEOREM 3.3. Let r < 1 and θ be nonnegative real numbers, and let f : X →Y
be a mapping with f (0) = 0 such that∥∥∥∥2 f

(
x+ y

2

)
− f (x)− f (y)

∥∥∥∥ � ‖ρ( f (x+ y)− f (x)− f (y))‖+ θ (‖x‖r +‖y‖r) (3.4)

for all x,y ∈ X . Then there exists a unique additive mapping A : X → Y such that

‖ f (x)−A(x)‖ � θ‖x‖r (3.5)

for all x ∈ X .

Proof. Letting y = 0 in (3.4), we get∥∥∥ f (x)−2 f
( x

2

)∥∥∥ =
∥∥∥2 f

( x
2

)
− f (x)

∥∥∥ � θ‖x‖r (3.6)

for all x ∈ X . So∥∥∥2l f
( x

2l

)
−2m f

( x
2m

)∥∥∥ (3.7)

� max
{∥∥∥2l f

( x
2l

)
−2l+1 f

( x
2l+1

)∥∥∥ , · · · ,
∥∥∥2m−1 f

( x
2m−1

)
−2m f

( x
2m

)∥∥∥}
= max

{
|2|l

∥∥∥ f
( x

2l

)
−2 f

( x
2l+1

)∥∥∥ , · · · , |2|m−1
∥∥∥ f

( x
2m−1

)
−2 f

( x
2m

)∥∥∥}

� max

{ |2|l
|2|rl , · · · ,

|2|m−1

|2|r(m−1)

}
θ‖x‖r

=
θ

|2|(r−1)l ‖x‖r

for all nonnegative integers m and l with m > l and all x ∈ X . It follows from (3.7)
that the sequence {2k f ( x

2k )} is Cauchy for all x ∈ X . Since Y is a non-Archimedean
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Banach space, the sequence {2k f ( x
2k )} converges. So one can define the mapping

A : X → Y by

A(x) := lim
k→∞

2k f
( x

2k

)
for all x ∈ X . Moreover, letting l = 0 and passing the limit m → ∞ in (3.7), we get
(3.5).

The rest of the proof is similar to the proof of Theorem 2.3. �

THEOREM 3.4. Let r > 1 and θ be positive real numbers, and let f : X → Y be
a mapping satisfying f (0) = 0 and (3.4). Then there exists a unique additive mapping
A : X → Y such that

‖ f (x)−A(x)‖ � |2|r
|2| θ‖x‖r (3.8)

for all x ∈ X .

Proof. It follows from (3.6) that∥∥∥∥ f (x)− 1
2

f (2x)
∥∥∥∥ � |2|r

|2| θ‖x‖r

for all x ∈ X . Hence∥∥∥∥ 1
2l

f (2lx)− 1
2m f (2mx)

∥∥∥∥ (3.9)

� max

{∥∥∥∥ 1
2l f

(
2lx

)
− 1

2l+1 f
(
2l+1x

)∥∥∥∥ , · · · ,
∥∥∥∥ 1

2m−1 f
(
2m−1x

)− 1
2m f (2mx)

∥∥∥∥
}

= max

{
1
|2|l

∥∥∥∥ f
(
2lx

)
− 1

2
f
(
2l+1x

)∥∥∥∥ , · · · , 1
|2|m−1

∥∥∥∥ f
(
2m−1x

)− 1
2

f (2mx)
∥∥∥∥
}

� max

{
|2|rl
|2|l+1 , · · · , |2|r(m−1)

|2|(m−1)+1

}
|2|rθ‖x‖r

=
|2|rθ

|2|(1−r)l+1
‖x‖r

for all nonnegative integers m and l with m > l and all x ∈ X . It follows from (3.9)
that the sequence { 1

2n f (2nx)} is a Cauchy sequence for all x∈ X . Since Y is complete,
the sequence { 1

2n f (2nx)} converges. So one can define the mapping A : X → Y by

A(x) := lim
n→∞

1
2n f (2nx)

for all x ∈ X . Moreover, letting l = 0 and passing the limit m → ∞ in (3.9), we get
(3.8).

The rest of the proof is similar to the proof of Theorem 2.3. �
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Let A(x,y) := 2 f
( x+y

2

)− f (x)− f (y) and B(x,y) := ρ ( f (x+ y)− f (x)− f (y))
for all x,y ∈ X .

For x,y ∈ X with ‖A(x,y)‖ � ‖B(x,y)‖ ,

‖A(x,y)‖−‖B(x,y)‖� ‖A(x,y)−B(x,y)‖.
For x,y ∈ X with ‖A(x,y)‖ > ‖B(x,y)‖ ,

‖A(x,y)‖ = ‖A(x,y)−B(x,y)+B(x,y)‖
� max{‖A(x,y)−B(x,y)‖,‖B(x,y)‖}
= ‖A(x,y)−B(x,y)‖
� ‖A(x,y)−B(x,y)‖+‖B(x,y)‖,

since ‖A(x,y)‖ > ‖B(x,y)‖ . So we have

‖2 f

(
x+ y

2

)
− f (x)− f (y)‖−‖ρ ( f (x+ y)− f (x)− f (y))‖

�
∥∥∥∥2 f

(
x+ y

2

)
− f (x)− f (y)−ρ ( f (x+ y)− f (x)− f (y))

∥∥∥∥ .

As corollaries of Theorems 3.3 and 3.4, we obtain the Hyers-Ulam stability results for
the additivec ρ -functional equation (3.3) in non-Archimedean Banach spaces.

COROLLARY 3.5. Let r < 1 and θ be nonnegative real numbers, and let f : X →
Y be a mapping satisfying f (0) = 0 and∥∥∥∥2 f

(
x+ y

2

)
− f (x)− f (y)−ρ ( f (x+ y)− f (x)− f (y))

∥∥∥∥ � θ (‖x‖r +‖y‖r)(3.10)

for all x,y∈X . Then there exists a unique additive mapping A : X →Y satisfying (3.5).

COROLLARY 3.6. Let r > 1 and θ be nonnegative real numbers, and let f : X →
Y be a mapping satisfying f (0) = 0 and (3.10). Then there exists a unique additive
mapping A : X → Y satisfying (3.8).
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