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ADDITIVE p-FUNCTIONAL INEQUALITIES
IN NON-ARCHIMEDEAN NORMED SPACES

CHOONKIL PARK

(Communicated by A. Gildnyi)

Abstract. In this paper, we solve the additive p -functional inequalities

I3 =109 1001 < o (20 (52) = 10500 o
and
|27 (552) - 0109 < o (4= 1= 5001 ©02)

where p is a fixed non-Archimedean number with [p| < 1.

Furthermore, we prove the Hyers-Ulam stability of the additive p -functional inequalities
(0.1) and (0.2) in non-Archimedean Banach spaces and prove the Hyers-Ulam stability of addi-
tive p -functional equations associated with the additive p -functional inequalities (0.1) and (0.2)
in non-Archimedean Banach spaces.

1. Introduction and preliminaries

A valuation is a function | - | from a field K into [0,°) such that O is the unique
element having the 0 valuation, |rs| = |r|-|s| and the triangle inequality holds, i.e.,

[r+s| < |r|+]s], Vr,s € K.

A field K is called a valued field if K carries a valuation. The usual absolute values of
R and C are examples of valuations.

Let us consider a valuation which satisfies a stronger condition than the triangle
inequality. If the triangle inequality is replaced by

|r+s| < max{|r,|s|}, Vr,s €K,

then the function | - | is called a non-Archimedean valuation, and the field is called a
non-Archimedean field. Clearly |1| =|—1|=1 and |n| <1 forall n € N. A trivial
example of a non-Archimedean valuation is the function | - | taking everything except
for 0 into 1 and 0| =0.

Throughout this paper, we assume that the base field is a non-Archimedean field,
hence call it simply a field.
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DEFINITION 1.1. ([7]) Let X be a vector space over a field K with a non-
Archimedean valuation | - |. A function || - || : X — [0,c0) is said to be a non-
Archimedean norm if it satisfies the following conditions:

(i) ||x|| = 0 if and only if x =0;

@) [[rxl| = [rlllx]l - (reK,xeX);

(iii) the strong triangle inequality

eyl < max{ixl] [y}, VxyeX

holds. Then (X, || - ||) is called a non-Archimedean normed space.

DEFINITION 1.2. (i) Let {x,} be a sequence in a non-Archimedean normed space
X . Then the sequence {x,} is called Cauchy if for a given € > 0 there is a positive
integer N such that
([0 — xm || < €

forall n,m > N.

(ii) Let {x,} be a sequence in a non-Archimedean normed space X. Then the
sequence {x,} is called convergent if for a given € > 0 there are a positive integer N
and an x € X such that

[l —x|| < €

for all n > N. Then we call x € X a limit of the sequence {x,}, and denote by
lim,, e X, = x.

(iii) If every Cauchy sequence in X converges, then the non-Archimedean normed
space X is called a non-Archimedean Banach space.

The stability problem of functional equations originated from a question of Ulam
[12] concerning the stability of group homomorphisms.
The functional equation

fx+y)=fx)+f(y)

is called the Cauchy equation. In particular, every solution of the Cauchy equation
is said to be an additive mapping. Hyers [6] gave a first affirmative partial answer to
the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki
[1] for additive mappings and by Rassias [10] for linear mappings by considering an
unbounded Cauchy difference. A generalization of the Rassias theorem was obtained
by Gévruta [3] by replacing the unbounded Cauchy difference by a general control
function in the spirit of Rassias’ approach.
The functional equation

7(552) = 3700+ 5500

is called the Jensen equation.
In [4], Gilanyi showed that if f satisfies the functional inequality

12£(x) +2£ () = £y D < T FGov) | (1.1)
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then f satisfies the Jordan-von Neumann functional equation

2f () +2f () = flxy) + floy ).

See also [11]. Gildnyi [5] and Fechner [2] proved the Hyers-Ulam stability of the
functional inequality (1.1). Park, Cho and Han [9] proved the Hyers-Ulam stability of
additive functional inequalities.

In [8], Park defined additive p -functional inequalities and additive p -functional
equations and proved the Hyers-Ulam stability of the additive p -functional inequalities
and the additive p -functional equations in (Archimedean) Banach spaces.

In Section 2, we solve the additive functional inequality (0.1) and prove the Hyers-
Ulam stability of the additive functional inequality (0.1) in non-Archimedean Banach
spaces. We moreover prove the Hyers-Ulam stability of an additive functional equation
associated with the functional inequality (0.1) in non-Archimedean Banach spaces.

In Section 3, we solve the additive functional inequality (0.2) and prove the Hyers-
Ulam stability of the additive functional inequality (0.2) in non-Archimedean Banach
spaces. We moreover prove the Hyers-Ulam stability of an additive functional equation
associated with the functional inequality (0.2) in non-Archimedean Banach spaces

Throughout this paper, assume that X is a non-Archimedean normed space and
that Y is a non-Archimedean Banach space. Let |2| # 1 and let p be a non-Archimedean
number with |[p| < 1.

2. Additive p -functional inequality (0.1)

We solve the additive p -functional inequality (0.1) in non-Archimedean normed
spaces.

LEMMA 2.1. Let G be an Abelian semigroup with division by 2. A mapping
f:G —Y satisfies

It -1 =10 < o (2 (532) s -s0)) | e
forall x,y € G ifand only if f:G — Y is additive.

Proof. Assume that f: G — Y satisfies (2.1).
Letting x =y =0 in (2.1), we get
1F(0)] <O.
So f(0)=0.
Letting y =x in (2.1), we get
1f(2x) =2/ (x)[ <O
and so f(2x) =2f(x) forall x € G. Thus

7(3) =3/ 22)
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forall x € G.
It follows from (2.1) and (2.2) that

and so

forall x,y e G.
The converse is obviously true. [J

COROLLARY 2.2. Let G be an Abelian semigroup with division by 2. A mapping
f:G —Y satisfies

Flxety) = () — () = (2f(”y) f(x)—f(y)) (2.3)

forall x,y € G ifandonlyif f: G —Y is additive.

We prove the Hyers-Ulam stability of the additive p -functional inequality (2.1) in
Banach spaces.

THEOREM 2.3. Let r < 1 and 0 be nonnegative real numbers, andlet f : X —Y
be a mapping such that

e+ 1) =101 < o (27 (552) = 10— 100 )| + 0+ 1) 2

forall x,y € X. Then there exists a unique additive mapping A : X — Y such that

20
1 (x) —AX)] < WHXII’ (2.5)
forall x€ X.
Proof. Letting y =x in (2.4), we get

[1f(2x) = 2f (x)]| < 26]x]" (2.6)

forall x € X. So

Hf(x) < )H\ 2] Ol
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forall x € X. Hence

[2r(z) -2 (5)] @7

<max {2 () =2 () | [ () -2 ()}

=max {2l (1) =2 () |2 e () =2 (o))
<max{ 2 2 }29x||r
= ‘2|rl+l’ ’|2‘r(m71)+1

20

)
= e P

for all nonnegative integers m and [ with m > [ and all x € X. It follows from (2.7)
that the sequence {2*f ( =)} is Cauchy for all x € X. Since Y is a non-Archimedean

Banach space, the sequence {2¢f (5¢)} converges. So one can define the mapping
A:X —Y by

X
A@) = lim 24F (57 )
(x) := lim 25F ( 5
for all x € X. Moreover, letting [ = 0 and passing the limit m — oo in (2.7), we get

(2.5).
Now, let 7 : X — Y be another additive mapping satisfying (2.5). Then we have

lAG) - T = 224 (35) 27 (55)

o ()21

maX{HZA . 2f<2q
20

< et

()2}

which tends to zero as ¢ — oo for all x € X. So we can conclude that A(x) = T'(x) for
all x € X. This proves the uniqueness of A.
It follows from (2.4) that

a4 -t -a0) = fim |2 (r(52) -1 (3) -1 (3))]
< jim 2% (21 (57 ) - (;)*(%))H
+ tim EE2 L+ )
o))
for all x,y € X. So
A+ -0 -0 < |p (24 (152 ) ~ats )H

forall x,y € X. By Lemma 2.1, the mapping A : X — Y is additive.
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THEOREM 2.4. Let r > 1 and 0 be positive real numbers, andlet f:X —Y bea
mapping satisfying (2.4). Then there exists a unique additive mapping A : X — Y such
that

20
1 (x) =AW < mIIXH’ (2.8)
forall x € X.

Proof. Tt follows from (2.6) that

1 26
|- 3729 < o
for all x € X. Hence
%f(z’w - me(sz> (2.9)
< max ‘ llf 21 21+1f<2l+1 ) v szlf(zm_lx)_zimf(zmx) }
1 IS
f<l+1> ’M’W v lx)—if(Z X) }

< max

‘2|rl |2‘ m—1) .
|2‘1+1’ ' ‘2|m 1)+ 26/1x]

{
[ L[
i

-
‘2|1 | (1=r)i+1 &l

for all nonnegative integers m and [ with m > [ and all x € X. It follows from (2.9)
that the sequence {2% f(2"x)} is a Cauchy sequence for all x € X . Since Y is complete,
the sequence {2%, f(2"x)} converges. So one can define the mapping A : X — Y by

Ax) = nlglgo %f(Z"x)

for all x € X. Moreover, letting [ = 0 and passing the limit m — oo in (2.9), we get
(2.8).
The rest of the proof is similar to the proof of Theorem 2.3. [J

Let A(x,y) := f(x+y) = f(x) = f(y) and B(x,y) := p (2f (*3*) = f(x) = f(¥))
forall x,y € X.
For x,y € X with [|A(x,y)|| < [IB(x,y)|.

[ACe, )| = 1B y) || < [[A(x,y) —B(x,y)|-
For x,y € X with [|[A(x,y)| > ||IB(x,y)|l,
[AGe, )| = [[A(x,y) — B(x,y) + B(x,y)]|

—

< max{[|A(x,y) = B(x,y)||, [|B(x,y)[[}
= [[A(x,y) = B(x,)||
< [[A(xy) = B(xy)| + [[B(x )|,



ADDITIVE p -FUNCTIONAL INEQUALITIES 403

since [|A(x,y)|| > ||B(x,¥)||. So we have

I+ -1 =101~ (27 (152) =100 -1 )|
<t -rw-100-p (21 (52) - s -100) |

As corollaries of Theorems 2.3 and 2.4, we obtain the Hyers-Ulam stability results for
the additivec p -functional equation (2.3) in non-Archimedean Banach spaces.

COROLLARY 2.5. Let r < 1 and 0 be nonnegative real numbers, and let f: X —
Y be a mapping such that

et =10 - 10)-p (27 (52) =50 =50 ) | < 000+ 1210

forall x,y € X. Then there exists a unique additive mapping A : X — Y satisfying (2.5).
COROLLARY 2.6. Let r > 1 and 0 be nonnegative real numbers, and let f :

X — Y be a mapping satisfying (2.10). Then there exists a unique additive mapping
A: X —Y satisfying (2.8).

3. Additive p -functional inequality (0.2)

We solve the additive p -functional inequality (0.2) in non-Archimedean normed
spaces.

LEMMA 3.1. Let G be an Abelian semigroup with division by 2. A mapping
f:G —Y satisfis £(0) =0 and

o7 (52) 10100 <o G4 - s -so0) @
forall x,y € G ifandif f: G —Y is additive.

Proof. Assume that f: X — Y satisfies (3.1).
Letting y =0 in (3.1), we get

fr () <o

andso f(3)— 3f(x) forall x € G.
It follows from (3.1) and (3.2) that

I#ta+3) - 0) - £ = o (552) - st H
< Ipllfx+3) — £~
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and so

fx+y)=fx)+f(»)

forall x,y e G.
The converse is obviously true. [

COROLLARY 3.2. Let G be an Abelian semigroup with division by 2. A mapping
f:G —Y satisfies £(0) =0 and

2f<x+y) fO) = f) =p(Fx+y) = fx) = F(¥) G-

forall x,y € G ifand only if f:G — Y is additive.

Now, we prove the Hyers-Ulam stability of the additive p-functional inequality
(3.1) in non-Archimedean Banach spaces.

THEOREM 3.3. Let r < 1 and 0 be nonnegative real numbers, andlet f : X —Y
be a mapping with f(0) =0 such that

27 (552) - 10 - 10| < Ip x-9) = 700 = FON I+ 00U+ 1) G
forall x,y € X. Then there exists a unique additive mapping A : X — Y such that
17— AGO < Ol (5
forallxeX.
Proof. Letting y =0 in (3.4), we get
[r=2r(3)= |2 (3) — s < G.6)
forall x € X. So
|27 (5) -2 (5)] G.7)
<max{[[2'r (57) =27 (g ) |- |2 (5s) — 27 (39) [}
=max{2' |7 (5) -2/ (57) 'v‘zVHHf(z $) =2 (5|1}

2| 2] r
< max{ m,ﬂ'nm o1lx|

7l

‘2|r1

for all nonnegative integers m and [/ with m > [ and all x € X. It follows from (3.7)
that the sequence {2f (5¢)} is Cauchy for all x € X. Since Y is a non-Archimedean
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Banach space, the sequence {2Ff (;—k)} converges. So one can define the mapping
A:X —Y by

A(x) = lim Zkf(2k>

for all x € X. Moreover, letting / = 0 and passing the limit m — oo in (3.7), we get
(3.5).
The rest of the proof is similar to the proof of Theorem 2.3. [J

THEOREM 3.4. Let r > 1 and 0 be positive real numbers, and let f : X — Y be
a mapping satisfying f(0) =0 and (3.4). Then there exists a unique additive mapping
A: X —Y such that

2 r
176) =AW < Ol 6.8

forall x€ X.

Proof. Tt follows from (3.6) that

1

- 329) <

121"

ol
2|

forall x € X. Hence

S 1@%) — 22 (3.9)

1 1 1
< max ‘ ?f(21x>_zlﬁf<2l+1x> . T 1f( om— 1 ) z_mf(zmx) }
l l m— 1 m
= max ‘2|l f(le> —Ef <2l+1)€> 7"',W f(2 lx) —Ef(2 )C) }

|2‘l+1’ ‘2| m—1)+

C2re
‘2|(1 ri+1 &l

rl
<max{ a2 }|2 0||x|"
|I"

for all nonnegative integers m and [ with m > [ and all x € X. It follows from (3.9)
that the sequence {4 f(2"x)} is a Cauchy sequence for all x € X . Since Y is complete,
the sequence {2#, f(2"x)} converges. So one can define the mapping A : X — Y by

A(x) = lim (2"
for all x € X. Moreover, letting / = 0 and passing the limit m — o in (3.9), we get
(3.8).

The rest of the proof is similar to the proof of Theorem 2.3. [J



406 C. PARK

Let A(x,y) :=2f (*3*) — f(x) — f(y) and B(x,y) := p (f(x+y) — f(x) = f(7))
forall x,y € X.
For x,y € X with [|A(x,y)|| < [|B(x,y)]|.

[AGe ) = [BG ) < |AGx,y) —B(x,y)]]-
For x,y € X with ||A(x,y)]| > [|B(x,y)],
[AGe ) = [[A(x,y) — B(x,y) + B(x,y)||
< max{[|A(x,y) — B(x,y)|[, [|B(x,y)[[}
= [[A(x,y) = B(x,y)||
< [|AGy) = Bxy) ||+ 1By,

)

since [|A(x,y)|| > ||B(x,¥)||. So we have
27 (552 = 10101 - Ip (1x-+9) = 1) - 1)

<[or (552) - - 1) - p st - H

As corollaries of Theorems 3.3 and 3.4, we obtain the Hyers-Ulam stability results for
the additivec p -functional equation (3.3) in non-Archimedean Banach spaces.

COROLLARY 3.5. Let r <1 and 6 be nonnegative real numbers, and let f: X —
Y be a mapping satisfying f(0) =0 and

+ r r
|27 (552) - 10 - 10) = (42) = £ = £00) | < 011" + )10
forall x,y € X. Then there exists a unique additive mapping A : X — Y satisfying (3.5).

COROLLARY 3.6. Let r > 1 and 0 be nonnegative real numbers, and let f: X —
Y be a mapping satisfying f(0) = 0 and (3.10). Then there exists a unique additive
mapping A : X — Y satisfying (3.8).
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